Academic literature on the topic 'Équation de Schrödinger non-linéaire cubique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équation de Schrödinger non-linéaire cubique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Équation de Schrödinger non-linéaire cubique"

1

Bamberger, Alain, and Laurence Halpern. "Etude des états Stationnaires Pour une Équation de Schrödinger non Linéaire Comportant un Terme non Autonome." SIAM Journal on Mathematical Analysis 18, no. 1 (January 1987): 97–126. http://dx.doi.org/10.1137/0518008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aassila, Mohammed. "Comportement asymptotique des solutions d'un système conservatif associé à une équation non linéaire singulière de Schrödinger." Bulletin of the Belgian Mathematical Society - Simon Stevin 5, no. 5 (1998): 675–86. http://dx.doi.org/10.36045/bbms/1103211559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Colliander, J., M. Keel, G. Staffilani, H. Takaoka, and T. Tao. "Existence globale et diffusion pour l'équation de Schrödinger non linéaire répulsive cubique sur $\mathbb{R}^3$ en dessous l'espace d'énergie." Journées équations aux dérivées partielles, 2002, 1–15. http://dx.doi.org/10.5802/jedp.608.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Équation de Schrödinger non-linéaire cubique"

1

Breteaux, Sébastien. "Approche QFT de la dérivation d'équations cinétiques." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00606213.

Full text
Abstract:
La dérivation d'équations cinétiques consiste à obtenir, à partir d'un modèle microscopique décrivant un système physique donné, des équations d'évolution contenant les informations pertinentes d'un point de vue macroscopique sur ce système. Dans cette thèse on s'intéresse, dans des cas particuliers, à la dérivation d'équations cinétiques par des méthodes utilisant le formalisme de la théorie quantique des champs (QFT) et le calcul semi-classique en dimension finie et infinie. Après une introduction générale, on traite dans la seconde partie de la dérivation de l'équation de Boltzmann linéaire pour une particule dans un champ aléatoire Gaussien, dans la limite de faible densité (ou de faible couplage). On considère des données initiales plus générales que dans les travaux de Erdös et Yau sur le même sujet mais on renouvelle l'aléa pour obtenir le caractère Markovien de l'évolution. On démontre dans la troisième partie une formule décrivant l'évolution, pour un Hamiltonien quantique quadratique dépendant du temps, d'une observable quantifiée à l'aide de la quantification de Wick. Cette formule est valable en dimension finie ou infinie. Enfin la quatrième partie est un travail conjoint avec Zied Ammari. On y considère des bosons interagissant via un potentiel delta, dans la limite de champ moyen, en dimension un. On dérive de ce modèle l'équation de Schrödinger non-linéaire cubique défocalisante.
APA, Harvard, Vancouver, ISO, and other styles
2

Anton, Ramona. "Équation de Schrödinger non-linéaire dans un domaine à bord." Paris 11, 2006. http://www.theses.fr/2006PA112197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thomann, Laurent. "Instabilité des équations de Schrödinger." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00265284.

Full text
Abstract:
Dans cette thèse on s'est intéressé à différents phénomènes d'instabilités pour des équations de Schrödinger non-linéaires.
Dans la première partie on met en évidence un mécanisme de décohérence de phase pour l'équation (semi-classique) de Gross-Pitaevski en dimension 3. Ce phénomène géométrique est dû à la présence du potentiel harmonique, qui permet de construire -via une méthode de minimisation- des solutions stationnaires se concentrant sur des cercles de R^{3}.
Dans la deuxième partie, on obtient un résultat d'instabilité géométrique pour NLS cubique posée sur une surface riemannienne possédant une géodésique périodique, stable et non-dégénérée. Avec une méthode WKB, on construit des quasimodes non-linéaires, qui permettent d'obtenir des solutions approchées pour des temps pour lesquels l'instabilité se produit. On généralise ainsi des travaux de Burq-Gérard-Tzvetkov pour la sphère.
Enfin, dans la dernière partie on considère des équations sur-critiques sur une variété de dimension d. Grâce à une optique géométrique non-linéaire dans un cadre analytique on peut montrer un mécanisme de perte de dérivées dans les espaces de Sobolev, et une instabilité dans l'espace d'énergie.
APA, Harvard, Vancouver, ISO, and other styles
4

Caudrelier, Vincent. "Equation de Schrödinger non-linéaire et impuretés dans les systèmes intégrables." Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00009612.

