Dissertations / Theses on the topic 'Equation de Schrödinger non-linéaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Equation de Schrödinger non-linéaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mouzaoui, Lounès. "Régimes asymptotiques pour l'équation de Schrödinger non linéaire non locale." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20241/document.
Full textThis thesis is devoted to the study of some asymptotic regimes of the semi-classical Schrödinger equation, in the presence of a nonlocal nonlinearity of Hartree-type . The purpose of the first part, consisting of the first and second chapter is the study of the asymptotic behavior of the previous model with a singular kernel around the origin for an initial data asymptotically of WKB-type, in a weakly nonlinear regime. In the first chapter we show that under some regularity conditions on the initial data, the solution still is of WKB-type at leading order, a result that we get in the functional framework of the Wiener algebra . We give an alternative proof to the previous result in the particular case of the Schrödinger-Poisson equation in the functional framework of rescaled Sobolev space, where the consideration of correctors is necessary to construct an approximate solution to describe the solution at leading order.The second part of this thesis, the subject of the third chapter is devoted to the study the propagation of wave packets for a coupled system of Hartree equations in a semi-classical regime , in the presence of sub-quadratic external potentials. We describe analytically and numerically the asymptotic behavior of the leading order of the wave functions solution of the system, for an initial data in the form of wave packets for different sizes of nonlinearity.The final part consists of the fourth chapter and appendix.In the fourth chapter we consider the Cauchy problem of the Hartree equation with a homogeneous kernel or of Fourier transform in a Lebesgue space, in the functional framework of the Wiener algebra. We show some results on the well-posedness of the problem for the considered kernels, in spaces involving the Wiener algebra.We conclude with an appendix in which we consider the Cauchy problem for the Schrödinger-Poisson equation in the presence of a time independent external potential in the weighted Sobolev spaces. We extend the results already obtained on the existence of global solutions in Sobolev spaces without weight when the external potential is reduced to zero, by showing the existence of global solutions in time in the weighted Sobolev spaces for all regularity
Caudrelier, Vincent. "Equation de Schrödinger non-linéaire et impuretés dans les systèmes intégrables." Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00009612.
Full textDans ce contexte, l'équation de Schrödinger non-linéaire (à 1+1 dimensions) est un système privilégié. On la retrouve comme modèle de phénomènes variés tant classiques (optique non-linéaire, mécanique des fluides...) que quantiques (gaz ultra-froids, condensation de Bose-Einstein...). En outre, elle a contribué à la mise au point de techniques de résolution des systèmes intégrables : méthode de diffusion inverse, ansatz de Bethe, identification et utilisation de symétries (groupes quantiques, Yangiens). En utilisant ce système à la fois comme support de test et comme modèle de prédiction, mon travail de thèse tourne autour de deux points principaux :
- Inclusion de degrés de liberté bosoniques et fermioniques.
- Inclusion d'un bord ou d'une impureté.
Dans un premier temps, j'ai étudié une version « supersymétrique » de cette équation pour laquelle j'ai montré la validité de tous les résultats d'intégrabilité, de symétrie et de résolution explicite classiques et quantiques connus pour la version scalaire originelle. La question de l'inclusion d'un bord a été traitée d'un autre point de vue. L'idée est de partir d'une algèbre de symétrie caractéristique des systèmes intégrables avec bord, l'algèbre de réflexion, et de construire un Hamiltonien général intégrable et possédant cette algèbre comme structure de symétrie. Un cas particulier de l'Hamiltonien intégrable obtenu n'est autre que l'Hamiltonien de Schrödinger non-linéaire en présence d'un bord. Un autre cas particulier est l'Hamiltonien de Sutherland en présence d'un bord pour lequel la symétrie n'était pas connue.
Le problème de l'inclusion d'une impureté dans un système intégrable a constitué la plus grosse partie de mon travail. J'ai pu montrer qu'il est possible de préserver l'intégrabilité d'un système avec interaction lorsqu'on introduit un défaut qui transmet et réfléchit (une impureté) grâce à une nouvelle structure algébrique, l'algèbre de Réflexion-Transmission, appliquée à l'équation de Schrödinger non-linéaire. Cela permet de trouver la forme explicite du champ, de calculer de façon exacte les éléments de la matrice de diffusion et les fonctions de corrélation à N points et d'identifier la symétrie du problème.
Suite à ce travail, les équations exactes qui régissent le spectre d'énergie d'un gaz de particules en interaction de contact et en présence d'une impureté contrôlée par quatre paramètres ont été établies. Ces résultats ouvrent des perspectives d'applications en physique de la matière condensée.
Bégout, Pascal. "Quelques propriétés qualitatives de l'équation de Schrödinger non-linéaire." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2001. http://tel.archives-ouvertes.fr/tel-00007378.
Full textAnton, Ramona. "Équation de Schrödinger non-linéaire dans un domaine à bord." Paris 11, 2006. http://www.theses.fr/2006PA112197.
Full textHari, Lysianne. "Propagation non-linéaire de paquets d'onde." Thesis, Cergy-Pontoise, 2014. http://www.theses.fr/2014CERG0726/document.
Full textThis thesis is devoted to the study of coupled nonlinear Schrödinger equations in the semi-classical limit.Depending on the potential we consider, the system can present a linear coupling, in addition to the nonlinear one.We will focus on the propagation of coherent states that will be polarized along a given eigenvector of the potential.In the linear setting, several situations have been analyzed; some of them lead to adiabatic theorems whereas the others implytransitions between energy levels. When one adds a nonlinearity, understanding nonlinear effects onthe propagation and the competition between them and the linear coupling becomes a very interesting issue.We first consider a potential with eigenvalues that present a spectral gap and will prove an adiabatic theoremfor a critical nonlinearity in the semi-classical sense. This is a L^2-supercritical result,similar to the one proved by Carles and Fermanian-Kammerer for the one-dimensional case, which is L^2-subcritical.The second part of the thesis deals with an explicit 2 X 2 potential that presents an avoided crossing point :the minimal gap between its eigenvalues becomes smaller as the semiclassical parameter tends to zero. We will prove that this system exhibits transitions between the modes. This result is a nonlinear version of the study performed by Hagedorn and Joye in the linear case
Di, Cosmo Jonathan. "Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209863.
Full textIn this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.
We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./
L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés.
Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble.
Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Thomann, Laurent. "Instabilité des équations de Schrödinger." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00265284.
Full textDans la première partie on met en évidence un mécanisme de décohérence de phase pour l'équation (semi-classique) de Gross-Pitaevski en dimension 3. Ce phénomène géométrique est dû à la présence du potentiel harmonique, qui permet de construire -via une méthode de minimisation- des solutions stationnaires se concentrant sur des cercles de R^{3}.
Dans la deuxième partie, on obtient un résultat d'instabilité géométrique pour NLS cubique posée sur une surface riemannienne possédant une géodésique périodique, stable et non-dégénérée. Avec une méthode WKB, on construit des quasimodes non-linéaires, qui permettent d'obtenir des solutions approchées pour des temps pour lesquels l'instabilité se produit. On généralise ainsi des travaux de Burq-Gérard-Tzvetkov pour la sphère.
Enfin, dans la dernière partie on considère des équations sur-critiques sur une variété de dimension d. Grâce à une optique géométrique non-linéaire dans un cadre analytique on peut montrer un mécanisme de perte de dérivées dans les espaces de Sobolev, et une instabilité dans l'espace d'énergie.
Catoire, Fabrice. "Equation de Schrödinger non-linéaire dans le tore plat générique et le tore de révolution." Paris 11, 2010. http://www.theses.fr/2010PA112370.
Full textOru, Frédéric. "Rôle des oscillations dans quelques problèmes d'analyse non-linéaire." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0018.
Full textMirrahimi, Mazyar. "Estimation et contrôle non-linéaire : application à quelques systèmes quantiques et classiques." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00844394.
Full textPawilowski, Boris. "Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S163.
Full textIn a serie of works Z. Ammari and F. Nier developed methods to study the dynamics of bosonic mean field for general quantum states which can present correlations. They obtained formulas to describe the dynamics of the correlations, or more generally reduced density matrices with an arbitrary order. This topic was widely developed these last years. N.J. Mauser was one of contributors, as well as on the notion of Wigner measure which is the key of the analysis developed by Z. Ammari and F. Nier. Generally, the mean field asymptotic is admitted is a good approximation of the N-body problem when N exceed about ten. It concerns the asymptotics of the reduced density matrices for one particle which does not describe the dynamics of the correlations. An objective is to test the validity of the mean field dynamics for reduced density matrices for 2 particles. For numerical tests, the discrete models which were not really handled in detail in the previous works of Z. Ammari and F. Nier seem adapted well. The thesis will thus include several steps: adapt the previous results from Z. Ammari and F. Nier to discrete models , develop numerical methods, for simple but relevant systems, allowing to validate the approximation of mean field and the formulas for the dynamics of the correlations. About numerics, symplectic numerical scheme are used, developed specifically these last years for the discretization of the hamiltonian equations. A last possible step concerns the combination of both asymptotics, that is mean field and approximation of the continuous models by the discrete models
Mur, Anthony. "Quelques problèmes de minimisation en relation avec les équations de Schrödinger." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30274.
Full textIn this thesis we study several minimization problems arising in the theory of partial differential equations. We consider Strichartz estimates associated to the Schrödinger equation involving fractional powers of the Laplacian in the Euclidean space. Using a general profile decomposition theorem, we prove the existence of optimal functions for these inequalities for the whole range of parameters. In the second part of the thesis we consider periodic nonlinear Schrödinger equations in the plane with non-zero conditions at infinity. We work with general nonlinearities, including the model case of the Gross-Pitaevskii equation. The equation is Hamiltonian, the conserved quantities are the energy and the momentum. We give a rigorous mathematical definition of the momentum, then for any possible value dollar p dolla of the momentum we prove the existence of traveling waves that minimize the energy when the momentum is equal to dollar p dollar. We show that for each dollar p dollar there exists a critical length of the period dollar lambda ( p ) dollar such that all minimizers with period smaller than dollar lambda ( p ) dollar must be one-dimensional, while minimizers with period greater than dollar lambda ( p ) dollar are truly two-dimensional. We also investigate the corresponding one-dimensional problem and we find all finite-energy traveling waves. Minimizers are always traveling waves, and in some cases they constitute the whole set of traveling-waves (this occurs, for instance, in the case of Gross-Pitaevskii nonlinearity). We construct examples of smooth nonlinearities for which the equation admits traveling waves that are not minimizers
Destyl, Edes. "Modélisation et analyse de systèmes d'équations de Schrödinger non linéaires." Thesis, Antilles, 2018. http://www.theses.fr/2018ANTI0283/document.
Full textThe works of this thesis concern the modeling and the numerical study of thesystems of two coupled nonlinear Schrödinger equations. At first, we considered aparity-time-symmetric system of the two coupled nonlinear Schrödinger (NLS) equationsthat modeled phenomenons in birefringent nonlinear optical fiber. We studythe behavior of the solution in some spaces like the Sobolev space H1. And we studythe numerical aspect of the model which clearly shows the behavior of the solutionin the chosen space. For the same model in higher dimension, we establish sufficientconditions for the initial conditions to blow up in finite time for some nonlinearityand for others we do the numerical study of the model and we present some casesof blowing up of the solution in finite time and also of the solutions of the modelthat exist all the time. On the other hand, we address a new model of discrete nonlinearSchrödinger equations PT -symmetric. A such model describes dynamics inthe chain of weakly coupled pendula pairs near the resonance between the parametricallydriven force and the linear frequency of each pendulum. In order to studythe stability of the pendulums, we establish sufficient conditions on the parametersof the model so that the equilibrium solution is stable. Numerical experiments arepresented to validate the analytical results and to characterize the unstabilizationof the coupled pendulum chain in the region of instability
Nathanson, Ekaterina Sergeyevna. "Path integration with non-positive distributions and applications to the Schrödinger equation." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1370.
Full textPham, Chi-Tuong. "Stabilité et dynamique d'écoulements de fluides parfaits barotropes autour d'un obstacle en présence de dispersion." Paris 6, 2003. https://tel.archives-ouvertes.fr/tel-00006825.
Full textVinçotte, Antoine. "Propagation non-linéaire d'impulsions laser ultra-courtes dans les milieux transparents." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00134895.
Full textdans les milieux transparents. Tout d'abord, après avoir établi les équations de propagation
à partir des équations de Maxwell, nous rappelons les principaux phénomènes physiques auxquels
sont soumises les impulsions ultra-courtes et de forte puissance se propageant dans un milieu transparent.
Celles-ci subissent de l'auto-focalisation causée par la réponse Kerr du milieu. Cette auto-focalisation
est stoppée par la création d'un plasma produit par l'ionisation photonique des molécules du milieu.
La propagation de l'onde laser génère aussi un supercontinuum par auto-modulation de phase. Enfin,
on rappelle les principaux résultats concernant la filamentation simple ou multiple de l'onde provenant
des inhomogénéités du faisceau et qui a lieu lorsque la puissance initiale du laser est supérieure
au seuil d'auto-focalisation. Dans une deuxième partie, nous nous intéressons à l'influence de
non-linéarités optiques d'ordre élevé sur la propagation de l'onde et sur la figure de
filamentation créée. Dans une troisième partie, afin de contrôler la filamentation multiple,
nous analysons la propagation de faisceaux particuliers: les impulsions optiques femtosecondes avec gradient
fort et les vortex. Nous justifions les propriétés de robustesse de ces derniers type d'objets
optiques. Enfin, nous examinons la filamentation multiple d'impulsions ultra-courtes à travers une
chambre à brouillard, et dans les cellules d'éthanol dopées à la coumarine, pour différentes
configurations du faisceau.
Maris, Mihai. "Sur quelques problèmes elliptiques non-linéaires." Paris 11, 2001. http://www.theses.fr/2001PA112247.
Full textIn this thesis we study particular solutions for some nonlinear dispersive partial differential equations which appear in physics, such the nonlinear Schrödinger equation, the Benney-Luke equation or the Benjamin-Ono equation. We are particularly interested in the stationary waves and in the travelling waves of these equations. This gives nonlinear elliptic problems in the whole space. Solitary and travelling waves for the considered equations have been observed in experiments and in numerical simulations. In some cases, these solutions seem to play an important role in the general dynamics of the corresponding evolution equations. In the first chapter we prove the analyticity and we find the optimal algebraic decay rate at infinity of solitary waves to the Benney-Luke equation and to the generalized Benjamin-Ono equation. The second chapter is devoted to the proof of existence of stationary solutions for a nonlinear Schrödinger equation with potential in one dimension which describes the flow of a fluid past an obstacle. .
Nguyen, Tien Vinh. "Construction of dynamics with strongly interacting for non-linear dispersive PDE (Partial differential equation)." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX024/document.
Full textThis thesis deals with long time dynamics of soliton solutions for nonlinear dispersive partial differential equation (PDE). Through typical examples of such equations, the nonlinear Schrödinger equation (NLS), the generalized Korteweg-de Vries equation (gKdV) and the coupled system of Schrödinger, we study the behavior of solutions, when time goes to infinity, towards sums of solitons (multi-solitons). First, we show that in the symmetric setting, with strong interactions, the behavior of logarithmic separation in time between solitons is universal in both subcritical and supercritical case. Next, adapting previous techniques to (gKdV) equation, we prove a similar result of existence of multi-solitons with logarithmic relative distance; for (gKdV), the solitons are repulsive in the subcritical case and attractive in the supercritical case. Finally, we identify a new logarithmic regime where the solitons are non-symmetric for the non-integrable coupled system of Schrödinger; such solution does not exist in the integrable case for the system and for (NLS)
Boulenger, Thomas. "Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00922988.
Full textNabti, Abderrazak. "Non linear, non-local evolution equations : theory and application." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS032.
Full textOur objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions
Gallo, Clément. "Propriétés qualitatives d'ondes solitaires : solutions d'équations aux dérivées partielles non linéaires dispersives." Paris 11, 2005. http://www.theses.fr/2005PA112213.
Full textThis PhD thesis is concerned with non-zero at infinity solutions of some nonlinear dispersive equations. We establish existence results for dark solitons of nonlinear Schrödinger equations and of system of two coupled nonlinear Schrödinger equations, in dimension 1. We study the linear stability of a special kind of dark solitons of nonlinear Schrödinger equations: the black solitons. We study the Cauchy problem for the linear and for the nonlinear Schrödinger equations on the Zhidkov spaces X^k(R^n). We also consider the same initial value problem on the affine space phi+H^1, where phi is a (non -zero at infinity) regular function with finite energy. We finally study the Cauchy problem for nonlinear dispersive equations which look like the Koiteweg-de Vries or the Benjamin-Ono equations, on the Zhidkov spaces X^s(R)
Mejri, Youssef. "Problèmes inverses pour l’équation de Schrödinger." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0506/document.
Full textThis thesis, is devoted to the study of inverse problems related to the Schrödinger equation. The first partof the thesis is devoted to study the boundary inverse problem of determining the alignedmagnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindricalwaveguide. From the Dirichlet-to-Neumann map of the magnetic Schrödinger equation,we prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by meansof the geometrical optics solutions of the magnetic Schrödinger equation.The second part of this thesis deals with the inverse problem of determining the magnetic field and the electricpotential appearing in the magnetic Schrödinger equation, from the knowledge of a finitenumber of lateral observations of the solution
Frisquet, Benoit. "Ondes scélérates complexes dans les fibres optiques." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS056/document.
Full textThis manuscript presents the generation of complex rogue waves related to nonlinear instabilities occurring through the propagation of light in standard optical fibers. Linear and nonlinear physical phenomena involved are first listed, in particular some of them by analogy with the field of hydrodynamics. The different forms of rogue waves induced by the modulation instability process are then presented. They are also known as "breathers", and they are obtained by solving the nonlinear Schrödinger equation. From these exact solutions, various experimental systems were designed by means of numerical simulations based on two rogue-wave excitation methods. The first one is an exact generation of mathematical solutions based on the spectral shaping of an optical frequency comb. The second method uses approximate initial conditions with a simple sinusoidal modulation of continuous waves. For both cases, experimental measurements demonstrate the generation of complex rogue waves (i.e., higher-order solutions of the system) arising from the nonlinear superposition or collision of first-order breathers. Finally, we also studied a nonlinear fiber system equivalent to the Manakov model, which involves the propagation of two distinct waves with orthogonal polarizations. The stability analysis and numerical simulations of this multi-component system highlight a novel regime of vector modulation instability and the existence of coupled dark rogue-wave solutions. A new experimental system setup was conceived and theoretical predictions are confirmed with an excellent quantitative agreement
Mohamad, Haidar. "Sur l'équation de Gross-Pitaevskii uni-dimensionnelle et quelques généralisations du flot par courbure binormale." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066176.
Full textThis work is a contribution to the study of nonlinear Schrödinger equations (NLS) in the one-dimensional space. Such equations arise in many physical fields, including nonlinear optics and Bose-Einstein condensation. The thesis contains three connected themes included in chapters 2, 3 and 4. The first part (chapter 2) constructs multi-soliton solutions of the Gross-Pitaevskii (or defocussing NLS) equation, as an approximate superposition of traveling waves (solitons). This part contains also a detailed description of the interactions between solitons. These results are obtained by exploiting the integrability of the the Gross-Pitaevskii equation and its associated Marchenko system. The second part (chapter 4) clarifies the relations between the classical formulation and the so-called hydrodynamical formulation that only has a meaning when the solution does not vanish anywhere in the spatial domain The last part (chapter 3) of this thesis concerns existence and uniqueness results for a family of quasi-linear partial differential equations that generalize the equation of the binormal curvature flow for a curve in the three-dimensional space. The latter equation is in connection to the focussing cubic NLS by Hasimoto transformation. In our generalization, the velocity of a point on the curve is still directed along the binormal vector (so that in particular the length of the curve is preserved) but the magnitude of the speed is allowed to depend both on the curvilinear parameter and on the position in space. Existence is proven using spatial discretization together with some a priori bounds on the approximate solutions. Uniqueness follows from a comparison theorem
Le, Coz Stefan. "Existence, stabilité et instabilité d'ondes stationnaires pour quelques équations de Klein-Gordon et Schrödinger non linéaires." Phd thesis, Université de Franche-Comté, 2007. http://tel.archives-ouvertes.fr/tel-00239293.
Full textL'existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points critiques d'une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que minimiseurs d'une fonctionnelle sur différentes contraintes.
Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes stationnaires sont stables ou instables. Lorsqu'elles sont instables, on met en évidence que dans certaines situations l'instabilité se manifeste par explosion, tandis que dans d'autres les solutions sont globalement bien posées. En plus des différentes caractérisations variationnelles des
ondes stationnaires, les preuves des résultats de stabilité et d'instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la première partie de cette thèse, on prouve un résultat de non-dégénérescence du linéarisé pour un problème limite. Dans la deuxième partie, on localise la deuxième valeur propre du linéarisé par la combinaison d'une méthode perturbative et d'arguments de continuation.
Ortoleva, Cecilia Maria. "Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équations." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00825627.
Full textZhang, Qidi. "Existence en temps grand et croissance des normes Sobolev pour des solutions d'équations de Klein-Gordon semi-linéaires et de Schrödinger linéaires sur certaines variétés." Phd thesis, Université Paris-Nord - Paris XIII, 2010. http://tel.archives-ouvertes.fr/tel-00566524.
Full textSun, Ruoci. "Comportement en grand temps et intégrabilité de certaines équations dispersives sur l'espace de Hardy Long time behavior of the NLS-Szegö equation Traveling waves of the quintic focusing NLS-Szegö equation Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS111.
Full textWe are interested in three non linear dispersive Hamiltonian equations: the defocusing cubic Schrödinger equation filtered by the Szegö projector on the torus that cancels every negative Fourier modes, leading to the cubic NLS--Szegö equation on the torus; the focusing quintic Schrödinger equation, which is filtered by the Szegö projector on the line, leading to the quintic NLS--Szegö equation on the line and the Benjamin--Ono (BO) equation on the line. Similarly to the other two models, the BO equation on the line can be written as a quadratic Schrödinger-type equation that is filtered by the Szegö projector on the line. These three models allow us to study their qualitative properties of some traveling waves, the phenomenon of the growth of Sobolev norms, the phenomenon of non linear scattering and some properties about the complete integrability of Hamiltonian dynamical systems. The goal of this thesis is to investigate the influence of the Szegö projector on some one-dimensional Schrödinger-type equations and to adapt the tools of the Hardy space on the torus and on the line. We also use the Birkhoff normal form transform, the concentration--compactness argument, refined as the profile decomposition theorem, and the inverse spectral transform in order to solve these problems. In the third model, the integrability theory allows to establish the connection with some algebraic and geometric aspects
Thomas, Roland. "L'instabilité modulationnelle en présence de vent et d'un courant cisaillé uniforme." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00716089.
Full textFu, Ying. "Identification de dynamique pour les systèmes bilinéaires et non-linéaires en présence d'incertitudes." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED054/document.
Full textThe problem of recovering the Hamiltonian and dipole moment, termed inversion, is considered in a bilinear quantum control framework. The process uses as inputs some measurable quantities (observables) for each admissible control. If the implementation of the control is noisy the data available is only in the form of probability laws of the measured observable. Nevertheless it is proved that the inversion process still has unique solutions (up to phase factors). Several models of noise are considered including the discrete noise model, the multiplicative amplitude noise model and a Gaussian process phase model. Both theoretical and numerical results are established
Mirrahimi, Mazyar. "Dynamique et contrôle des systèmes quantiques." Phd thesis, École Nationale Supérieure des Mines de Paris, 2005. http://pastel.archives-ouvertes.fr/pastel-00001610.
Full textColin, Thierry. "Problème de Cauchy et effets régularisants pour des équations aux dérivées partielles dispersives." Cachan, Ecole normale supérieure, 1993. http://www.theses.fr/1993DENS0003.
Full textKlein, Pauline. "Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités." Phd thesis, Université Henri Poincaré - Nancy I, 2010. http://tel.archives-ouvertes.fr/tel-00560706.
Full textToenger, Shanti. "Linear and Nonlinear Rogue Waves in Optical Systems." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2029/document.
Full textThis thesis describes the study of several different classes of linear and nonlinear effects in optics that generatelarge amplitude extreme events with properties analogous to the destructive “rogue waves” on the surface of theocean. The thesis begins with a brief overview of the analogous physics of wave localisation in hydrodynamicand optical systems, where we describe linear and nonlinear rogue wave generating mechanisms in bothcases. We then present numerical and experimental results for rogue wave generation in a linear opticalsystem consisting of free space propagation of a spatial optical field with random phase. Computed statisticsbetween experiment and modelling are in good agreement, and we interpret the results obtained in termsof the properties of localised optical caustics. We then consider rogue waves in the nonlinear system ofmodulation instability described by the Nonlinear Schrodinger Equation (NLSE), and a detailed numericalstudy is presented comparing the spatio-temporal characteristics of localised structures seen from numericalsimulations with different known analytic solutions to the NLSE. Two experimental studies of modulationinstability are then reported. In the first, we present experimental results studying the properties of modulationinstability using a time-lens magnifier system; in the second, we report experimental results studying thefrequency-domain properties of modulation instability using real-time spectral measurements. The latter studyexamines the effect of a weak seed field on spectral bandwidth and stability. All experimental results arecompared with the NLSE simulations and discussed in terms of the qualitative properties of modulationinstability, in order to gain new insights into the complex dynamics associated with nonlinear pulse propagation.In all of these studies, different statistical properties are analised in relation to the emergence of rogue waves
Witwit, Mohammed R. M. "Perburbation and non-perburbation numerical calculations to compute energy eigenvalues for the Schrödinger equation with various types of potential." Thesis, University of Hull, 1989. http://hydra.hull.ac.uk/resources/hull:12766.
Full textDannawi, Ihab. "Contributions aux équations d'évolutions non locales en espace-temps." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS007/document.
Full textIn this thesis, we study four non-local evolution equations. The solutions of these four equations can blow up in finite time. In the theory of nonlinear evolution equations, a solution is qualified as global if it isdefined for any time. Otherwise, if a solution exists only on a bounded interval [0; T), it is called local solution. In this case and when the maximum time of existence is related to a blow up alternative, we say that the solution blows up in finite time. First, we consider the nonlinear Schröodinger equation with a fractional power of the Laplacien operator, and we get a blow up result in finite time Tmax > 0 for any non-trivial non-negative initial condition in the case of sub-critical exponent. Next, we study a damped wave equation with a space-time potential and a non-local in time non-linear term. We obtain a result of local existence of a solution in the energy space under some restrictions on the initial data, the dimension of the space and the growth of nonlinear term. Additionally, we get a blow up result of the solution in finite time for any initial condition positive on average. In addition, we study a Cauchy problem for the evolution p-Laplacien equation with nonlinear memory. We study the local existence of a solution of this equation as well as a result of non-existence of global solution. Finally, we study the maximum interval of existence of solutions of the porous medium equation with a nonlinear non-local in time term
Mauger, Sarah. "Couplage entre auto-focalisation et diffusion Brillouin stimulée pour une impulsion laser nanoseconde dans la silice." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00638962.
Full textBadreddine, Rana. "On a DNLS equation related to the Calogero-Sutherland-Moser Hamiltonian system." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM008.
Full textThis thesis is devoted to a PDE obtained by A. Abanov et al (J. Phys. A, 2009) from the hydrodynamic limit of the Calogero-Sutherland Hamiltonian system. A nonlinear integrable Schrödinger-type equation on the Hardy space is obtained and has a Lax pair structure on the line and on the circle. The goal of this thesis is to establish, by using the integrability structure of this PDE, some global well-posedness results on the circle, extending down to the critical regularity space. Secondly, we investigate the existence of particular solutions. Thus, we characterize the traveling waves and finite gap potentials of this equation on the circle. Thirdly, we study the zero-dispersion (or semiclassical) limit of this equation on the line and characterize its solutions using an explicit formula
Demiquel, Antoine. "Control of nonlinear modulated waves in flexible mechanical metamaterials." Electronic Thesis or Diss., Le Mans, 2024. https://cyberdoc-int.univ-lemans.fr/Theses/2024/2024LEMA1015.pdf.
Full textThis work is dedicated to the investigation of modulated waves propagating along nonlinear flexible mechanical metamaterials (FlexMM). These structures are architected materials consisting of highly deformable soft elements connected to stiffer ones. Their capacity to undergo large local deformations promotes the occurrence of nonlinear wave phenomena. Using a lump element approach, we formulate nonlinear discrete equations that describe the longitudinal land rotational displacements of each unit cell and their mutual coupling. A multiple scales analysis is employed in order to derive an effective nonlinear Schrödinger (NLS) equation describing envelope waves for the rotational degree of freedom of FlexMM. Leveraging on the NLS equation we identify various type of nonlinear waves phenomena in FlexMM. In particular we observed that weakly nonlinear plane waves can be modulationally stable or unstable depending of the system and excitation parameters. Moreover we have found that the FlexMMs support envelope vector solitons where the units rotational degree of freedom might take the form of bright or dark soliton and due to coupling, the longitudinal displacement degree of freedom has a kink-like behavior. Finally, we address the phenomenon of "gradient catastrophe", which predicts the emergence of Peregrine soliton-like structures in the semiclassical limit of the NLS equation, in FlexMM. Through our analytical predictions and by using numerical simulations, we can determine the required conditions and the values of the physical parameters in order to observe these phenomena in FlexMMs
Klein, Pauline. "Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités." Electronic Thesis or Diss., Nancy 1, 2010. http://www.theses.fr/2010NAN10098.
Full textThe Schrödinger equation is a fundamental equation involved in many physical domains. It deals with a linear or nonlinear function called potential, which can appear under various different expressions depending on the physical context. In order to solve the equation numerically, one has to restrict to a bounded spatial domain, and to add appropriate artificial boundary conditions (ABC) on the boundary of the computational domain. For the free-potential equation in one dimension, the exact boundary condition is known. The aim of this thesis is to generalize these results thanks to the construction of approximate ABC in the case of a linear or nonlinear potential. To this end, we propose a detailed research of methods taking the potential into account in the artifical boundary condition, without considering the mathematical properties of the considered potential. The construction of these CLA relies on microlocal analysis and the rules of symbolic calculus associated to pseudodifferential operators. These approximate boundary conditions can then be discretized and numerically computed, using a Crank-Nicolson scheme and a linear finite element method. In this work, we have derived families of ABCs for the Schrödinger equation in dimension one and two, with a linear or nonlinear potential, and for the stationary one-dimensional problem. In each case, many numerical simulations have been implemented in order to compare the efficiency of the new boundary conditions with respect to existing methods, and also in order to compare with one another the different families of boundary conditions developed following different strategies
Bienaimé, Pierre-Yves. "Existence locale et effet régularisant précisés pour des équations de type Schrödinger." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=2a707556-7e43-4293-a4ef-d92c9427fd70.
Full textIn this paper, we consider the Cauchy problem in the usual Sobolev spaces for some nonlinear equations of the form [Formule non transposable] : that is, equations which are of Schrödinger type. We study the local existence and the smoothing effect of the solutions, following C. E. Kenig, G. Ponce and L. Vega, and extend some of their results. The nonlinearity F is a smooth function which vanishes to the 3rd order at 0 and the operator L has the form [Formule non transposable] : It extends the Laplace operator but is not elliptic in general. We prove the local existence, the uniqueness and the smoothing effect given any [Formule non transposable] : The proof follows the same plan as that of C. E. Kenig, G. Ponce and L. Vega, Inventiones Matematicae, 1998. We improve the estimates by using the paradifferential calculus of J. -M. Bony
Nguyên, Thùy Liên. "Quelques problèmes variationnels issus de la théorie des ondes non-linéaires." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1386/.
Full textThis thesis focuses on the study of special solutions (traveling wave and standing wave type) for nonlinear dispersive partial differential equations in R^N. The considered problems have a variational structure, the solutions are critical points of some functionals. We demonstrate the existence of critical points using minimization methods. One of the main difficulties comes from the lack of compactness. To overcome this, we use some recent improvements of P. -L. Lions concentration-compactness principle. In the first part of the dissertation, we show the existence of the least energy solutions to quasi-linear elliptic equations in R^N. We generalize the results of Brézis and Lieb in the case of the Laplacian, and the results of Jeanjean and Squassina in the case of the p-Laplacian. In the second part, we show the existence of subsonic travelling waves of finite energy for a Gross-Pitaevskii-Schrödinger system which models the motion of a non charged impurity in a Bose-Einstein condensate. The obtained results are valid in three and four dimensional space
T'Joen, Laurent. "Effets régularisants et existence locale pour les équations non-linéaires de Schrödinger et des plaques à coefficients variables." Paris 11, 2001. http://www.theses.fr/2001PA112264.
Full textWetzel, Benjamin. "Etudes expérimentales et numériques des instabilités non-linéaires et des vagues scélérates optiques." Phd thesis, Université de Franche-Comté, 2012. http://tel.archives-ouvertes.fr/tel-01002680.
Full textVidmar, Rodrigo. "Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/163724.
Full textThe hydrodynamic version of the Schrödinger equation nonlinear and nonlocal will be explored, describing Bose-Einstein condensates with long-range self-interactions. Such systems have aroused interest with a view to pursuing the realization of Bose-Einstein condensation without an external confining potential and in which local atomic interactions are not enough. For the hydrodynamic description, the eikonal decomposition of the wave function is used, reducing the problem to one equation of continuity and to a transport of momentum equation. The latter is similar to the Euler equation in ideal fluid but containing an effective quantum potential and a nonlocal term, which comes from the atomic interaction. Such fluid equations translate, respectively, conservation of probability and total momentum. The hydrodynamic method will allow the study of elementary excitations, including Bogoliubov modes according to a macroscopic approach.
Schwinte, Valentin. "Autour de l'équation du plus bas niveau de Landau." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0078.
Full textThe aim of this thesis is to study the Lowest Landau Level equation, in several contexts relevant to physics and originating from models for Bose-Einstein condensates. In particular, we investigate three aspects of the equation. The first is the study of a class of solutions called stationary waves, through the minimization of an energy functional. In particular, we show that the Gaussian is the only global minimizer up to symmetries for a certain parameter, using linear and bilinear algebra tools. The second point concerns the Abrikosov lattice conjecture. We investigate the equation with the addition of periodic conditions, and linearize it around lattices. This results in the stability of the hexagonal lattice. The third and final aspect concerns progressive waves for the coupled Lowest Landau Level equation. We classify such solutions with a finite number of zeros, and deduce the existence of solutions with growing Sobolev norms
Johansson, Karoline. "Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagators." Licentiate thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-2447.
Full textIn this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations. They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators.
In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators.
The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation.
Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985).
In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take B as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x0, ξ0) such that no localization of the distribution at x0, belongs to FB in the direction ξ0. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols.
I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer.
I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna.
Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen.
Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se Hörmander (1985).
I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter B vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x0, ξ0) så att ingen lokalisering av distributionen kring x0, tillhör FB i riktningen ξ0. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.
Kopylov, Nikita. "Magnus-based geometric integrators for dynamical systems with time-dependent potentials." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/118798.
Full text[CAT] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest. L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps. El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes fonamentals utilitzades al llarg de la tesi. El disseny dels integradors proposats es basa en els mètodes de composició i escissió i en el desenvolupament de Magnus. En el Capítol 3, es descriu el primer. La seua idea principal consta d'una recombinació d'uns integradors senzills per a obtenir la solució del problema. El concepte important de les condicions d'orde es descriu en eixe capítol. El Capítol 4 fa un resum de les àlgebres de Lie i del desenvolupament de Magnus que són les ferramentes algebraiques que permeten expressar la solució d'equacions diferencials dependents del temps. L'equació lineal de Schrödinger amb potencial dependent del temps està examinada en el Capítol 5. Donat la seua estructura particular, nous mètodes quasi sense commutadors, basats en el desenvolupament de Magnus, són construïts. La seua eficiència és demostrada en uns experiments numèrics amb el model de Walker-Preston d'una molècula dins d'un camp electromagnètic. En el Capítol 6 es dissenyen els mètodes de Magnus-escissió per a les equacions d'onda i de Hill. El seu rendiment està demostrat en els experiments numèrics amb diversos sistemes oscil·latoris: amb l'equació de Mathieu, l'ec. de Hill matricial, les equacions d'onda i de Klein-Gordon-Fock. El Capítol 7 explica com l'enfocament algebraic i el desenvolupament de Magnus poden generalitzar-se als problemes no lineals. L'exemple utilitzat és el problema de Kepler amb massa decreixent. El Capítol 8 conclou la tesi, ressenya els resultats i traça les possibles direccions de la investigació futura.
[EN] The present thesis addresses the numerical integration of Hamiltonian systems with explicitly time-dependent potentials. These problems are common in mathematical physics because they come from quantum, classical and celestial mechanics. The goal of the thesis is to construct integrators for several import ant non-autonomous problems: the Schrödinger equation, which is the cornerstone of quantum mechanics; the Hill and the wave equations, that describe oscillating systems; the Kepler problem with time-variant mass. Chapter 1 describes the motivation and the aims of the work in the historical context of numerical integration. In Chapter 2 essential concepts and some fundamental tools used throughout the thesis are introduced. The design of the proposed integrators is based on the composition and splitting methods and the Magnus expansion. In Chapter 3, the former is described. Their main idea is to recombine some simpler integrators to obtain the solution. The salient concept of order conditions is described in that chapter. Chapter 4 summarises Lie algebras and the Magnus expansion ¿ algebraic tools that help to express the solution of time-dependent differential equations. The linear Schrödinger equation with time-dependent potential is considered in Chapter 5. Given its particular structure, new, Magnus-based quasi-commutator-free integrators are build. Their efficiency is shown in numerical experiments with the Walker-Preston model of a molecule in an electromagnetic field. In Chapter 6, Magnus-splitting methods for the wave and the Hill equations are designed. Their performance is demonstrated in numerical experiments with various oscillatory systems: the Mathieu equation, the matrix Hill eq., the wave and the Klein-Gordon-Fock eq. Chapter 7 shows how the algebraic approach and the Magnus expansion can be generalised to non-linear problems. The example used is the Kepler problem with decreasing mass. The thesis is concluded by Chapter 8, in which the results are reviewed and possible directions of future work are outlined.
Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118798
TESIS
Rolle, Jérémie. "Étude de la dynamique plasma dans la filamentation laser induite dans les verres de silice en présence de rétrodiffusion Brillouin stimulée et dans les cristaux de KDP." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112195/document.
Full textIn this thesis, we study the role of an inertial plasma reponse produced by laser pulses in self-focusing regime. Self-focusing is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses. For femtosecond pulses propagating in KDP crystals, self-focusing excites various ionization chanels. First of all, we derive the propagation equations for the pump and Stokes waves, subjected to filamentation due to optical Kerr effect, stimulated Brillouin scattering and plasma generation. In the second part, we present numerical results on the nonlinear propagation of LIL laser beams. These results show that temporal distribution of the pump pulse play a key role in the competition between self-focusing and stimulated Brillouin scattering. These preliminary results valide the anti-Brillouin system opted on the MegaJoule laser (LMJ) on the basis of milimetric-size laser beam.In a third part, we present numerical and theoretical results on the filamentation in fused silica of nanosecond light pulses operating in ultraviolet and infrared range. Emphasis is put on the action of a dynamical plasma reponse on two counterpropagating waves. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistionary balance ceases to clean up modulational instabilites induced by plasma retroaction on the pump wave. We show that phase modulations supress both simulated Brillouin scattering and plasma instabilities. The robustness of phase modulations is evaluated in presence of random fluctuations in the input pump pulse profile.Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Then, we compare the filamentation dynamic in silica and KDP crystal. The ionization model for KDP crystal takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power self-focusing.The summary of this thesis recalls the original results obtained and discusses the possibility of future developments
Galicher, Hervé. "Analyse mathématique de modèles en nanophysique." Paris 6, 2009. http://www.theses.fr/2009PA066641.
Full text