Dissertations / Theses on the topic 'Équation de Schrödinger non-linéaire cubique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 dissertations / theses for your research on the topic 'Équation de Schrödinger non-linéaire cubique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Breteaux, Sébastien. "Approche QFT de la dérivation d'équations cinétiques." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00606213.
Full textAnton, Ramona. "Équation de Schrödinger non-linéaire dans un domaine à bord." Paris 11, 2006. http://www.theses.fr/2006PA112197.
Full textThomann, Laurent. "Instabilité des équations de Schrödinger." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00265284.
Full textDans la première partie on met en évidence un mécanisme de décohérence de phase pour l'équation (semi-classique) de Gross-Pitaevski en dimension 3. Ce phénomène géométrique est dû à la présence du potentiel harmonique, qui permet de construire -via une méthode de minimisation- des solutions stationnaires se concentrant sur des cercles de R^{3}.
Dans la deuxième partie, on obtient un résultat d'instabilité géométrique pour NLS cubique posée sur une surface riemannienne possédant une géodésique périodique, stable et non-dégénérée. Avec une méthode WKB, on construit des quasimodes non-linéaires, qui permettent d'obtenir des solutions approchées pour des temps pour lesquels l'instabilité se produit. On généralise ainsi des travaux de Burq-Gérard-Tzvetkov pour la sphère.
Enfin, dans la dernière partie on considère des équations sur-critiques sur une variété de dimension d. Grâce à une optique géométrique non-linéaire dans un cadre analytique on peut montrer un mécanisme de perte de dérivées dans les espaces de Sobolev, et une instabilité dans l'espace d'énergie.
Caudrelier, Vincent. "Equation de Schrödinger non-linéaire et impuretés dans les systèmes intégrables." Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00009612.
Full textDans ce contexte, l'équation de Schrödinger non-linéaire (à 1+1 dimensions) est un système privilégié. On la retrouve comme modèle de phénomènes variés tant classiques (optique non-linéaire, mécanique des fluides...) que quantiques (gaz ultra-froids, condensation de Bose-Einstein...). En outre, elle a contribué à la mise au point de techniques de résolution des systèmes intégrables : méthode de diffusion inverse, ansatz de Bethe, identification et utilisation de symétries (groupes quantiques, Yangiens). En utilisant ce système à la fois comme support de test et comme modèle de prédiction, mon travail de thèse tourne autour de deux points principaux :
- Inclusion de degrés de liberté bosoniques et fermioniques.
- Inclusion d'un bord ou d'une impureté.
Dans un premier temps, j'ai étudié une version « supersymétrique » de cette équation pour laquelle j'ai montré la validité de tous les résultats d'intégrabilité, de symétrie et de résolution explicite classiques et quantiques connus pour la version scalaire originelle. La question de l'inclusion d'un bord a été traitée d'un autre point de vue. L'idée est de partir d'une algèbre de symétrie caractéristique des systèmes intégrables avec bord, l'algèbre de réflexion, et de construire un Hamiltonien général intégrable et possédant cette algèbre comme structure de symétrie. Un cas particulier de l'Hamiltonien intégrable obtenu n'est autre que l'Hamiltonien de Schrödinger non-linéaire en présence d'un bord. Un autre cas particulier est l'Hamiltonien de Sutherland en présence d'un bord pour lequel la symétrie n'était pas connue.
Le problème de l'inclusion d'une impureté dans un système intégrable a constitué la plus grosse partie de mon travail. J'ai pu montrer qu'il est possible de préserver l'intégrabilité d'un système avec interaction lorsqu'on introduit un défaut qui transmet et réfléchit (une impureté) grâce à une nouvelle structure algébrique, l'algèbre de Réflexion-Transmission, appliquée à l'équation de Schrödinger non-linéaire. Cela permet de trouver la forme explicite du champ, de calculer de façon exacte les éléments de la matrice de diffusion et les fonctions de corrélation à N points et d'identifier la symétrie du problème.
Suite à ce travail, les équations exactes qui régissent le spectre d'énergie d'un gaz de particules en interaction de contact et en présence d'une impureté contrôlée par quatre paramètres ont été établies. Ces résultats ouvrent des perspectives d'applications en physique de la matière condensée.
Donnat, Philippe Pierre. "Quelques contributions mathématiques en optique non linéaire." Palaiseau, Ecole polytechnique, 1994. http://www.theses.fr/1994EPXX0016.
Full textMouzaoui, Lounès. "Régimes asymptotiques pour l'équation de Schrödinger non linéaire non locale." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20241/document.
Full textThis thesis is devoted to the study of some asymptotic regimes of the semi-classical Schrödinger equation, in the presence of a nonlocal nonlinearity of Hartree-type . The purpose of the first part, consisting of the first and second chapter is the study of the asymptotic behavior of the previous model with a singular kernel around the origin for an initial data asymptotically of WKB-type, in a weakly nonlinear regime. In the first chapter we show that under some regularity conditions on the initial data, the solution still is of WKB-type at leading order, a result that we get in the functional framework of the Wiener algebra . We give an alternative proof to the previous result in the particular case of the Schrödinger-Poisson equation in the functional framework of rescaled Sobolev space, where the consideration of correctors is necessary to construct an approximate solution to describe the solution at leading order.The second part of this thesis, the subject of the third chapter is devoted to the study the propagation of wave packets for a coupled system of Hartree equations in a semi-classical regime , in the presence of sub-quadratic external potentials. We describe analytically and numerically the asymptotic behavior of the leading order of the wave functions solution of the system, for an initial data in the form of wave packets for different sizes of nonlinearity.The final part consists of the fourth chapter and appendix.In the fourth chapter we consider the Cauchy problem of the Hartree equation with a homogeneous kernel or of Fourier transform in a Lebesgue space, in the functional framework of the Wiener algebra. We show some results on the well-posedness of the problem for the considered kernels, in spaces involving the Wiener algebra.We conclude with an appendix in which we consider the Cauchy problem for the Schrödinger-Poisson equation in the presence of a time independent external potential in the weighted Sobolev spaces. We extend the results already obtained on the existence of global solutions in Sobolev spaces without weight when the external potential is reduced to zero, by showing the existence of global solutions in time in the weighted Sobolev spaces for all regularity
Pawilowski, Boris. "Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S163.
Full textIn a serie of works Z. Ammari and F. Nier developed methods to study the dynamics of bosonic mean field for general quantum states which can present correlations. They obtained formulas to describe the dynamics of the correlations, or more generally reduced density matrices with an arbitrary order. This topic was widely developed these last years. N.J. Mauser was one of contributors, as well as on the notion of Wigner measure which is the key of the analysis developed by Z. Ammari and F. Nier. Generally, the mean field asymptotic is admitted is a good approximation of the N-body problem when N exceed about ten. It concerns the asymptotics of the reduced density matrices for one particle which does not describe the dynamics of the correlations. An objective is to test the validity of the mean field dynamics for reduced density matrices for 2 particles. For numerical tests, the discrete models which were not really handled in detail in the previous works of Z. Ammari and F. Nier seem adapted well. The thesis will thus include several steps: adapt the previous results from Z. Ammari and F. Nier to discrete models , develop numerical methods, for simple but relevant systems, allowing to validate the approximation of mean field and the formulas for the dynamics of the correlations. About numerics, symplectic numerical scheme are used, developed specifically these last years for the discretization of the hamiltonian equations. A last possible step concerns the combination of both asymptotics, that is mean field and approximation of the continuous models by the discrete models
Raphael, Pierre. "Etude de la dynamique explosive des solutions de l'équation de Schrödinger non linéaire L2 critique." Cergy-Pontoise, 2004. http://www.theses.fr/2004CERG0215.
Full textOur work concerns the mathematical study of then Nth-dimensional non linear Schrödinger equation iu_t+[delta]u+u[vertical bar]u[vertical bar]^{4/N}=0. This system is a universal model of dispersive non linear Hamiltonian equation and appears in physics for the description of the self focusing of a laser beam or also for the formation of Bose-Einstein condensates. We propose a new dynamical approach to study the singularity formation of the vicinity of the exceptional solutions : the solitary waves. We prove in particular the existence of a stable blow up dynamic and the universality in this regime of the space-time structure of the singularity regarding both the blow up speed and the profil in space of the solution near collapse
Oru, Frédéric. "Rôle des oscillations dans quelques problèmes d'analyse non-linéaire." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0018.
Full textAyanides, Jean-Philippe. "Etude statistique de la propagation non-linéaire d'un faisceau laser partiellement cohérent." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXX0034.
Full textBarrailh, Laurioux Karen. "Étude mathématique et numérique de modèles de propagation issus de l'optique non linéaire." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12544.
Full textHadj, Selem Fouad. "Etude théorique et numérique d'états stationnaires localisés pour l'équation de Schrödinger non linéaire avec potentiel quadratique." Reims, 2010. http://theses.univ-reims.fr/sciences/2010REIMS022.pdf.
Full textWe study the structure of radially symmetric standing waves for the nonlinear Schrodinger equation with harmonic potential. This equation arises in a wide variety of applications and is known as the Gross-Pitaevskii equation in the context of Bose-Einstein condensates with parabolic traps. Both global and local bifurcation behavior are determined showing the existence of infinitely symmetric modes of the equation. In particular, our theory provides a theoretical proof of the existence of soliton with prescribed numbers of zeros depending on the frequency of wave which was recently observed by numerical simulations. After a theoretical study of the three cases, numerical computations are finally presented in order to provide an illustration of the theoretical results that have been obtained and also to the to address some problems for which only few results are known, including the stability of excited states and the multiplicity of solutions vanishing k times in the critical and supercritical case (Brezis-Nirenberg phenomenon)
Zoheir, Cif Allah. "Modélisation et simulations numériques de problèmes non linéaires en physique des plasmas : applications à l'équation de Korteweg-De Vries et à l'équation de Schrödinger non linéaire." Nancy 1, 1991. http://www.theses.fr/1991NAN10008.
Full textVartanian, Arthur Haroutyoun. "Comportement asymptotique des solutions du problème de Cauchy pour l'équation de Schrödinger non-linéaire modifiée." Dijon, 1998. http://www.theses.fr/1998DIJOS018.
Full textLe, Coz Stefan. "Existence, stabilité et instabilité d'ondes stationnaires pour quelques équations de Klein-Gordon et Schrödinger non linéaires." Phd thesis, Université de Franche-Comté, 2007. http://tel.archives-ouvertes.fr/tel-00239293.
Full textL'existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points critiques d'une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que minimiseurs d'une fonctionnelle sur différentes contraintes.
Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes stationnaires sont stables ou instables. Lorsqu'elles sont instables, on met en évidence que dans certaines situations l'instabilité se manifeste par explosion, tandis que dans d'autres les solutions sont globalement bien posées. En plus des différentes caractérisations variationnelles des
ondes stationnaires, les preuves des résultats de stabilité et d'instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la première partie de cette thèse, on prouve un résultat de non-dégénérescence du linéarisé pour un problème limite. Dans la deuxième partie, on localise la deuxième valeur propre du linéarisé par la combinaison d'une méthode perturbative et d'arguments de continuation.
Walczak, Pierre. "Propagation non linéaire d’ondes partiellement cohérentes dans les fibres optiques." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10003/document.
Full textThis thesis deals with nonlinear propagation of partially coherent waves in optical fibers. We focus our attention on systems of random waves that are well described by the integrable one dimensional nonlinear Schrödinger equation. We study both experimentally and numerically the statistical evolution of power fluctuations of random waves both in normal and in anomalous dispersion regimes. In order to measure statistics of the power fluctuations of partially coherent optical waves with typical time scales in the range of picosecond, we have performed an asynchronous optical sampling method. Our experiments show that nonlinear propagation strongly influences the statistics of wave systems by producing deviations from the normal distribution. The probability of occurrence of extreme events is significantly enhanced in the focusing regime whereas it is strongly reduced in the defocucing regime. Our numerical simulations of the one-dimensional nonlinear Schrödinger equation reproduce experimental results in a quantitative way. Moreover, our results provide evidence of the emergence of coherent structures embedded in the random fluctuations. In the focusing regime, we observe coherent structures similar to solitons on finite background that are now considered as prototypes of rogue waves. From our work about nonlinear propagation of random waves in systems described by nearly-integrable equations, we hope to contribute to the development of the field of integrable turbulence
Tikan, Alexey. "Integrable turbulence in optical fiber experiments : from local dynamics to statistics." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1R046/document.
Full textThis work is dedicated to the investigation of the origin of statistical phenomena recently observed in the framework of integrable turbulence. Namely, experimental and numerical studies of the partially-coherent waves propagation in 1-D Nonlinear Schrödinger equation systems revealed a deviation from the Gaussian statistics. Focusing and defocusing regimes of propagation demonstrated qualitatively different behaviour: the probability of extreme events to appear in the focusing case is higher than it is predicted by normal law, while in defocusing it is lower. We provided optical experiments well described by the 1-D Nonlinear Schrödinger equation in order to investigate this problem. We built two novel and complementary ultrafast measurement tools. Employing these tools we provided direct observation of coherent structures which appear at different stages of the propagation in both regimes. Providing analysis of these structures, we determined dominating mechanisms in both focusing and defocusing regimes. In the focusing regime, we discovered the universal appearance of Peregrine soliton-like structures and made a link with the rigorous mathematical result obtained in the semi-classical regime. In the defocusing case, we showed that the mechanism of nonlinear interference of neighbour pulse-like structures defines the evolution of the partially-coherent initial conditions. We considered a simplified model which explained the presence of different scales in the recorded data
Kraych, Adrien. "Instabilités modulationnelles dans un anneau de recirculation fibré." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1R038.
Full textThis thesis work deals with the modulation instability in a recirculating fiber loop. Modulational instability (called Benjamin-Feir instability in hydrodynamics) is responsible for the exponential amplification of weak perturbations of a plane wave, which leads to the plane wave destabilization and the emergence of intense coherent structures localized in space and time. The rich and complex spatio-temporal dynamic resulting from this mechanism is the source of important interest in several fields of physics where the nonlinear Schrödinger equation plays an important role. In order to study this phenomenon, we set up a recirculating fiber loop allowing us to measure the spatio-temporal evolution of a light wave propagating in an optical fiber. The spatio-temporal dynamics resulting from the modulation instability differ according to the nature of the perturbation which destabilizes the plane wave. We have used the recirculation fiber loop to study the dynamics of two types of perturbations: local and stochastic. In the case of local perturbation, we have demonstrated, for the first time, the emergence of oscillating nonlinear structures predicted within the framework of certain mathematical theories. In the case of a random perturbation, our work falls within the field of integrable turbulence. We were able to observe spatio-temporal dynamics until then only revealed by numerical simulations and to confront the statistical properties of our experimental results with numerical simulations of the nonlinear Schrödinger equation
Di, Cosmo Jonathan. "Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209863.
Full textIn this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.
We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./
L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés.
Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble.
Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Maris, Mihai. "Sur quelques problèmes elliptiques non-linéaires." Paris 11, 2001. http://www.theses.fr/2001PA112247.
Full textIn this thesis we study particular solutions for some nonlinear dispersive partial differential equations which appear in physics, such the nonlinear Schrödinger equation, the Benney-Luke equation or the Benjamin-Ono equation. We are particularly interested in the stationary waves and in the travelling waves of these equations. This gives nonlinear elliptic problems in the whole space. Solitary and travelling waves for the considered equations have been observed in experiments and in numerical simulations. In some cases, these solutions seem to play an important role in the general dynamics of the corresponding evolution equations. In the first chapter we prove the analyticity and we find the optimal algebraic decay rate at infinity of solitary waves to the Benney-Luke equation and to the generalized Benjamin-Ono equation. The second chapter is devoted to the proof of existence of stationary solutions for a nonlinear Schrödinger equation with potential in one dimension which describes the flow of a fluid past an obstacle. .
Boulenger, Thomas. "Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00922988.
Full textVinçotte, Antoine. "Propagation non-linéaire d'impulsions laser ultra-courtes dans les milieux transparents." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00134895.
Full textdans les milieux transparents. Tout d'abord, après avoir établi les équations de propagation
à partir des équations de Maxwell, nous rappelons les principaux phénomènes physiques auxquels
sont soumises les impulsions ultra-courtes et de forte puissance se propageant dans un milieu transparent.
Celles-ci subissent de l'auto-focalisation causée par la réponse Kerr du milieu. Cette auto-focalisation
est stoppée par la création d'un plasma produit par l'ionisation photonique des molécules du milieu.
La propagation de l'onde laser génère aussi un supercontinuum par auto-modulation de phase. Enfin,
on rappelle les principaux résultats concernant la filamentation simple ou multiple de l'onde provenant
des inhomogénéités du faisceau et qui a lieu lorsque la puissance initiale du laser est supérieure
au seuil d'auto-focalisation. Dans une deuxième partie, nous nous intéressons à l'influence de
non-linéarités optiques d'ordre élevé sur la propagation de l'onde et sur la figure de
filamentation créée. Dans une troisième partie, afin de contrôler la filamentation multiple,
nous analysons la propagation de faisceaux particuliers: les impulsions optiques femtosecondes avec gradient
fort et les vortex. Nous justifions les propriétés de robustesse de ces derniers type d'objets
optiques. Enfin, nous examinons la filamentation multiple d'impulsions ultra-courtes à travers une
chambre à brouillard, et dans les cellules d'éthanol dopées à la coumarine, pour différentes
configurations du faisceau.
Boucon, Anne. "Instabilité Modulationnelle et Génération de Supercontinuum en Régime d'Excitation Quasi-continue dans les Fibres Optiques Hautement Non Linéaires et Microstructurées." Phd thesis, Université de Franche-Comté, 2008. http://tel.archives-ouvertes.fr/tel-00448987.
Full textMarceaux, Alexandre. "Absorbant saturable ultra-rapide à base de multipuits quantiques InGaAs/InP dopés Fer pour la génération optique à 1. 55 um." Rennes, INSA, 2001. http://www.theses.fr/2001ISAR0013.
Full textFrisquet, Benoit. "Ondes scélérates complexes dans les fibres optiques." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS056/document.
Full textThis manuscript presents the generation of complex rogue waves related to nonlinear instabilities occurring through the propagation of light in standard optical fibers. Linear and nonlinear physical phenomena involved are first listed, in particular some of them by analogy with the field of hydrodynamics. The different forms of rogue waves induced by the modulation instability process are then presented. They are also known as "breathers", and they are obtained by solving the nonlinear Schrödinger equation. From these exact solutions, various experimental systems were designed by means of numerical simulations based on two rogue-wave excitation methods. The first one is an exact generation of mathematical solutions based on the spectral shaping of an optical frequency comb. The second method uses approximate initial conditions with a simple sinusoidal modulation of continuous waves. For both cases, experimental measurements demonstrate the generation of complex rogue waves (i.e., higher-order solutions of the system) arising from the nonlinear superposition or collision of first-order breathers. Finally, we also studied a nonlinear fiber system equivalent to the Manakov model, which involves the propagation of two distinct waves with orthogonal polarizations. The stability analysis and numerical simulations of this multi-component system highlight a novel regime of vector modulation instability and the existence of coupled dark rogue-wave solutions. A new experimental system setup was conceived and theoretical predictions are confirmed with an excellent quantitative agreement
Sève, Emmanuel. "Instabilité modulationnelle dans les fibres optiques biréfringentes : application à la génération de solitons noirs et aux processus de conversion de fréquence." Dijon, 1999. http://www.theses.fr/1999DIJOS068.
Full textColin, Thierry. "Problème de Cauchy et effets régularisants pour des équations aux dérivées partielles dispersives." Cachan, Ecole normale supérieure, 1993. http://www.theses.fr/1993DENS0003.
Full textOrtoleva, Cecilia Maria. "Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équations." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00825627.
Full textToenger, Shanti. "Linear and Nonlinear Rogue Waves in Optical Systems." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2029/document.
Full textThis thesis describes the study of several different classes of linear and nonlinear effects in optics that generatelarge amplitude extreme events with properties analogous to the destructive “rogue waves” on the surface of theocean. The thesis begins with a brief overview of the analogous physics of wave localisation in hydrodynamicand optical systems, where we describe linear and nonlinear rogue wave generating mechanisms in bothcases. We then present numerical and experimental results for rogue wave generation in a linear opticalsystem consisting of free space propagation of a spatial optical field with random phase. Computed statisticsbetween experiment and modelling are in good agreement, and we interpret the results obtained in termsof the properties of localised optical caustics. We then consider rogue waves in the nonlinear system ofmodulation instability described by the Nonlinear Schrodinger Equation (NLSE), and a detailed numericalstudy is presented comparing the spatio-temporal characteristics of localised structures seen from numericalsimulations with different known analytic solutions to the NLSE. Two experimental studies of modulationinstability are then reported. In the first, we present experimental results studying the properties of modulationinstability using a time-lens magnifier system; in the second, we report experimental results studying thefrequency-domain properties of modulation instability using real-time spectral measurements. The latter studyexamines the effect of a weak seed field on spectral bandwidth and stability. All experimental results arecompared with the NLSE simulations and discussed in terms of the qualitative properties of modulationinstability, in order to gain new insights into the complex dynamics associated with nonlinear pulse propagation.In all of these studies, different statistical properties are analised in relation to the emergence of rogue waves
Cabart, Gilles. "Singularités en optique nonlinéaire: étude mathématique." Phd thesis, Université de Reims - Champagne Ardenne, 2005. http://tel.archives-ouvertes.fr/tel-00008454.
Full text(NLCR) \Box u =2\, u^3,
et
(NLCC)\Box u +\alpha \,\frac(\pa u)(\pa z)=2\, u|u|^2+\beta \,u,
où $\alpha\in i\,\R$ et $\beta \in \R$.
On prouve d'abord, en s'appuyant sur les techniques de réduction Fuchsienne développées par S.~Kichenassamy et al., l'existence, pour plusieurs classes d'hypersurfaces de genre espace de $\R\times \R^n$ assez régulières, de solutions explosant exactement sur la surface considérée. Par ailleurs, l'aspect constructif des méthodes nous offre de nombreuses informations sur la forme de ces solutions au voisinage de leur surface d'explosion.
La suite est consacrée à diverses applications des connaissances acquises : on exploite notamment celles concernant le comportement des solutions près de leur lieu d'explosion, pour répondre partiellement à trois questions:
i) Comment se comporte, près de la surface d'explosion, une intégrale particulière construite sur le modèle de l'``intégrale d'énergie'' canoniquement associée avec l'équation (NLCR) ?
ii) Dans quels espaces de type $L^p$, les solutions de l'équation (NLCR) --éventuellement un peu perturbée-- peuvent-elles exploser ou pas?
iii) Dans quelle mesure peut-on mettre en oeuvre une étude numérique complète de l'équation (NLCR), prenant en compte les difficultés inhérentes à l'explosion ?
Wetzel, Benjamin. "Etudes expérimentales et numériques des instabilités non-linéaires et des vagues scélérates optiques." Phd thesis, Université de Franche-Comté, 2012. http://tel.archives-ouvertes.fr/tel-01002680.
Full textKlein, Pauline. "Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités." Phd thesis, Université Henri Poincaré - Nancy I, 2010. http://tel.archives-ouvertes.fr/tel-00560706.
Full textEl, Koussaifi Rebecca. "Statistique et dynamique ultra-rapides dans des expériences d’optique non linéaires fibrées." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10125/document.
Full textThe work presented in this thesis is related to the statistical and dynamical propertiesof partially coherent waves propagating inside an optical fiber. Our work mainly enterswithin the field of Integrable Turbulence that deals with nonlinear partially coherentwaves described by integrable equations, such as the one-dimensional nonlinear Shcrödin-ger equation. We have reproduced an experiment in optics that has been done some years ago inhydrodynamics. We compare the statistics of optical waves propagating inside an opticalfiber to the the statistics of waves propagating inside a water tank. Moreover we have built a time microscope in order to observe the real-time evolution of partially coherent waves. The soliton-like structures that have been observed in our expe-riments have localization properties in space and time that are similar to those typifyingrogue waves found in the field of oceanography. We have also examined the weakly nonlinear regime that can be described by using the so-called wave turbulence (WT) theory. WT theory states that the spectral broadening insuch a weakly nonlinear regime does not depend on the sign of the second-order dispersioncoefficient. In this thesis, we presented an experimental result confirming this theoreticalprediction
Bendahmane, Abdelkrim. "Propagation d'impulsions solitoniques dans des fibres optiques à dispersion variable." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10170/document.
Full textThis thesis concerns the study of the propagation of solitons, or assimilated ones, in optical fibers with tailored longitudinal profiles. The first part presents the general guiding properties of an optical fiber and introduces the main linear and non-linear process involved in solitons propagation. In Part II, spectral and then spectrotemporal solitons control is demonstrated through the use of specially designed topographic fibers. Part III explore the emission dynamics of cascaded resonant radiations and multiple resonant radiations in a fiber with an oscillating zero-dispersion wavelength. Finally, Part IV is devoted to the stabilization of Akhmediev breathers in an optical fiber including a dispersion step
Mirrahimi, Mazyar. "Dynamique et contrôle des systèmes quantiques." Phd thesis, École Nationale Supérieure des Mines de Paris, 2005. http://pastel.archives-ouvertes.fr/pastel-00001610.
Full textDrouzi, Lamyae. "Ondes scélérates dans les fibres optiques biréfringentes." Thesis, Lille, 2018. http://www.theses.fr/2018LIL1R002.
Full textThe work of this thesis has focused on the study of wave propagation in a high birefringent fiber. We have carried out a general characterization of the modulational instability as a function of the linear and nonlinear birefringences, in abnormal dispersion and especially in normal dispersion. The study was devoted to a non-linear optical fiber in a "pulsed" regime, where the excitation is not extended but rather localized in time. In this case, standard linear stability analysis fails to describe the linear evolution of this type of perturbations. Thus, we reformulate the problem as an initial value problem leading to convective and absolute instabilities. Then, we evidenced, for the first time, a transition from the absolute to the convective regime and we characterized each of them by linear and nonlinear birefringences. Numerical results are in excellent agreement with our analytical predictions. We evaluated the impact of the symmetry breaking on the generation of supercontinuums that play a crucial role in the formation of rogue waves. We performed a statistical analysis based on the probability density function of the most intense peaks. We analyzed the impact of the "walk off" and the third order dispersion on the emergence of these waves in abnormal and normal dispersion. The results of the numerical integration of the governing equations show that the rogue waves can be controlled by linear birefringence and are even more pronounced in presence of the third order dispersion. Finally, an optimization of the generation of extreme waves has allowed us to find a giant wave, reproduced by Pergerine soliton
Dalloz, Nicolas. "Formation du spectre optique dans les lasers Raman à fibre." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2011. http://tel.archives-ouvertes.fr/tel-00628627.
Full textSun, Ruoci. "Comportement en grand temps et intégrabilité de certaines équations dispersives sur l'espace de Hardy Long time behavior of the NLS-Szegö equation Traveling waves of the quintic focusing NLS-Szegö equation Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS111.
Full textWe are interested in three non linear dispersive Hamiltonian equations: the defocusing cubic Schrödinger equation filtered by the Szegö projector on the torus that cancels every negative Fourier modes, leading to the cubic NLS--Szegö equation on the torus; the focusing quintic Schrödinger equation, which is filtered by the Szegö projector on the line, leading to the quintic NLS--Szegö equation on the line and the Benjamin--Ono (BO) equation on the line. Similarly to the other two models, the BO equation on the line can be written as a quadratic Schrödinger-type equation that is filtered by the Szegö projector on the line. These three models allow us to study their qualitative properties of some traveling waves, the phenomenon of the growth of Sobolev norms, the phenomenon of non linear scattering and some properties about the complete integrability of Hamiltonian dynamical systems. The goal of this thesis is to investigate the influence of the Szegö projector on some one-dimensional Schrödinger-type equations and to adapt the tools of the Hardy space on the torus and on the line. We also use the Birkhoff normal form transform, the concentration--compactness argument, refined as the profile decomposition theorem, and the inverse spectral transform in order to solve these problems. In the third model, the integrability theory allows to establish the connection with some algebraic and geometric aspects
Thomas, Roland. "L'instabilité modulationnelle en présence de vent et d'un courant cisaillé uniforme." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00716089.
Full textPHAM, Chi-Tuong. "Stabilité et dynamique d'écoulements de fluides parfaits barotropes autour d'un obstacle en présence de dispersion." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00006825.
Full textRolle, Jérémie. "Étude de la dynamique plasma dans la filamentation laser induite dans les verres de silice en présence de rétrodiffusion Brillouin stimulée et dans les cristaux de KDP." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112195/document.
Full textIn this thesis, we study the role of an inertial plasma reponse produced by laser pulses in self-focusing regime. Self-focusing is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses. For femtosecond pulses propagating in KDP crystals, self-focusing excites various ionization chanels. First of all, we derive the propagation equations for the pump and Stokes waves, subjected to filamentation due to optical Kerr effect, stimulated Brillouin scattering and plasma generation. In the second part, we present numerical results on the nonlinear propagation of LIL laser beams. These results show that temporal distribution of the pump pulse play a key role in the competition between self-focusing and stimulated Brillouin scattering. These preliminary results valide the anti-Brillouin system opted on the MegaJoule laser (LMJ) on the basis of milimetric-size laser beam.In a third part, we present numerical and theoretical results on the filamentation in fused silica of nanosecond light pulses operating in ultraviolet and infrared range. Emphasis is put on the action of a dynamical plasma reponse on two counterpropagating waves. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistionary balance ceases to clean up modulational instabilites induced by plasma retroaction on the pump wave. We show that phase modulations supress both simulated Brillouin scattering and plasma instabilities. The robustness of phase modulations is evaluated in presence of random fluctuations in the input pump pulse profile.Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Then, we compare the filamentation dynamic in silica and KDP crystal. The ionization model for KDP crystal takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power self-focusing.The summary of this thesis recalls the original results obtained and discusses the possibility of future developments
Dannawi, Ihab. "Contributions aux équations d'évolutions non locales en espace-temps." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS007/document.
Full textIn this thesis, we study four non-local evolution equations. The solutions of these four equations can blow up in finite time. In the theory of nonlinear evolution equations, a solution is qualified as global if it isdefined for any time. Otherwise, if a solution exists only on a bounded interval [0; T), it is called local solution. In this case and when the maximum time of existence is related to a blow up alternative, we say that the solution blows up in finite time. First, we consider the nonlinear Schröodinger equation with a fractional power of the Laplacien operator, and we get a blow up result in finite time Tmax > 0 for any non-trivial non-negative initial condition in the case of sub-critical exponent. Next, we study a damped wave equation with a space-time potential and a non-local in time non-linear term. We obtain a result of local existence of a solution in the energy space under some restrictions on the initial data, the dimension of the space and the growth of nonlinear term. Additionally, we get a blow up result of the solution in finite time for any initial condition positive on average. In addition, we study a Cauchy problem for the evolution p-Laplacien equation with nonlinear memory. We study the local existence of a solution of this equation as well as a result of non-existence of global solution. Finally, we study the maximum interval of existence of solutions of the porous medium equation with a nonlinear non-local in time term
Kalla, Caroline. "Fay's identity in the theory of integrable systems." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00622289.
Full text