Full text
Abstract:
Cette thèse s'inscrit dans le domaine de physique théorique appelé systèmes intégrables, qui mêle fructueusement physique et mathématiques et se caractérise par la possibilité d'obtenir des résultats exacts (i.e. non perturbatifs) guidant les prédictions physiques qui en découlent.
Dans ce contexte, l'équation de Schrödinger non-linéaire (à 1+1 dimensions) est un système privilégié. On la retrouve comme modèle de phénomènes variés tant classiques (optique non-linéaire, mécanique des fluides...) que quantiques (gaz ultra-froids, condensation de Bose-Einstein...). En outre, elle a contribué à la mise au point de techniques de résolution des systèmes intégrables : méthode de diffusion inverse, ansatz de Bethe, identification et utilisation de symétries (groupes quantiques, Yangiens). En utilisant ce système à la fois comme support de test et comme modèle de prédiction, mon travail de thèse tourne autour de deux points principaux :
- Inclusion de degrés de liberté bosoniques et fermioniques.
- Inclusion d'un bord ou d'une impureté.
Dans un premier temps, j'ai étudié une version « supersymétrique » de cette équation pour laquelle j'ai montré la validité de tous les résultats d'intégrabilité, de symétrie et de résolution explicite classiques et quantiques connus pour la version scalaire originelle. La question de l'inclusion d'un bord a été traitée d'un autre point de vue. L'idée est de partir d'une algèbre de symétrie caractéristique des systèmes intégrables avec bord, l'algèbre de réflexion, et de construire un Hamiltonien général intégrable et possédant cette algèbre comme structure de symétrie. Un cas particulier de l'Hamiltonien intégrable obtenu n'est autre que l'Hamiltonien de Schrödinger non-linéaire en présence d'un bord. Un autre cas particulier est l'Hamiltonien de Sutherland en présence d'un bord pour lequel la symétrie n'était pas connue.
Le problème de l'inclusion d'une impureté dans un système intégrable a constitué la plus grosse partie de mon travail. J'ai pu montrer qu'il est possible de préserver l'intégrabilité d'un système avec interaction lorsqu'on introduit un défaut qui transmet et réfléchit (une impureté) grâce à une nouvelle structure algébrique, l'algèbre de Réflexion-Transmission, appliquée à l'équation de Schrödinger non-linéaire. Cela permet de trouver la forme explicite du champ, de calculer de façon exacte les éléments de la matrice de diffusion et les fonctions de corrélation à N points et d'identifier la symétrie du problème.
Suite à ce travail, les équations exactes qui régissent le spectre d'énergie d'un gaz de particules en interaction de contact et en présence d'une impureté contrôlée par quatre paramètres ont été établies. Ces résultats ouvrent des perspectives d'applications en physique de la matière condensée.
APA, Harvard, Vancouver, ISO, and other styles
5

Donnat, Philippe Pierre. "Quelques contributions mathématiques en optique non linéaire." Palaiseau, Ecole polytechnique, 1994. http://www.theses.fr/1994EPXX0016.

Full text
Abstract:
Cette thèse est consacrée à l'étude mathématique de trois modèles de propagation non linéaire de faisceaux optiques décrits par les équations de maxwell couplées avec différents modèles de réponse électronique des matériaux: milieux dispersifs avec non-linéarité cubique instantanée, oscillateur anharmonique force, système a deux et plusieurs niveaux. Dans une première partie, nous étudions les interactions en champ faible. On dérive formellement les asymptotiques de l'optique géométrique non linéaire et celle de l'équation de Schrodinger avec non-linéarité cubique. On montre que les trois modèles ont le même comportement asymptotique. On prouve la convergence rigoureuse dans le cas de la réponse instantanée. Dans une deuxième partie, on considère les interactions en champ fort. On étudie la formation de choc pour une réponse instantanée, l'explosion de la norme du sup pour le modèle de l'oscillateur anharmonique et l'existence de solutions régulières globales pour Maxwell-Bloch. On développe en 1d un schéma de Van Leer avec linéanisée de roe qui met en évidence ces phénomènes. On montre comment introduire dans un code Maxwell explicite et instationnaire les réponses des diélectriques. Dans une troisième et dernière partie, nous étudions un schéma numérique de pas fractionnaires et éléments finis pour résoudre une équation de Schrodinger non linéaire. Il est montré que la méthode est plus avantageuse par rapport à la méthode standard par fft dans le cas d'une forte non-linéarité.
APA, Harvard, Vancouver, ISO, and other styles
6

Mouzaoui, Lounès. "Régimes asymptotiques pour l'équation de Schrödinger non linéaire non locale." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20241/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude de quelques régimes asymptotiques de l'équation de Schrödinger semi-classique, en présence d'une non-linéarité non-locale de type Hartree. Elle comporte 3 parties, sous forme de 4 chapitres et une annexe. L'objet de la première partie, constituée du premier et deuxième chapitre, est l'étude du comportement asymptotique du modèle précédent pour un noyau singulier autour de l'origine, pour une condition initiale asymptotiquement de type WKB, en régime faiblement non-linéaire. Dans le premier chapitre nous montrons que sous certaines conditions de régularité sur la condition initiale, la solution est encore de type WKB à l'ordre principal, un résultat que nous obtenons dans le cadre fonctionnel de l'algèbre de Wiener. Nous donnons une preuve alternative au résultat précédent dans le cas particulier de l'équation de Schrödinger-Poisson dans le cadre fonctionnel d'espace de Sobolev rescalé, où la considération de correcteurs est nécessaire pour construire une solution approchée et pouvoir décrire la solution à l'ordre principal. La deuxième partie de cette thèse, objet du troisième chapitre, est consacrée à l'étude de la propagation de paquets d'onde pour un système couplé d'équations de Hartree en régime semi-classique, en présence de potentiels extérieurs sous-quadratiques. Nous décrivons analytiquement et numériquement le comportement asymptotique à l'ordre principal des fonctions d'onde solution du système, lorsqu'elles sont soumises à une condition initiale en forme de paquets d'onde, pour différentes tailles de non-linéarité. La dernière partie est constituée du quatrième chapitre et de l'annexe. Dans le quatrième chapitre nous considérons le problème de Cauchy de l'équation de Hartree avec noyau homogène ou dont la transformée de Fourier est dans un espace de Lebesgue, dans le cadre fonctionnel de l'algèbre de Wiener. Nous montrons quelques résultats sur le caractère bien posé du problème pour les noyaux considérés, dans des espaces faisant intervenir l'algèbre de Wiener. Nous concluons par une annexe dans laquelle nous considérons le problème de Cauchy de l'équation de Schrödinger-Poisson, en présence d'un potentiel extérieur indépendant du temps, dans les espaces de Sobolev pondérés. Nous étendons des résultats déjà obtenus sur l'existence de solutions globales dans les espaces de Sobolev sans poids lorsque le potentiel extérieur est nul, en montrant l'existence de solutions globales en temps dans les espaces de Sobolev pondérés pour toute régularité
This thesis is devoted to the study of some asymptotic regimes of the semi-classical Schrödinger equation, in the presence of a nonlocal nonlinearity of Hartree-type . The purpose of the first part, consisting of the first and second chapter is the study of the asymptotic behavior of the previous model with a singular kernel around the origin for an initial data asymptotically of WKB-type, in a weakly nonlinear regime. In the first chapter we show that under some regularity conditions on the initial data, the solution still is of WKB-type at leading order, a result that we get in the functional framework of the Wiener algebra . We give an alternative proof to the previous result in the particular case of the Schrödinger-Poisson equation in the functional framework of rescaled Sobolev space, where the consideration of correctors is necessary to construct an approximate solution to describe the solution at leading order.The second part of this thesis, the subject of the third chapter is devoted to the study the propagation of wave packets for a coupled system of Hartree equations in a semi-classical regime , in the presence of sub-quadratic external potentials. We describe analytically and numerically the asymptotic behavior of the leading order of the wave functions solution of the system, for an initial data in the form of wave packets for different sizes of nonlinearity.The final part consists of the fourth chapter and appendix.In the fourth chapter we consider the Cauchy problem of the Hartree equation with a homogeneous kernel or of Fourier transform in a Lebesgue space, in the functional framework of the Wiener algebra. We show some results on the well-posedness of the problem for the considered kernels, in spaces involving the Wiener algebra.We conclude with an appendix in which we consider the Cauchy problem for the Schrödinger-Poisson equation in the presence of a time independent external potential in the weighted Sobolev spaces. We extend the results already obtained on the existence of global solutions in Sobolev spaces without weight when the external potential is reduced to zero, by showing the existence of global solutions in time in the weighted Sobolev spaces for all regularity
APA, Harvard, Vancouver, ISO, and other styles
7

