Contents
Academic literature on the topic 'Équation de Gross-Pitaevskii'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équation de Gross-Pitaevskii.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Équation de Gross-Pitaevskii"
Mennuni, Pierre. "Ondes progressives de l’équation de Gross–Pitaevskii non locale : analyse et simulations." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I068/document.
Full textThis thesis is devoted to the study of traveling waves of the nonlocal Gross-Pitaevskii equation with nonzero conditions at infinity. The Gross-Pitaevskii equation is a Hamiltonian equation and arises in several areas of quantum physics such as nonlinear optics, superfluidity and Bose-Einstein condensation. There have been extensive studies concerning the traveling waves, particularly in the local case, since the Jones-Roberts programme in 1982. In order to describe more realistic physical interactions, we consider the nonlocal Gross-Pitaevskii equation. The first chapter is devoted to the numerical and theoretical aspects of the nonzero conditions at infinity, in the case of the linear Schrödinger equation. We show that the solution of the linear equation shows a quasi-universal behaviour and we illustrate it with numerical simulations. Then, we provide conditions on the nonlocal interaction such that there exists a branch of nontrivial traveling waves. We also show that this branch is orbitally stable. Our results generalize the local case and rely on a minimisation under constraints approach, the study of the minimizing curve and a concentration-compactness argument. Moreover, we generalize the properties of the minimizing curve in dimension N. Finally, we propose and implement a gradient method in dimension 1 and a penalty method in dimension 2 to numerically compute the traveling waves and the energy curve for nonlocal potentials. In each method, the nonlocal term is treated by the Fast Fourier Transform
de, Laire André. "Quelques problèmes liés à la dynamique des équations de Gross-Pitaevskii et de Landau-Lifshitz." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00658356.
Full textAnton, Ramona. "Équation de Schrödinger non-linéaire dans un domaine à bord." Paris 11, 2006. http://www.theses.fr/2006PA112197.
Full textGravejat, Philippe. "Quelques contributions à l'analyse mathématique de l'équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock." Habilitation à diriger des recherches, Université Paris Dauphine - Paris IX, 2011. http://tel.archives-ouvertes.fr/tel-00706916.
Full textMohamad, Haidar. "Sur l'équation de Gross-Pitaevskii uni-dimensionnelle et quelques généralisations du flot par courbure binormale." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066176.
Full textThis work is a contribution to the study of nonlinear Schrödinger equations (NLS) in the one-dimensional space. Such equations arise in many physical fields, including nonlinear optics and Bose-Einstein condensation. The thesis contains three connected themes included in chapters 2, 3 and 4. The first part (chapter 2) constructs multi-soliton solutions of the Gross-Pitaevskii (or defocussing NLS) equation, as an approximate superposition of traveling waves (solitons). This part contains also a detailed description of the interactions between solitons. These results are obtained by exploiting the integrability of the the Gross-Pitaevskii equation and its associated Marchenko system. The second part (chapter 4) clarifies the relations between the classical formulation and the so-called hydrodynamical formulation that only has a meaning when the solution does not vanish anywhere in the spatial domain The last part (chapter 3) of this thesis concerns existence and uniqueness results for a family of quasi-linear partial differential equations that generalize the equation of the binormal curvature flow for a curve in the three-dimensional space. The latter equation is in connection to the focussing cubic NLS by Hasimoto transformation. In our generalization, the velocity of a point on the curve is still directed along the binormal vector (so that in particular the length of the curve is preserved) but the magnitude of the speed is allowed to depend both on the curvilinear parameter and on the position in space. Existence is proven using spatial discretization together with some a priori bounds on the approximate solutions. Uniqueness follows from a comparison theorem
Rouffort, Clément. "Théorie de champ-moyen et dynamique des systèmes quantiques sur réseau." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S074/document.
Full textThis thesis is dedicated to the mathematical study of the mean-field approximation of Bose gases. In quantum physics such approximation is regarded as the primary approach explaining the collective behavior appearing in large quantum systems and reflecting fundamental phenomena as the Bose-Einstein condensation and superfluidity. In this thesis, the accuracy of the mean-field approximation is proved in full generality as a consequence only of scaling and symmetry principles. Essentially all the known results in the subject are recovered and new ones are proved specifically for quantum lattice systems including the Bose-Hubbard model. On the other hand, our study sets a bridge between the Gross-Pitaevskii and Hartree hierarchies related to the BBGKY method of statistical physics with certain transport or Liouville's equations in infinite dimensional spaces. As an outcome, the uniqueness property for these hierarchies is proved in full generality using only generic features of some related initial value problems. Again, several new well-posedness results as well as a counterexample to uniqueness for the Gross-Pitaevskii hierarchy equation are proved. The originality in our works lies in the use of Liouville's equations and powerful transport techniques extended to infinite dimensional functional spaces together with Wigner probability measures and a second quantization approach. Our contributions can be regarded as the culmination of the ideas initiated by Z. Ammari, F. Nier and Q. Liard in the mean-field theory
Duboscq, Romain. "Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0198/document.
Full textThe aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
Duboscq, Romain. "Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation." Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0198.
Full textThe aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
Wang, Yipeng. "Estimation d’erreur a posteriori pour des calculs de structure électronique par des méthodes ab initio et son application pour diminuer le coût de calcul." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS656.
Full textThe thesis is concerned with the error analysis of electronic structure calculation. The long term goal is to, in one hand, derive computable a posteriori error estimator for ab initio methods and, in the other hand, propose near-optimal computational cost strategy for the numerical calculation of those methods based on the a posteriori error estimation and the separation of the discretization and iteration error sources.In the first part of the thesis, we introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative. Under the minimal assumption that the sought-after eigenfunction is intermediately normalisable and the associated eigenvalue is isolated and non-degenerate, we prove that the continuous (infinite-dimensional) CC equations are always locally well-posed. Under the same minimal assumptions and provided that the discretization is fine enough, we prove that the discrete Full-CC equations are locally well-posed, and we derive residual-based error estimates with guaranteed positive constants.The second part of the thesis focus on the application of a posteriori error estimation to construct near-optimal path when approximating the solution of PDEs. We firstly apply a probabilistic method to explore an optimal path that minimizes the cost for the numerical resolution of linear and nonlinear elliptic source problems. Based on the analysis of those optimal paths, we propose two near-optimal strategies to achieve a given accuracy based on the error sources decomposition of the error estimator. Finally, we validate the feasibility of those near-optimal strategies by applying them to the numerical approximation of a nonlinear eigenvalue problem, i.e., the Gross-Pitaevskii equation
Congy, Thibault. "Fluctuations non-linéaires dans les gaz quantiques à deux composantes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS323/document.
Full textThis thesis is devoted to the study of nonlinear fluctuations in two-component Bose-Einstein condensates. In the first chapter we derive the mean field dynamics of two-component condensates and we present the distinctive phenomena associated to the spinorial degree of freedom. In the same chapter, we show that the dynamics of the excitations is divided in two distinct modes: a so-called density mode which corresponds to the global motion of the atoms, and a so-called polarization mode which corresponds to the relative motion between the two species composing the condensate. The computation is generalized in the second chapter in which we demonstrate that the polarization mode remains in presence of a coherent coupling between the two components. In particular we study the modulational stability of the mode and we determine through a multi-scaling analysis the dynamics of non-linear excitations. We show that the excitations of polarization undergo a Benjamin-Feir instability contrary to the density excitations. This instability is then stabilized in the short wavelength regime by a long wave - short wave resonance. Finally in the last chapter, we derive in a non-perturbative way the polarisation dynamics close the Manakov limit.In this limit, the dynamics proves to be governed by a Landau-Lifshitz equation without dissipation. Landau-Lifshitz equations belong to a hierarchy of integrable equations (Ablowitz-Kaup-Newell-Segur hierarchy) and we derive the single-phase solutions thanks to the finite-gap method; in particular we identify a new type of soliton for the two-component Bose-Einstein condensates. Finally, taking advantage of the integrability of the system, we solve the Riemann problem thanks to the Whitham modulation theory and we show that the two-component condensates can propagate rarefaction waves as well as dispersive shockwaves; we describe the modulation of the shockwaves by the propagation of simple waves and contact waves of Riemann invariants
Book chapters on the topic "Équation de Gross-Pitaevskii"
"Complément CXV Systèmes de bosons condensés, équation de Gross-Pitaevskii." In Mécanique quantique - Tome III, 57–72. EDP Sciences, 2017. http://dx.doi.org/10.1051/978-2-7598-2151-8.c006.
Full text"Complément DXV Équation de Gross-Pitaevskii dépendant du temps." In Mécanique quantique - Tome III, 73–94. EDP Sciences, 2017. http://dx.doi.org/10.1051/978-2-7598-2151-8.c007.
Full text