Journal articles on the topic 'Equation de von Kármán'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Equation de von Kármán.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
CIARLET, PHILIPPE G., LILIANA GRATIE, and SRINIVASAN KESAVAN. "ON THE GENERALIZED VON KÁRMÁN EQUATIONS AND THEIR APPROXIMATION." Mathematical Models and Methods in Applied Sciences 17, no. 04 (April 2007): 617–33. http://dx.doi.org/10.1142/s0218202507002042.
Full textCiarlet, Philippe G., and Liliana Gratie. "On the Existence of Solutions to the Generalized Marguerre-von Kármán Equations." Mathematics and Mechanics of Solids 11, no. 1 (February 2006): 83–100. http://dx.doi.org/10.1177/1081286505046480.
Full textPARK, JONG YEOUL, SUN HYE PARK, and YONG HAN KANG. "BILINEAR OPTIMAL CONTROL OF THE VELOCITY TERM IN A VON KÁRMÁN PLATE EQUATION." ANZIAM Journal 54, no. 4 (April 2013): 291–305. http://dx.doi.org/10.1017/s1446181113000205.
Full textCiarlet, Philippe G., and Liliana Gratie. "Generalized von Kármán equations." Journal de Mathématiques Pures et Appliquées 80, no. 3 (April 2001): 263–79. http://dx.doi.org/10.1016/s0021-7824(00)01198-3.
Full textFattorusso, Luisa, and Antonio Tarsia. "Von Kármán equations inLpspaces." Applicable Analysis 92, no. 11 (November 2013): 2375–91. http://dx.doi.org/10.1080/00036811.2012.738362.
Full textWang, Jiujiang, Xin Liu, Yuanyu Yu, Yao Li, Ching-Hsiang Cheng, Shuang Zhang, Peng-Un Mak, Mang-I. Vai, and Sio-Hang Pun. "A Review on Analytical Modeling for Collapse Mode Capacitive Micromachined Ultrasonic Transducer of the Collapse Voltage and the Static Membrane Deflections." Micromachines 12, no. 6 (June 18, 2021): 714. http://dx.doi.org/10.3390/mi12060714.
Full textHornung, Peter. "A remark on constrained von Kármán theories." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2170 (October 8, 2014): 20140346. http://dx.doi.org/10.1098/rspa.2014.0346.
Full textWang, Yongda. "An evolution von Kármán equation modeling suspension bridges." Nonlinear Analysis 169 (April 2018): 59–78. http://dx.doi.org/10.1016/j.na.2017.12.002.
Full textCibula, Július. "Von Kármán equations. III. Solvability of the von Kármán equations with conditions for geometry of the boundary of the domain." Applications of Mathematics 36, no. 5 (1991): 368–79. http://dx.doi.org/10.21136/am.1991.104473.
Full textBock, I. "On Nonstationary von Kármán Equations." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 76, no. 10 (1996): 559–71. http://dx.doi.org/10.1002/zamm.19960761006.
Full textHellinger, Petr, Andrea Verdini, Simone Landi, Luca Franci, and Lorenzo Matteini. "von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations." Astrophysical Journal 857, no. 2 (April 20, 2018): L19. http://dx.doi.org/10.3847/2041-8213/aabc06.
Full textChang, S. I. "Derivation Of The Von Kármán Equation From An Extension Of Love's Equations." Journal of Sound and Vibration 176, no. 1 (September 1994): 127–29. http://dx.doi.org/10.1006/jsvi.1994.1362.
Full textCiarlet, Philippe G., and Liliana Gratie. "From the classical to the generalized von Kármán and Marguerre–von Kármán equations." Journal of Computational and Applied Mathematics 190, no. 1-2 (June 2006): 470–86. http://dx.doi.org/10.1016/j.cam.2005.04.008.
Full textLIU, ZENG, MARTIN OBERLACK, VLADIMIR N. GREBENEV, and SHI-JUN LIAO. "EXPLICIT SERIES SOLUTION OF A CLOSURE MODEL FOR THE VON KÁRMÁN–HOWARTH EQUATION." ANZIAM Journal 52, no. 2 (October 2010): 179–202. http://dx.doi.org/10.1017/s1446181111000678.
Full textYau, Shing-Tung, and Yang Gao. "Obstacle problem for von Kármán equations." Advances in Applied Mathematics 13, no. 2 (June 1992): 123–41. http://dx.doi.org/10.1016/0196-8858(92)90005-h.
Full textNore, Caroline, Houda Zaidi, Frederic Bouillault, Alain Bossavit, and Jean-Luc Guermond. "Approximation of the time-dependent induction equation with advection using Whitney elements." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 35, no. 1 (January 4, 2016): 326–38. http://dx.doi.org/10.1108/compel-06-2015-0235.
Full textAlon Tzezana, Gali, and Kenneth S. Breuer. "Thrust, drag and wake structure in flapping compliant membrane wings." Journal of Fluid Mechanics 862 (January 15, 2019): 871–88. http://dx.doi.org/10.1017/jfm.2018.966.
Full textKhabirov, S. V., and G. Ünal. "Group analysis of the von Kármán–Howarth equation. Part I. Submodels." Communications in Nonlinear Science and Numerical Simulation 7, no. 1-2 (May 2002): 3–18. http://dx.doi.org/10.1016/s1007-5704(02)00003-5.
Full textFeireisl, Eduard. "Dynamic von Kármán equations involving nonlinear damping: Time-periodic solutions." Applications of Mathematics 34, no. 1 (1989): 46–56. http://dx.doi.org/10.21136/am.1989.104333.
Full textBrilla, Igor. "Bifurcations of generalized von Kármán equations for circular viscoelastic plates." Applications of Mathematics 35, no. 4 (1990): 302–14. http://dx.doi.org/10.21136/am.1990.104412.
Full textCibula, Július. "Von Kármán equations. II. Approximation of the solution." Applications of Mathematics 30, no. 1 (1985): 1–10. http://dx.doi.org/10.21136/am.1985.104123.
Full textPuel, Jean-Pierre, and Marius Tucsnak. "Boundary Stabilization for the von Kármán Equations." SIAM Journal on Control and Optimization 33, no. 1 (January 1995): 255–73. http://dx.doi.org/10.1137/s0363012992228350.
Full textQuintela Estévez, P. "Perturbed bifurcation in the von Kármán equations." Asymptotic Analysis 8, no. 2 (1994): 161–84. http://dx.doi.org/10.3233/asy-1994-8203.
Full textChien, C. S., and M. S. Chen. "Multiple Bifurcation in the von Kármán Equations." SIAM Journal on Scientific Computing 18, no. 6 (November 1997): 1737–66. http://dx.doi.org/10.1137/s106482759427364x.
Full textChien, C. S., S. Y. Gong, and Z. Mei. "Mode Jumping In The Von Kármán Equations." SIAM Journal on Scientific Computing 22, no. 4 (January 2000): 1354–85. http://dx.doi.org/10.1137/s1064827596307324.
Full textRao, Bopeng. "Marguerre-Von Kármán equations and membrane model." Nonlinear Analysis: Theory, Methods & Applications 24, no. 8 (April 1995): 1131–40. http://dx.doi.org/10.1016/0362-546x(94)00226-8.
Full textMenzala, G. Perla, and E. Zuazua. "Timoshenko's beam equation as limit of a nonlinear one-dimensional von Kármán system." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 130, no. 4 (August 2000): 855–75. http://dx.doi.org/10.1017/s0308210500000470.
Full textBrilla, Igor. "Equivalent formulations of generalized von Kármán equations for circular viscoelastic plates." Applications of Mathematics 35, no. 3 (1990): 237–51. http://dx.doi.org/10.21136/am.1990.104408.
Full textRoot, Robert G. "Boundary value problems for degenerate von Kármán equations." Quarterly of Applied Mathematics 57, no. 1 (March 1, 1999): 1–17. http://dx.doi.org/10.1090/qam/1672163.
Full textCiarlet, Philippe G., Liliana Gratie, and Srinivasan Kesavan. "Numerical analysis of the generalized von Kármán equations." Comptes Rendus Mathematique 341, no. 11 (December 2005): 695–99. http://dx.doi.org/10.1016/j.crma.2005.09.031.
Full textJin, Rongrong, and Guangcun Lu. "Variational study of bifurcations in von Kármán equations." Frontiers of Mathematics in China 14, no. 3 (April 29, 2019): 567–90. http://dx.doi.org/10.1007/s11464-019-0766-8.
Full textLai, C. Y., K. R. Rajagopal, and A. Z. Szeri. "Asymmetric flow above a rotating disk." Journal of Fluid Mechanics 157 (August 1985): 471–92. http://dx.doi.org/10.1017/s0022112085002452.
Full textKhabirov, S. V., and G. Ünal. "Group analysis of the von Kármán–Howarth equation. Part II. Physical invariant solutions." Communications in Nonlinear Science and Numerical Simulation 7, no. 1-2 (May 2002): 19–30. http://dx.doi.org/10.1016/s1007-5704(02)00012-6.
Full textLiu, Zeng, Martin Oberlack, Vladimir N. Grebenev, and Shijun Liao. "Explicit series solution of a closure model for the von Kármán-Howarth equation." ANZIAM Journal 52 (September 3, 2011): 179. http://dx.doi.org/10.21914/anziamj.v52i0.3215.
Full textPark, Jong Yeoul, Sun Hye Park, and Yong Han Kang. "Bilinear optimal control of the velocity term in a von Kármán plate equation." ANZIAM Journal 54 (July 29, 2013): 291. http://dx.doi.org/10.21914/anziamj.v54i0.7130.
Full textPerla Menzala, G., and E. Zuazua. "Timoshenko's plate equation as a singular limit of the dynamical von Kármán system." Journal de Mathématiques Pures et Appliquées 79, no. 1 (January 2000): 73–94. http://dx.doi.org/10.1016/s0021-7824(00)00149-5.
Full textKang, Jum-Ran. "Exponential Decay for Nonlinear von Kármán Equations with Memory." Abstract and Applied Analysis 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/484596.
Full textWang, Chun-Yan. "Asymptotic analysis to Von Kármán swirling-flow problem." Modern Physics Letters B 33, no. 25 (September 10, 2019): 1950298. http://dx.doi.org/10.1142/s0217984919502981.
Full textMenzala, G. P., and A. F. Pazoto. "Uniform boundary stabilization of the dynamical von Kármán and Timoshenko equations for plates." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 136, no. 2 (April 2006): 385–413. http://dx.doi.org/10.1017/s0308210500004625.
Full textBock, I. "On Integro-Differential von Kármán Equations for Viscoelastic Plates." PAMM 1, no. 1 (March 2002): 131. http://dx.doi.org/10.1002/1617-7061(200203)1:1<131::aid-pamm131>3.0.co;2-z.
Full textKang, Jum-Ran. "Exponential decay for a von Kármán equations with memory." Journal of Mathematical Physics 54, no. 3 (March 2013): 033501. http://dx.doi.org/10.1063/1.4791694.
Full textChien, C. S., Y. J. Kuo, and Z. Mei. "Symmetry and scaling properties of the von Kármán equations." Zeitschrift für angewandte Mathematik und Physik 49, no. 5 (September 1998): 710–29. http://dx.doi.org/10.1007/pl00001487.
Full textMallik, Gouranga, and Neela Nataraj. "Conforming finite element methods for the von Kármán equations." Advances in Computational Mathematics 42, no. 5 (February 6, 2016): 1031–54. http://dx.doi.org/10.1007/s10444-016-9452-5.
Full textLovadina, Carlo, David Mora, and Iván Velásquez. "A virtual element method for the von Kármán equations." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 2 (March 2021): 533–60. http://dx.doi.org/10.1051/m2an/2020085.
Full textYongsheng, Ren, Du Chenggang, and Shi Yuyan. "Nonlinear Free and Forced Vibration Behavior of Shear-Deformable Composite Beams with Shape Memory Alloy Fibers." Shock and Vibration 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/1056087.
Full textGuo, Yong. "Fluid-Induced Nonlinear Vibration of a Cantilevered Microtube with Symmetric Motion Constraints." Shock and Vibration 2020 (August 12, 2020): 1–14. http://dx.doi.org/10.1155/2020/8852357.
Full textYounis, Mohammad I., and Ali H. Nayfeh. "Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load." Journal of Computational and Nonlinear Dynamics 2, no. 3 (January 7, 2007): 232–41. http://dx.doi.org/10.1115/1.2727491.
Full textPerla Menzala, G., and E. Zuazua. "The beam equation as a limit of a 1-D nonlinear von Kármán model." Applied Mathematics Letters 12, no. 1 (January 1999): 47–52. http://dx.doi.org/10.1016/s0893-9659(98)00125-6.
Full textAbels, Helmut, Maria Giovanna Mora, and Stefan Müller. "The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity." Calculus of Variations and Partial Differential Equations 41, no. 1-2 (August 15, 2010): 241–59. http://dx.doi.org/10.1007/s00526-010-0360-0.
Full textHui-chuan, Shen. "The relation of von Kármán equation for elastic large deflection problem and Schrödinger equation for quantum eigenalues problem." Applied Mathematics and Mechanics 6, no. 8 (August 1985): 761–75. http://dx.doi.org/10.1007/bf03250496.
Full text