Pawilowski, Boris. "Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S163.

Full text
Abstract:
Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états quantiques généraux pouvant présenter des corrélations. Ils ont obtenu des formules pour décrire la dynamique des corrélations, ou plus généralement des matrices densité réduites d'ordre arbitraire. Cette thématique a été largement développée ces dernières années. Norbert Mauser en a été un des contributeurs, ainsi que sur la notion de mesure de Wigner qui est la clé de l'analyse développée par Z. Ammari et F. Nier. En général, il est admis que l'asymptotique de champ moyen est une bonne approximation du problème à N particules quand N dépasse la dizaine. Cela concerne l'asymptotique de la matrice densité réduite à une particule qui ne décrit pas la dynamique des corrélations. Un objectif est de tester la validité de la dynamique de champ moyen pour les matrices densité réduites à 2-particules. Pour des tests numériques, les modèles discrets qui n'ont pas été vraiment traités en détail dans les travaux précédents de Z. Ammari et F. Nier semblent bien adaptés. La thèse comprendra donc plusieurs étapes: adapter les résultats précédents de Z. Ammari et F. Nier à des modèles discrets , développer des méthodes numériques pour des systèmes simples mais pertinents, permettant de valider l'approximation de champ moyen et les formules pour la dynamique des corrélations. Au niveau numérique, on utilise des schémas numériques symplectiques, développés spécifiquement ces dernières années pour la discrétisation des équations hamiltoniennes. Une dernière étape concerne la combinaison des deux asymptotiques, champ moyen et approximation des modèles continus par les modèles discrets
In a serie of works Z. Ammari and F. Nier developed methods to study the dynamics of bosonic mean field for general quantum states which can present correlations. They obtained formulas to describe the dynamics of the correlations, or more generally reduced density matrices with an arbitrary order. This topic was widely developed these last years. N.J. Mauser was one of contributors, as well as on the notion of Wigner measure which is the key of the analysis developed by Z. Ammari and F. Nier. Generally, the mean field asymptotic is admitted is a good approximation of the N-body problem when N exceed about ten. It concerns the asymptotics of the reduced density matrices for one particle which does not describe the dynamics of the correlations. An objective is to test the validity of the mean field dynamics for reduced density matrices for 2 particles. For numerical tests, the discrete models which were not really handled in detail in the previous works of Z. Ammari and F. Nier seem adapted well. The thesis will thus include several steps: adapt the previous results from Z. Ammari and F. Nier to discrete models , develop numerical methods, for simple but relevant systems, allowing to validate the approximation of mean field and the formulas for the dynamics of the correlations. About numerics, symplectic numerical scheme are used, developed specifically these last years for the discretization of the hamiltonian equations. A last possible step concerns the combination of both asymptotics, that is mean field and approximation of the continuous models by the discrete models
APA, Harvard, Vancouver, ISO, and other styles
8

Raphael, Pierre. "Etude de la dynamique explosive des solutions de l'équation de Schrödinger non linéaire L2 critique." Cergy-Pontoise, 2004. http://www.theses.fr/2004CERG0215.

Full text
Abstract:
Nos travaux concernent l'étude mathématique de l'équation de Schrödinger non linéaire N-dimensionnelle iu_t+[delta]u+u[barre verticale]u[barre verticale]^{4/N}=0. Ce système est un modèle universel d'équation dispersive non linéaire Hamiltonienne et apparaît notamment dans la description de la focalisation des faisceaux lasers en optique non linéaire ainsi que celle de la formation des condensats type Bose-Einstein. Nous proposons une approche dynamique nouvelle pour étudier la formation de singularités en temps fini au voisinage des solutions exceptionnelles, les ondes solitaires. Nous démontrons en particluier l'existence d'une dynamique explosive stable et l'universalité dans ce régime de la structure de la singularité tant quant à la vitesse d'explosion que du profil en espace à l'explosion
Our work concerns the mathematical study of then Nth-dimensional non linear Schrödinger equation iu_t+[delta]u+u[vertical bar]u[vertical bar]^{4/N}=0. This system is a universal model of dispersive non linear Hamiltonian equation and appears in physics for the description of the self focusing of a laser beam or also for the formation of Bose-Einstein condensates. We propose a new dynamical approach to study the singularity formation of the vicinity of the exceptional solutions : the solitary waves. We prove in particular the existence of a stable blow up dynamic and the universality in this regime of the space-time structure of the singularity regarding both the blow up speed and the profil in space of the solution near collapse
APA, Harvard, Vancouver, ISO, and other styles
9

Oru, Frédéric. "Rôle des oscillations dans quelques problèmes d'analyse non-linéaire." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0018.

Full text
Abstract:
Dans ce travail, nous étudions le rôle joue par la présence d'oscillations dans trois questions d'analyse non-linéaire. Dans une première partie, nous présentons une version précisée des inégalités de Sobolev, équilibrée pour des données fortement oscillantes. Ces nouvelles inégalités font intervenir la norme d'un espace de Besov d'indice négatif, laquelle fournit une mesure du caractère oscillatoire des fonctions. La seconde partie concerne l'équation de Navier-stokes. Nous montrons d'une part que l'operateur bilinéaire associe a la formulation Mild, malgré toutes les cancellations qu'il contient, n'est pas continu dans l'espace des fonctions continues en temps a valeurs dans l#3(r#3), justifiant ainsi l'alternative proposée par Kato pour résoudre l'équation de Navier-stokes dans cet espace. D'autre part, nous démontrons une propriété de stabilité par passage à la limite faible pour les équations de Navier-stokes. Dans la dernière partie, nous généralisons un théorème de t. Cazenave et f. Weissler concernant l'existence de solutions auto similaires pour une équation de Schrödinger non-linéaire.
APA, Harvard, Vancouver, ISO, and other styles
10

Ayanides, Jean-Philippe. "Etude statistique de la propagation non-linéaire d'un faisceau laser partiellement cohérent." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXX0034.

Full text
Abstract:
Le principe de la fusion par confinement inertiel consiste à irradier par une multitude de faisceaux laser une micro-cible d'hydrogène, afin de la comprimer pour déclencher une réaction de fusion thermonucléaire. Les lasers très intenses de la prochaine génération (le Mégajoule, pour la France) devraient permettre cela. Mais la compression isotropique et uniforme requise est impossible à atteindre avec un faisccau cohérent, du fait des distorsions de phase aléatoires apparaissant dans les grandes chaines laser. Aussi, des méthodes de lissage ont été mises au point aux USA à Livermore et en France au CEA, reposant sur la destruction partielle de la cohérence spatio-temporelle des faisceaux laser. Cette approche n'est pas sans poser des problèmes à la fois technologiques et théoriques concernant la propagation, l'amplification et la conversion de fréquence de faisceaux partielle-ment cohérents. I1 resulte notamment de la compétition entre les effets non-linéaires d'une part et les phénomènes de dispersion et de diffraction d'autre part, la possibilité pour le faisceau de s'effondrer sur lui-même (autofocalisation) ou encore de générer localement des pics d'intensité très élevée (filamentation). Cette thèse se propose de revisiter la propagation des lasers de puis-sance au travers de la propriété de cohérence partielle, et au moyen d'outils statistiques. Le faisceau laser est considéré comme étant la réalisation d'un processus aléatoire, et sa propagation est modélisée dans l'approximation paraxiale par l'équation de Schrödinger avec non-linéarité cubique. L'étude repose fortement sur l'existence de deux échelles distinctes de variations, une échelle lentement variable correspondant à l'enveloppe du champ et décrite de façon déterministe, et l'échelle des fluctuations microscopiques aléatoires décrite par une statistique initialement gaussienne.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography