Academic literature on the topic 'Équation de Gross-Pitaevskii'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équation de Gross-Pitaevskii.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Équation de Gross-Pitaevskii"

1

Mennuni, Pierre. "Ondes progressives de l’équation de Gross–Pitaevskii non locale : analyse et simulations." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I068/document.

Full text
Abstract:
Cette thèse est consacrée à l’étude des ondes progressives de l’équation Gross–Pitaevskii non locale avec des conditions non nulles à l’infini. L’équation de Gross–Pitaevskii est une équation hamiltonienne apparaissant dans divers domaines de la physique tels que l’optique non linéaire, la superfluidité ou la condensation de Bose-Einstein. L’étude des ondes progressives pour l’équation de Gross–Pitaevskii fait l’objet de nombreux travaux depuis les résultats de Jones et Roberts en 1982, principalement dans le cas local. Afin de modéliser des interactions plus réalistes, il est intéressant de considérer l’équation de Gross–Pitaevskii non locale. Avant de traiter la question des ondes progressives, on consacre le premier chapitre à l’étude des conditions non nulles à l’infini d’un point de vue numérique et théorique, dans le cas de l’équation de Schrödinger linéaire. Nous montrons que la solution de l’équation linéaire présente un comportement asymptotique quasi-universel dans ce cas, ce que l’on illustre numériquement. Ensuite, nous montrons que, pour une famille d’interaction non locales, il existe une branche d’ondes progressives non triviales, orbitalement stable, en dimension 1. Notre résultat généralise le cas local et la preuve est basée sur un argument de minimisation sous contraintes, l’étude de la courbe minimisante et le principe de concentration compacité. En outre, on généralise les propriétés de la courbe minimisante en dimension N, dans le cas non local. Enfin, dans le dernier chapitre, nous proposons une méthode de gradient avec projection en dimension 1 et une méthode de pénalisation en dimension 2 afin de calculer numériquement les ondes progressives et la courbe d’énergie pour certains noyaux. Dans ces deux méthodes, l’utilisation de la transformée de Fourier rapide est cruciale afin de traiter l’interaction non locale
This thesis is devoted to the study of traveling waves of the nonlocal Gross-Pitaevskii equation with nonzero conditions at infinity. The Gross-Pitaevskii equation is a Hamiltonian equation and arises in several areas of quantum physics such as nonlinear optics, superfluidity and Bose-Einstein condensation. There have been extensive studies concerning the traveling waves, particularly in the local case, since the Jones-Roberts programme in 1982. In order to describe more realistic physical interactions, we consider the nonlocal Gross-Pitaevskii equation. The first chapter is devoted to the numerical and theoretical aspects of the nonzero conditions at infinity, in the case of the linear Schrödinger equation. We show that the solution of the linear equation shows a quasi-universal behaviour and we illustrate it with numerical simulations. Then, we provide conditions on the nonlocal interaction such that there exists a branch of nontrivial traveling waves. We also show that this branch is orbitally stable. Our results generalize the local case and rely on a minimisation under constraints approach, the study of the minimizing curve and a concentration-compactness argument. Moreover, we generalize the properties of the minimizing curve in dimension N. Finally, we propose and implement a gradient method in dimension 1 and a penalty method in dimension 2 to numerically compute the traveling waves and the energy curve for nonlocal potentials. In each method, the nonlocal term is treated by the Fast Fourier Transform
APA, Harvard, Vancouver, ISO, and other styles
2

de, Laire André. "Quelques problèmes liés à la dynamique des équations de Gross-Pitaevskii et de Landau-Lifshitz." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00658356.

Full text
Abstract:
Cette thèse est consacrée à l'étude des équations de Gross-Pitaevskii et de Landau-Lifshitz, qui présentent d'importantes applications en physique. L'équation de Gross-Pitaevskii modélise des phénomènes de l'optique non linéaire, de la superfluidité et de la condensation de Bose-Einstein, tandis que l'équation de Landau-Lifshitz décrit la dynamique de l'aimantation dans des matériaux ferromagnétiques. Lorsqu'on modélise la matière à très basse température, on fait l'hypothèse que l'interaction des particules est ponctuelle. L'équation de Gross-Pitaevskii classique s'en déduit alors en prenant comme interaction une masse de Dirac. Cependant, différents types de potentiels non locaux probablement plus réalistes ont aussi été proposés par des physiciens pour modéliser des interactions plus générales. Dans un premier temps, on s'intéressera à donner des conditions suffisantes couvrant une variété assez large d'interactions non locales et telles que le problème de Cauchy associé soit globalement bien posé avec des conditions non nulles à l'infini. Par la suite, on étudiera les ondes progressives de ce modèle non local et on donnera des conditions telles que l'on puisse déterminer les vitesses pour lesquelles il n'existe pas de solution non constante d'énergie finie. Concernant l'équation de Landau-Lifshitz, on s'intéressera aussi aux ondes progressives d'énergie finie. On montrera la non existence d'ondes progressives non constantes d'énergie petite en dimensions deux, trois et quatre, sous l'hypothèse que l'énergie soit inférieure au moment dans le cas de la dimension deux. En outre, on donnera aussi dans le cas bidimensionnel la description d'une courbe minimisante qui pourrait donner une approche variationnelle pour construire des solutions de l'équation de Landau-Lifshitz. Finalement, on décrira le comportement à l'infini des ondes progressives d'énergie finie.
APA, Harvard, Vancouver, ISO, and other styles
3

Anton, Ramona. "Équation de Schrödinger non-linéaire dans un domaine à bord." Paris 11, 2006. http://www.theses.fr/2006PA112197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gravejat, Philippe. "Quelques contributions à l'analyse mathématique de l'équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock." Habilitation à diriger des recherches, Université Paris Dauphine - Paris IX, 2011. http://tel.archives-ouvertes.fr/tel-00706916.

Full text
Abstract:
Ce mémoire présente plusieurs contributions quant à l'analyse mathématique de l'équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock. Au sujet de l'équation de Gross-Pitaevskii, l'analyse commence par la construction variationnelle des ondes progressives minimisantes. La preuve de la stabilité orbitale du soliton noir en dimension un, et la description de la limite transsonique des ondes progressives minimisantes vers les états fondamentaux de l'équation de Kadomtsev-Petviashvili en dimension deux, viennent compléter cette construction. L'analyse s'achève par la dérivation rigoureuse du régime ondes longues vers l'équation de Korteweg-de Vries en dimension un. Quant au modèle de Bogoliubov-Dirac-Fock, il s'agit de construire les états fondamentaux du modèle réduit, puis de préciser le processus de renormalisation de leur charge, lequel autorise le calcul d'un développement asymptotique de la densité de charges du vide polarisé, qui est cohérent avec les développements perturbatifs de l'électrodynamique quantique.
APA, Harvard, Vancouver, ISO, and other styles
5

Mohamad, Haidar. "Sur l'équation de Gross-Pitaevskii uni-dimensionnelle et quelques généralisations du flot par courbure binormale." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066176.

Full text
Abstract:
Ce travail est une contribution à l'étude des équations de Schrödinger non-linéaires (NLS) en dimension un d'espace. De telles équations interviennent notamment comme modèles dans plusieurs domaines de la physique mathématique, tels l'optique non-linéaire, la superfluidité, la supraconductivité et la condensation de Bose-Einstein.Cette thèse contient trois thèmes connexes inclus dans les chapitres 2, 3 et 4. Dans la première partie (chapitre 2), on s'intéresse à la construction des solutions en multi-solitons de l'équation de Gross-Pitaevskii (NLS défocalisante avec non-linéarité cubique), comme une superposition approximative des ondes progressives (solitons). Cette partie contient également une description détaillée des interactions entre les solitons. Ces résultats sont obtenus en exploitant l'intégrabilité de l'équation de Gross-Pitaevskii et son système de Marchenko associé.La deuxième partie (chapitre 4) clarifie les relations entre la formulation classique et la formulation dite hydrodynamique de l'équation de Gross-Pitaevskii. Cette dernière a un sens lorsque la solution ne s'annule jamais dans le domaine spatial. La dernière partie (chapitre 3) est consacrée à l'étude du problème de Cauchy d'une famille d'équations aux dérivées partielles quasi-linéaires qui généralise l'équation du flot par courbure binormal d'une courbe dans l'espace euclidien de dimension trois. Cette dernière est liée formellement à NLS par la transformation de Hasimoto. Dans notre généralisation, la vitesse d'un point de la courbe est toujours dirigée dans la direction du vecteur binormal, mais son amplitude peut dépendre de l'abscisse curviligne ainsi de la position dans l'espace. Notre approche pour prouver l'existence est le suivant: schéma semi-discret (discret en espace et continu en temps), obtention de bornes sur les problèmes discrets et argument par compacité. Un théorème de comparaison entraîne l'unicité
This work is a contribution to the study of nonlinear Schrödinger equations (NLS) in the one-dimensional space. Such equations arise in many physical fields, including nonlinear optics and Bose-Einstein condensation. The thesis contains three connected themes included in chapters 2, 3 and 4. The first part (chapter 2) constructs multi-soliton solutions of the Gross-Pitaevskii (or defocussing NLS) equation, as an approximate superposition of traveling waves (solitons). This part contains also a detailed description of the interactions between solitons. These results are obtained by exploiting the integrability of the the Gross-Pitaevskii equation and its associated Marchenko system. The second part (chapter 4) clarifies the relations between the classical formulation and the so-called hydrodynamical formulation that only has a meaning when the solution does not vanish anywhere in the spatial domain The last part (chapter 3) of this thesis concerns existence and uniqueness results for a family of quasi-linear partial differential equations that generalize the equation of the binormal curvature flow for a curve in the three-dimensional space. The latter equation is in connection to the focussing cubic NLS by Hasimoto transformation. In our generalization, the velocity of a point on the curve is still directed along the binormal vector (so that in particular the length of the curve is preserved) but the magnitude of the speed is allowed to depend both on the curvilinear parameter and on the position in space. Existence is proven using spatial discretization together with some a priori bounds on the approximate solutions. Uniqueness follows from a comparison theorem
APA, Harvard, Vancouver, ISO, and other styles
6

Rouffort, Clément. "Théorie de champ-moyen et dynamique des systèmes quantiques sur réseau." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S074/document.

Full text
Abstract:
Cette thèse est dédiée à l'étude mathématique de l'approximation de champ-moyen des gaz de bosons. En physique quantique une telle approximation est vue comme la première approche permettant d'expliquer le comportement collectif apparaissant dans les systèmes quantiques à grand nombre de particules et illustre des phénomènes fondamentaux comme la condensation de Bose-Einstein et la superfluidité. Dans cette thèse, l'exactitude de l'approximation de champ-moyen est obtenue de manière générale comme seule conséquence de principes de symétries et de renormalisations d'échelles. Nous recouvrons l'essentiel des résultats déjà connus sur le sujet et de nouveaux sont prouvés, particulièrement pour les systèmes quantiques sur réseau, incluant le modèle de Bose-Hubbard. D'autre part, notre étude établit un lien entre les équations aux hiérarchies de Gross-Pitaevskii et de Hartree, issues des méthodes BBGKY de la physique statistique, et certaines équations de transport ou de Liouville dans des espaces de dimension infinie. Résultant de cela, les propriétés d'unicité pour de telles équations aux hiérarchies sont prouvées en toute généralité utilisant seulement les caractéristiques génériques de problèmes aux valeurs initiales liés à de telles équations. Egalement, de nouveaux résultats de caractères bien posés et un contre-exemple à l'unicité d'une hiérarchie de Gross-Pitaevskii sont prouvés. L’originalité de nos travaux réside dans l'utilisation d'équations de Liouville et de puissantes techniques de transport étendues à des espaces fonctionnels de dimension infinie et jointes aux mesures de Wigner, ainsi qu'à une approche utilisant les outils de la seconde quantification. Notre contribution peut être vue comme l'aboutissement d'idées initiées par Z. Ammari, F. Nier et Q. Liard autour de la théorie de champ-moyen
This thesis is dedicated to the mathematical study of the mean-field approximation of Bose gases. In quantum physics such approximation is regarded as the primary approach explaining the collective behavior appearing in large quantum systems and reflecting fundamental phenomena as the Bose-Einstein condensation and superfluidity. In this thesis, the accuracy of the mean-field approximation is proved in full generality as a consequence only of scaling and symmetry principles. Essentially all the known results in the subject are recovered and new ones are proved specifically for quantum lattice systems including the Bose-Hubbard model. On the other hand, our study sets a bridge between the Gross-Pitaevskii and Hartree hierarchies related to the BBGKY method of statistical physics with certain transport or Liouville's equations in infinite dimensional spaces. As an outcome, the uniqueness property for these hierarchies is proved in full generality using only generic features of some related initial value problems. Again, several new well-posedness results as well as a counterexample to uniqueness for the Gross-Pitaevskii hierarchy equation are proved. The originality in our works lies in the use of Liouville's equations and powerful transport techniques extended to infinite dimensional functional spaces together with Wigner probability measures and a second quantization approach. Our contributions can be regarded as the culmination of the ideas initiated by Z. Ammari, F. Nier and Q. Liard in the mean-field theory
APA, Harvard, Vancouver, ISO, and other styles
7

Duboscq, Romain. "Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0198/document.

Full text
Abstract:
Dans cette thèse, nous étudions différents aspects mathématiques et numériques des équations de Gross-Pitaevskii et de Schrödinger non linéaire. Nous commençons (chapitre 1) par introduire différents modèles à partir des systèmes physiques que sont les condensats de Bose-Einstein et les impulsions lumineuses dans les fibres optiques. Cette modélisation conduit aux équations aux dérivées partielles stochastiques suivantes : l'équation de Gross-Pitaevskii stochastique et l'équation de Schrödinger non linéaire avec dispersion aléatoire. Ensuite, dans le second chapitre, nous nous intéressons au problème de l'existence et l'unicité d'une solution de ces équations. On montre notamment que le problème de Cauchy a une solution pour l'équation de Gross-Pitaevskii stochastique avec rotation grâce à la construction de la solution associée au problème. Nous abordons ensuite dans le troisième chapitre le problème du calcul des états stationnaires pour l'équation de Gross-Pitaevskii. Nous développons une méthode pseudo-spectrale de discrétisation du Continuous Normalized Gradient Flow, associée à une résolution itérative préconditionnée des sous-espaces de Krylov. Le quatrième chapitre concerne l'étude de schémas pseudo-spectraux pour la dynamique de l'équation de Gross-Pitaevskii et de Schrödinger non linéaire. On procède à une étude numérique de ces schémas (schéma de splitting de Lie et de Strang, ainsi qu'un schéma de relaxation). De plus, on analyse le schéma de Lie dans le cadre de l'équation de Schrödinger non linéaire avec dispersion aléatoire. Finalement, nous présentons, dans le cinquième chapitre, une boîte à outils Matlab (GPELab) développée dans le but de fournir les méthodes numériques que nous avons étudiées
The aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
APA, Harvard, Vancouver, ISO, and other styles
8

Duboscq, Romain. "Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation." Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0198.

Full text
Abstract:
Dans cette thèse, nous étudions différents aspects mathématiques et numériques des équations de Gross-Pitaevskii et de Schrödinger non linéaire. Nous commençons (chapitre 1) par introduire différents modèles à partir des systèmes physiques que sont les condensats de Bose-Einstein et les impulsions lumineuses dans les fibres optiques. Cette modélisation conduit aux équations aux dérivées partielles stochastiques suivantes : l'équation de Gross-Pitaevskii stochastique et l'équation de Schrödinger non linéaire avec dispersion aléatoire. Ensuite, dans le second chapitre, nous nous intéressons au problème de l'existence et l'unicité d'une solution de ces équations. On montre notamment que le problème de Cauchy a une solution pour l'équation de Gross-Pitaevskii stochastique avec rotation grâce à la construction de la solution associée au problème. Nous abordons ensuite dans le troisième chapitre le problème du calcul des états stationnaires pour l'équation de Gross-Pitaevskii. Nous développons une méthode pseudo-spectrale de discrétisation du Continuous Normalized Gradient Flow, associée à une résolution itérative préconditionnée des sous-espaces de Krylov. Le quatrième chapitre concerne l'étude de schémas pseudo-spectraux pour la dynamique de l'équation de Gross-Pitaevskii et de Schrödinger non linéaire. On procède à une étude numérique de ces schémas (schéma de splitting de Lie et de Strang, ainsi qu'un schéma de relaxation). De plus, on analyse le schéma de Lie dans le cadre de l'équation de Schrödinger non linéaire avec dispersion aléatoire. Finalement, nous présentons, dans le cinquième chapitre, une boîte à outils Matlab (GPELab) développée dans le but de fournir les méthodes numériques que nous avons étudiées
The aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yipeng. "Estimation d’erreur a posteriori pour des calculs de structure électronique par des méthodes ab initio et son application pour diminuer le coût de calcul." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS656.

Full text
Abstract:
La thèse porte sur l'analyse des erreurs dans le calcul de la structure électronique. L'objectif à long terme est, d'une part, de dériver un estimateur d'erreur a posteriori calculable pour les méthodes ab initio et, d'autre part, de proposer une stratégie de coût de calcul quasi-optimale pour le calcul numérique de ces méthodes basée sur l'estimation d'erreur a posteriori et la séparation des sources d'erreur de discrétisation et d'itération.Dans la première partie de la thèse, nous introduisons une nouvelle analyse de bien posé pour la méthode de cluster couplé à référence unique basée sur l'inversibilité de la dérivée CC. Sous l'hypothèse minimale que la fonction propre recherchée est normalisable de façon intermédiaire et que la valeur propre associée est isolée et non dégénérée, nous prouvons que les équations CC continues (en dimension infinie) sont toujours bien posées localement. Sous les mêmes hypothèses minimales et à condition que la discrétisation soit suffisamment fine, nous prouvons que les équations CC discrètes sont localement bien posées, et nous dérivons des estimations d'erreur basées sur les résidus avec des constantes positives garanties.La deuxième partie de la thèse se concentre sur l'application de l'estimation d'erreur a posteriori pour construire un chemin quasi-optimal lors de l'approximation de la solution d'EDP. Nous appliquons d'abord une méthode probabiliste pour explorer un chemin optimal pour la résolution numérique de problèmes elliptiques linéaires et non linéaires en minimisant le coût de calcul. Sur la base de l'analyse de ces chemins optimaux, nous proposons deux stratégies quasi-optimales pour atteindre une précision donnée, basées sur la décomposition des sources d'erreur de l'estimateur d'erreur. Enfin, nous validons la faisabilité de ces stratégies quasi-optimales en les appliquant à l'approximation numérique du problème des valeurs propres, c'est-à-dire l'équation de Gross-Pitaevskii
The thesis is concerned with the error analysis of electronic structure calculation. The long term goal is to, in one hand, derive computable a posteriori error estimator for ab initio methods and, in the other hand, propose near-optimal computational cost strategy for the numerical calculation of those methods based on the a posteriori error estimation and the separation of the discretization and iteration error sources.In the first part of the thesis, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretization is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants.The second part of the thesis focus on the application of a posteriori error estimation to construct near-optimal path when approximating the solution of PDEs. We firstly apply a probabilistic method to explore an optimal path that minimizes the cost for the numerical resolution of linear and nonlinear elliptic source problems. Based on the analysis of those optimal paths, we propose two near-optimal strategies to achieve a given accuracy based on the error sources decomposition of the error estimator. Finally, we validate the feasibility of those near-optimal strategies by applying them to the numerical approximation of a nonlinear eigenvalue problem, i.e., the Gross-Pitaevskii equation
APA, Harvard, Vancouver, ISO, and other styles
10

Congy, Thibault. "Fluctuations non-linéaires dans les gaz quantiques à deux composantes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS323/document.

Full text
Abstract:
Cette thèse est dédiée à l'étude des fluctuations non-linéaires dans les condensats de Bose-Einstein à deux composantes. On présente dans le premier chapitre la dynamique de champ moyen des condensats à deux composantes et les différents phénomènes typiques associés au degré de liberté spinoriel. Dans ce même chapitre, on montre que la dynamique des excitations se sépare en deux modes distincts : un mode dit de densité correspondant au mouvement global des atomes à l'intérieur du condensat et un mode dit de polarisation correspondant à la dynamique relative entre les deux espèces constituant le condensat. Ce calcul est généralisé dans le deuxième chapitre où l'on montre que le mode de polarisation persiste en présence d'un couplage cohérent entre les deux composantes. En particulier on analyse la stabilité modulationnelle du mode en déterminant, à l'aide d'une analyse multi-échelle, la dynamique des excitations non-linéaires. On montre alors que les excitations de polarisation, au contraire des excitations de densité, souffrent d'une instabilité de Benjamin-Feir. Cette instabilité est stabilisée aux grandes impulsions par une résonance onde longue - onde courte. Enfin dans le dernier chapitre, on dérive de façon non-perturbative la dynamique de polarisation proche de la limite de Manakov, dynamique quise révèle être régie par une équation de Landau-Lifshitz sans dissipation. Les équations de Landau-Lifshitz appartiennent à une hiérarchie d'équations intégrables (hiérarchie Ablowitz-Kaup-Newell-Segur) et on étudie les solutions à une phase à l'aide de la méthode d'intégration finite-gap ; on détermine notamment à l'aide de cette méthode un nouveau type de soliton pour les condensats à deux composantes. Finalement, profitant de l'intégrabilité du système, on résout le problème de Riemann à l'aide de la théorie de modulation de Whitham et on montre que les condensats à deux composantes peuvent propager des ondes de raréfaction ainsi que des ondes de choc dispersives ; on décrit notamment la modulation de ces ondes de choc par la propagation d'ondes simples et d'ondes de contact d'invariants de Riemann
This thesis is devoted to the study of nonlinear fluctuations in two-component Bose-Einstein condensates. In the first chapter we derive the mean field dynamics of two-component condensates and we present the distinctive phenomena associated to the spinorial degree of freedom. In the same chapter, we show that the dynamics of the excitations is divided in two distinct modes: a so-called density mode which corresponds to the global motion of the atoms, and a so-called polarization mode which corresponds to the relative motion between the two species composing the condensate. The computation is generalized in the second chapter in which we demonstrate that the polarization mode remains in presence of a coherent coupling between the two components. In particular we study the modulational stability of the mode and we determine through a multi-scaling analysis the dynamics of non-linear excitations. We show that the excitations of polarization undergo a Benjamin-Feir instability contrary to the density excitations. This instability is then stabilized in the short wavelength regime by a long wave - short wave resonance. Finally in the last chapter, we derive in a non-perturbative way the polarisation dynamics close the Manakov limit.In this limit, the dynamics proves to be governed by a Landau-Lifshitz equation without dissipation. Landau-Lifshitz equations belong to a hierarchy of integrable equations (Ablowitz-Kaup-Newell-Segur hierarchy) and we derive the single-phase solutions thanks to the finite-gap method; in particular we identify a new type of soliton for the two-component Bose-Einstein condensates. Finally, taking advantage of the integrability of the system, we solve the Riemann problem thanks to the Whitham modulation theory and we show that the two-component condensates can propagate rarefaction waves as well as dispersive shockwaves; we describe the modulation of the shockwaves by the propagation of simple waves and contact waves of Riemann invariants
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Équation de Gross-Pitaevskii"

1

"Complément CXV Systèmes de bosons condensés, équation de Gross-Pitaevskii." In Mécanique quantique - Tome III, 57–72. EDP Sciences, 2017. http://dx.doi.org/10.1051/978-2-7598-2151-8.c006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Complément DXV Équation de Gross-Pitaevskii dépendant du temps." In Mécanique quantique - Tome III, 73–94. EDP Sciences, 2017. http://dx.doi.org/10.1051/978-2-7598-2151-8.c007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography