Academic literature on the topic 'Equation laplace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Equation laplace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Equation laplace"

1

Zaki, Ahmad, Syafruddin Side, and N. Nurhaeda. "Solusi Persamaan Laplace pada Koordinat Bola." Journal of Mathematics, Computations, and Statistics 2, no. 1 (2020): 82. http://dx.doi.org/10.35580/jmathcos.v2i1.12462.

Full text
Abstract:
Penelitian ini mengkaji mengenai persamaan Laplace pada koordinat bola dan menerapkan metode pemisahan variabel dalam menentukan solusi persamaan Laplace Persamaan Laplace merupakan salah satu jenis persamaan diferensial parsial yang banyak digunakan untuk memodelkan permasalahan dalam bidang sains. Bentuk umum persamaan Laplace pada dimensi tiga dimana adalah fungsi skalar dengan menggunakan metode pemisahan variable diperoleh persamaan Laplace dimensi tiga pada koordinat bola. Hasil penelitian ini mendapatkan penyelesaian persamaan Laplace pada koordinat bola dalam bentuk variabel terpisah d
APA, Harvard, Vancouver, ISO, and other styles
2

Sanusi, Wahidah, Syafruddin Side, and Beby Fitriani. "Solusi Persamaan Transport dengan Menggunakan Metode Dekomposisi Adomian Laplace." Journal of Mathematics, Computations, and Statistics 2, no. 2 (2020): 173. http://dx.doi.org/10.35580/jmathcos.v2i2.12580.

Full text
Abstract:
Abstrak. Penelitian ini mengkaji terbentuknya persamaan Transport dan menerapkan metode Dekomposisi Adomian Laplace dalam menentukan solusi persamaan Transport. Persamaan transport merupakan salah satu bentuk dari persamaan diferensial parsial. Bentuk umum persamaan Transport yaitu: Metode Dekomposisi Adomian Laplace merupakan kombinasi antara dua metode yaitu metode dekomposisi adomian dan transformasi laplace. Penyelesaian persamaan Transport dengan metode Dekomposisi Adomian Laplace dilakukan dengan cara menggunakan tranformasi Laplace, mensubstitusi nilai awal, menyatakan solusi dalam bent
APA, Harvard, Vancouver, ISO, and other styles
3

Shabestari, R. Mastani, and R. Ezzati. "The Fuzzy Double Laplace Transforms and their Properties with Applications to Fuzzy Wave Equation." New Mathematics and Natural Computation 17, no. 02 (2021): 319–38. http://dx.doi.org/10.1142/s1793005721500174.

Full text
Abstract:
The main focus of this paper is develop of the fuzzy double Laplace transform to solve a fuzzy wave equation. In this scheme, a fuzzy wave equation can be solved without converting it to two crisp equations. Some properties of the fuzzy Laplace transform and the fuzzy double Laplace transform are proved. The superiority and accuracy of the fuzzy double Laplace transform to wave equation are illustrated through some examples.
APA, Harvard, Vancouver, ISO, and other styles
4

Abdy, Muhammad, Syafruddin Side, and Reza Arisandi. "Penerapan Metode Dekomposisi Adomian Laplace Dalam Menentukan Solusi Persamaan Panas." Journal of Mathematics, Computations, and Statistics 1, no. 2 (2019): 206. http://dx.doi.org/10.35580/jmathcos.v1i2.9243.

Full text
Abstract:
Abstrak. Artikel ini membahas tentang penerapan Metode Dekomposisi Adomian Laplace (LADM) dalam menentukan solusi persamaan panas. Metode Dekomposisi Adomian Laplace merupakan metode semi analitik untuk menyelesaikan persamaan diferensial nonlinier yang mengkombinasikan antara tranformasi Laplace dan metode dekomposisi Adomian. Berdasarkan hasil perhitungan, metode dekomposisi Adomian Laplace dapat menghampiri penyelesaian persamaan diferensial biasa nonlinear.Kata kunci: Metode Dekomposisi Adomian Laplace, Persamaan Diferensial Parsial, Persamaan PanasAbstract. This study discusses the applic
APA, Harvard, Vancouver, ISO, and other styles
5

Nathiya, N., and C. Amulya Smyrna. "Infinite Schrödinger networks." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 31, no. 4 (2021): 640–50. http://dx.doi.org/10.35634/vm210408.

Full text
Abstract:
Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a
APA, Harvard, Vancouver, ISO, and other styles
6

Rozumniuk, V. I. "About general solutions of Euler’s and Navier-Stokes equations." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 1 (2019): 190–93. http://dx.doi.org/10.17721/1812-5409.2019/1.44.

Full text
Abstract:
Constructing a general solution to the Navier-Stokes equation is a fundamental problem of current fluid mechanics and mathematics due to nonlinearity occurring when moving to Euler’s variables. A new transition procedure is proposed without appearing nonlinear terms in the equation, which makes it possible constructing a general solution to the Navier-Stokes equation as a combination of general solutions to Laplace’s and diffusion equations. Existence, uniqueness, and smoothness of the solutions to Euler's and Navier-Stokes equations are found out with investigating solutions to the Laplace an
APA, Harvard, Vancouver, ISO, and other styles
7

Kamran, Sharif Ullah Khan, Salma Haque, and Nabil Mlaiki. "On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method." Symmetry 15, no. 6 (2023): 1214. http://dx.doi.org/10.3390/sym15061214.

Full text
Abstract:
Differential equations of fractional order arising in engineering and other sciences describe nature sufficiently in terms of symmetry properties. In this article, a numerical method based on Laplace transform and numerical inverse Laplace transform for the numerical modeling of differential equations of fractional order is developed. The analytic inversion can be very difficult for complex forms of the transform function. Therefore, numerical methods are used for the inversion of the Laplace transform. In general, the numerical inverse Laplace transform is an ill-posed problem. This difficult
APA, Harvard, Vancouver, ISO, and other styles
8

Kogoj, Alessia E., and Ermanno Lanconelli. "On semilinear -Laplace equation." Nonlinear Analysis: Theory, Methods & Applications 75, no. 12 (2012): 4637–49. http://dx.doi.org/10.1016/j.na.2011.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Guozhen, and Peiyong Wang. "Inhomogeneous infinity Laplace equation." Advances in Mathematics 217, no. 4 (2008): 1838–68. http://dx.doi.org/10.1016/j.aim.2007.11.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shokhanda, Rachana, Pranay Goswami, Ji-Huan He, and Ali Althobaiti. "An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation." Fractal and Fractional 5, no. 4 (2021): 196. http://dx.doi.org/10.3390/fractalfract5040196.

Full text
Abstract:
In this paper, we consider the time-fractional two-mode coupled Burgers equation with the Caputo fractional derivative. A modified homotopy perturbation method coupled with Laplace transform (He-Laplace method) is applied to find its approximate analytical solution. The method is to decompose the equation into a series of linear equations, which can be effectively and easily solved by the Laplace transform. The solution process is illustrated step by step, and the results show that the present method is extremely powerful for fractional differential equations.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Equation laplace"

1

Ubostad, Nikolai Høiland. "The Infinity Laplace Equation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20686.

Full text
Abstract:
In this thesis, we prove that the Infinity-Laplace equation has a unique solution in the viscosity sense. We prove existence by approximating the equation by the p-Laplace equation, and uniqueness will be shown by use of the Theorem on Sums. We will also show that the viscosity solutions of the Infinity-Laplace equation enjoys comparison with cones, and vice versa.
APA, Harvard, Vancouver, ISO, and other styles
2

Fejne, Frida. "The p-Laplace equation – general properties and boundary behaviour." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mansour, Gihane. "Méthode de décomposition de Domaine pour les équations de Laplace et de Helmholtz : Equation de Laplace non linéaire." Paris 13, 2009. http://www.theses.fr/2009PA132013.

Full text
Abstract:
L'objectif de ce travail est double : D'une part, la résolution à l'aide de la méthode de décomposition de domaine, de l'équation de Poisson et de l'équation de Helmholtz, avec donnée de Dirichlet homogène au bord. D'autre part, l'étude de l'équation de Laplace, avec donnée non linéaire g au bord en se basant sur la méthode du Min-Max. Dans la première partie, nous introduisons les outils indispensables sur lesquels nous nous sommes appuyés pour aborder les équations à résoudre et nous présentons deux méthodes indirectes de résolution de l'équation de Poisson: l'algorithme de Dirichlet-Neumann
APA, Harvard, Vancouver, ISO, and other styles
4

Rockstroh, Parousia. "Boundary value problems for the Laplace equation on convex domains with analytic boundary." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.

Full text
Abstract:
In this thesis we study boundary value problems for the Laplace equation on do mains with smooth boundary. Central to our analysis is a relation, known as the global relation, that couples the boundary data for a given BVP. Previously, the global re lation has primarily been applied to elliptic PDEs defined on polygonal domains. In this thesis we extend the use of the global relation to domains with smooth boundary. This is done by introducing a new transform, denoted by F_p, that is an analogue of the Fourier transform on smooth convex curves. We show that the F_p-transform is a bounded and i
APA, Harvard, Vancouver, ISO, and other styles
5

Masur, Gökce Tuba. "An Adaptive Surface Finite Element Method for the Laplace-Beltrami Equation." Thesis, KTH, Numerisk analys, NA, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202764.

Full text
Abstract:
In this thesis, we present an adaptive surface finite element method for the Laplace-Beltrami equation. The equation is known as the manifold equivalent of the Laplace equation. A surface finite element method is formulated for this partial differential equation which is implemented in FEniCS, an open source software project for automated solutions of differential equations. We formulate a goal-oriented adaptive mesh refinement method based on a posteriori error estimates which are established with the dual-weighted residual method. Some computational examples are provided and implementation i
APA, Harvard, Vancouver, ISO, and other styles
6

Ricciotti, Diego. "Regularity of solutions of the p-Laplace equation in the Heisenberg group." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5708/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Correia, Joaquim, Costa Fernando da, Sackmone Sirisack, and Khankham Vongsavang. "Burgers' Equation and Some Applications." Master's thesis, Edited by Thepsavanh Kitignavong, Faculty of Natural Sciences, National University of Laos, 2017. http://hdl.handle.net/10174/26615.

Full text
Abstract:
In this thesis, I present Burgers' equation and some of its applications. I consider the inviscid and the viscid Burgers' equations and present different analytical methods for their study: the Method of Characteristics for the inviscid case, and the Cole-Hopf Transformation for theviscid one. Two applications of Burgers' equations are given: one in simple models of Traffic Flow (which have been introduced independently by Lighthill-Whitham and Richards) and another in Coagulation theory (in which we use Laplace Transform to obtain Burgers' equations from the original coagulation integro-diffe
APA, Harvard, Vancouver, ISO, and other styles
8

Consiglio, Armando. "Time-fractional diffusion equation and its applications in physics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13704/.

Full text
Abstract:
In physics, process involving the phenomena of diffusion and wave propagation have great relevance; these physical process are governed, from a mathematical point of view, by differential equations of order 1 and 2 in time. By introducing a fractional derivatives of order $\alpha$ in time, with $0 < \alpha < 1$ or $1 <= \alpha <= 2$, we lead to process in mathematical physics which we may refer to as fractional phenomena; this is not merely a phenomenological procedure providing an additional fit parameter. The aim of this thesis is to provide a description of such phenomena adopting a mathe
APA, Harvard, Vancouver, ISO, and other styles
9

Chin, P. W. M. (Pius Wiysanyuy Molo). "Contribution to qualitative and constructive treatment of the heat equation with domain singularities." Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/28554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pichon, Eric. "Novel Methods for Multidimensional Image Segmentation." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7504.

Full text
Abstract:
Artificial vision is the problem of creating systems capable of processing visual information. A fundamental sub-problem of artificial vision is image segmentation, the problem of detecting a structure from a digital image. Examples of segmentation problems include the detection of a road from an aerial photograph or the determination of the boundaries of the brain's ventricles from medical imagery. The extraction of structures allows for subsequent higher-level cognitive tasks. One of them is shape comparison. For example, if the brain ventricles of a patient are segmented, can their shapes b
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Equation laplace"

1

Medková, Dagmar. The Laplace Equation. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74307-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Homer, Matthew Stuart. The Laplace tidal wave equation. University of Birmingham, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lindqvist, Peter. Notes on the Infinity Laplace Equation. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31532-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ricciotti, Diego. p-Laplace Equation in the Heisenberg Group. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23790-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lindqvist, Peter. Notes on the Stationary p-Laplace Equation. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14501-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

L, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. National Aeronautics and Space Administration, Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

L, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. National Aeronautics and Space Administration, Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Institute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Institute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

T, Leighton, Miller Gary L, and Institute for Computer Applications in Science and Engineering., eds. The path resistance method for bounding the smallest nontrivial eigenvalue of a Laplacian. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Equation laplace"

1

Bassanini, Piero, and Alan R. Elcrat. "Laplace Equation." In Theory and Applications of Partial Differential Equations. Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1875-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keaton, Jeffrey R. "Laplace Equation." In Selective Neck Dissection for Oral Cancer. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_184-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keaton, Jeffrey R. "Laplace Equation." In Encyclopedia of Earth Sciences Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salsa, Sandro. "The Laplace Equation." In UNITEXT. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DiBenedetto, Emmanuele. "The Laplace Equation." In Partial Differential Equations. Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4899-2840-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DiBenedetto, Emmanuele. "The Laplace Equation." In Partial Differential Equations. Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4552-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Salsa, Sandro, and Gianmaria Verzini. "The Laplace Equation." In UNITEXT. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15416-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Epstein, Marcelo. "The Laplace Equation." In Partial Differential Equations. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55212-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salsa, Sandro. "The Laplace Equation." In UNITEXT. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31238-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salsa, Sandro, Federico M. G. Vegni, Anna Zaretti, and Paolo Zunino. "The Laplace Equation." In UNITEXT. Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Equation laplace"

1

Valenta, Václav, Václav Šátek, Jiří Kunovský, and Patricia Humenná. "Adaptive solution of Laplace equation." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baoquan Geng. "Flow field's Laplace equation and analysis." In 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pichon, Eric, Delphine Nain, and Marc Niethammer. "A Laplace equation approach for shape comparison." In Medical Imaging, edited by Kevin R. Cleary and Robert L. Galloway, Jr. SPIE, 2006. http://dx.doi.org/10.1117/12.651135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MATSUURA, T., S. SAITOH, and M. YAMAMOTO. "NUMERICAL CAUCHY PROBLEMS FOR THE LAPLACE EQUATION." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Bin, Chun-Lai Mu, and Xiao-Lin Yang. "Image Segmentation with a p-Laplace Equation Model." In 2009 2nd International Congress on Image and Signal Processing (CISP). IEEE, 2009. http://dx.doi.org/10.1109/cisp.2009.5303947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MEDKOVÁ, D. "THE OBLIQUE DERIVATIVE PROBLEM FOR THE LAPLACE EQUATION." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Majeed, Muhammad Usman, Chadia Zayane-Aissa, and Taous Meriem Laleg-Kirati. "Cauchy problem for Laplace equation: An observer based approach." In 2013 3rd International Conference on Systems and Control (ICSC). IEEE, 2013. http://dx.doi.org/10.1109/icosc.2013.6750929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bui, K., I. Akkutlu, and B. Li. "Capillary Pressure in Nanopores: Deviation from Young- Laplace Equation." In 79th EAGE Conference and Exhibition 2017 - SPE EUROPEC. EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Bo, Khoa Bui, and I. Yucel Akkutlu. "Capillary Pressure in Nanopores: Deviation from Young-Laplace Equation." In SPE Europec featured at 79th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185801-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cristofaro, Andrea, Roberto Giambo, and Fabio Giannoni. "Lyapunov Stability Results for the Parabolic p-Laplace Equation." In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550122.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Equation laplace"

1

Çitil, Hülya. Solutions of Fuzzy Differential Equation with Fuzzy Number Coefficient by Fuzzy Laplace Transform. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2020. http://dx.doi.org/10.7546/crabs.2020.09.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gray, L. J. Program for solving the 3-dimensional LaPlace equation via the boundary element method. [D3LAPL]. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/5065235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Greengard, L., and V. Rokhlin. A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada316161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blumberg, L. N. Analysis of magnetic measurement data by least squares fit to series expansion solution of 3-D Laplace equation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10185838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mane S. R. SOLUTIONS OF LAPLACES EQUATION AND MULTIPOLE EXPANSIONS WITH A CURVED LONGITUDINAL AXIS. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/1151263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Babuska, I., T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj. Study of Superconvergence by a Computer-Based Approach. Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada277537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Babuska, I., T. Strouboulis, S. K. Gangaraj, and C. S. Upadhyay. Eta%-Superconvergence in the Interior of Locally Refined Meshes of Quadrilaterals: Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada277242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!