Journal articles on the topic 'Equation of state, carbon, shock waves'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Equation of state, carbon, shock waves.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nannan, Nawin R., Corrado Sirianni, Tiemo Mathijssen, Alberto Guardone, and Piero Colonna. "The admissibility domain of rarefaction shock waves in the near-critical vapour–liquid equilibrium region of pure typical fluids." Journal of Fluid Mechanics 795 (April 14, 2016): 241–61. http://dx.doi.org/10.1017/jfm.2016.197.
Full textElperin, I., O. Igra, and G. Ben-Dor. "Analysis of Normal Shock Waves in a Carbon Particle-Laden Oxygen Gas." Journal of Fluids Engineering 108, no. 3 (1986): 354–59. http://dx.doi.org/10.1115/1.3242586.
Full textI., A. VAKULENKO, G. LISNYAK A., N. PERKOV O., and XIAO HAI XU. "INFLUENCE OF SHOCK VOLTAGE FROM THE ELECTRIC DISCHARGE ON THE FATIGUE ENDURANCE OF CARBON STEEL IN WATER." Science and Transport Progress, no. 5(59) (November 10, 2015): 107–14. https://doi.org/10.15802/stp2015/53162.
Full textNagayama, Kunihito. "Grueneisen Equation of State and Shock Waves." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 4, no. 2 (1995): 118–27. http://dx.doi.org/10.4131/jshpreview.4.118.
Full textKhishchenko, K. V. "Equation of state for indium in shock waves." Journal of Physics: Conference Series 1385 (November 2019): 012002. http://dx.doi.org/10.1088/1742-6596/1385/1/012002.
Full textGu, Yuan, Sizu Fu, Jiang Wu, Songyu Yu, Yuanlong Ni, and Shiji Wang. "Equation of state studies at SILP by laser-driven shock waves." Laser and Particle Beams 14, no. 2 (1996): 157–69. http://dx.doi.org/10.1017/s0263034600009915.
Full textLifits, S. A., S. I. Anisimov, and J. Meyer-ter-Vehn. "Shock Waves produced by Impulsive Load: Equation of State Effects." Zeitschrift für Naturforschung A 47, no. 3 (1992): 453–59. http://dx.doi.org/10.1515/zna-1992-0301.
Full textKhishchenko, Konstantin V. "Equation of State for Bismuth at High Energy Densities." Energies 15, no. 19 (2022): 7067. http://dx.doi.org/10.3390/en15197067.
Full textCONSTANTIN, C., E. DEWALD, C. NIEMANN, et al. "Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves." Laser and Particle Beams 22, no. 1 (2004): 59–63. http://dx.doi.org/10.1017/s0263034604221115.
Full textCho, Heyrim, Daniele Venturi, and George E. Karniadakis. "Statistical analysis and simulation of random shocks in stochastic Burgers equation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2171 (2014): 20140080. http://dx.doi.org/10.1098/rspa.2014.0080.
Full textHarris, S. E. "Sonic shocks governed by the modified Burgers' equation." European Journal of Applied Mathematics 7, no. 2 (1996): 201–22. http://dx.doi.org/10.1017/s0956792500002291.
Full textGUNDLACH, C., and R. J. LEVEQUE. "Universality in the run-up of shock waves to the surface of a star." Journal of Fluid Mechanics 676 (April 8, 2011): 237–64. http://dx.doi.org/10.1017/jfm.2011.42.
Full textBel'kheeva, Rumiya K. "Low-parametric equation of state for graphite describing solid and porous samples under shock and unloading waves." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 90 (2024): 50–63. http://dx.doi.org/10.17223/19988621/90/5.
Full textAyumu Yamamoto, Kazuteru Toh, and Masaaki Tamagawa. "Numerical Simulation to Investigate Interactions of Generated Underwater Micro Shock Waves and Micro Bubbles by Focusing Femtosecond Pulse Laser." Journal of Advanced Research in Numerical Heat Transfer 13, no. 1 (2023): 18–30. http://dx.doi.org/10.37934/arnht.13.1.1830.
Full textAbdulazeem, Mohamed. "Condensed media shock waves and detonations: equation of state and performance." High Temperatures-High Pressures 30, no. 4 (1998): 387–422. http://dx.doi.org/10.1068/htrt121.
Full textKhishchenko, K. V. "Equation of state for potassium in shock waves at high pressures." Journal of Physics: Conference Series 946 (January 2018): 012082. http://dx.doi.org/10.1088/1742-6596/946/1/012082.
Full textKhishchenko, K. V. "Equation of State of Hafnium at High Pressures in Shock Waves." Physics of Wave Phenomena 31, no. 2 (2023): 123–25. http://dx.doi.org/10.3103/s1541308x23020073.
Full textNg, A., D. Parfeniuk, L. Da Silva, and P. Celliers. "Laser-driven shock wave experiments at the University of British Columbia." Laser and Particle Beams 4, no. 3-4 (1986): 555–67. http://dx.doi.org/10.1017/s0263034600002238.
Full textNeff, S., and R. Presura. "Simulation of shock waves in flyer plate impact experiments." Laser and Particle Beams 28, no. 4 (2010): 539–45. http://dx.doi.org/10.1017/s0263034610000595.
Full textKhudainazarov, Sherzod, Burkhon Donayev, and B. Ashirov. "Propagation of a spherical wave in elastoplastic medium with complex equations of state." E3S Web of Conferences 264 (2021): 02041. http://dx.doi.org/10.1051/e3sconf/202126402041.
Full textKraus, Evgeny. "The Calculation of Elastic Modulus Behind Strong Shock Waves." Siberian Journal of Physics 4, no. 4 (2009): 79–90. http://dx.doi.org/10.54362/1818-7919-2009-4-4-79-90.
Full textKouremenos, D. A., and K. A. Antonopoulos. "Real gas normal shock waves with the redlich-kwong equation of state." Acta Mechanica 76, no. 3-4 (1989): 223–33. http://dx.doi.org/10.1007/bf01253581.
Full textCongy, T., G. A. El, and M. A. Hoefer. "Interaction of linear modulated waves and unsteady dispersive hydrodynamic states with application to shallow water waves." Journal of Fluid Mechanics 875 (July 26, 2019): 1145–74. http://dx.doi.org/10.1017/jfm.2019.534.
Full textNiu, Yang-Yao. "A Simulation of the Liquid Shock and Cavitation Based on a Multi-Equation Model." International Journal of Computational Methods 13, no. 04 (2016): 1641010. http://dx.doi.org/10.1142/s0219876216410103.
Full textAnisimov, S. I., and V. A. Kravchenko. "Shock Wave in Condensed Matter Generated by Impulsive Load." Zeitschrift für Naturforschung A 40, no. 1 (1985): 8–13. http://dx.doi.org/10.1515/zna-1985-0104.
Full textBossi, Simone, Tom A. Hall, Mohammed Mahdieh, et al. "Determination of the color temperature in laser-produced shocks." Laser and Particle Beams 15, no. 4 (1997): 485–93. http://dx.doi.org/10.1017/s0263034600011071.
Full textKharab, Abdelwahab, and Jamal Benbourenane. "Early response of soils to violent disturbances." International Journal of Applied Mathematical Research 6, no. 2 (2017): 39. http://dx.doi.org/10.14419/ijamr.v6i2.3612.
Full textNellis, W. J., A. C. Mitchell, F. H. Ree, et al. "Equation of state of shock‐compressed liquids: Carbon dioxide and air." Journal of Chemical Physics 95, no. 7 (1991): 5268–72. http://dx.doi.org/10.1063/1.461665.
Full textBugaev, K. A., M. I. Gorenshtein, and V. I. Zhdanov. "Relativistic shock waves in the presence of regions with anomalous equation of state." Theoretical and Mathematical Physics 80, no. 1 (1989): 767–75. http://dx.doi.org/10.1007/bf01015315.
Full textOzaki, N., K. A. Tanaka, T. Ono, et al. "GEKKO/HIPER-driven shock waves and equation-of-state measurements at ultrahigh pressures." Physics of Plasmas 11, no. 4 (2004): 1600–1608. http://dx.doi.org/10.1063/1.1650845.
Full textHENDERSON, LE ROY F., and RALPH MENIKOFF. "Triple-shock entropy theorem and its consequences." Journal of Fluid Mechanics 366 (July 10, 1998): 179–210. http://dx.doi.org/10.1017/s0022112098001244.
Full textArora, Rajan. "ASYMPTOTICAL SOLUTIONS FOR A VIBRATIONALLY RELAXING GAS." Mathematical Modelling and Analysis 14, no. 4 (2009): 423–34. http://dx.doi.org/10.3846/1392-6292.2009.14.423-434.
Full textKarakozova, Anastasia, and Sergey Kuznetsov. "Oscillating Nonlinear Acoustic Waves in a Mooney–Rivlin Rod." Applied Sciences 13, no. 18 (2023): 10037. http://dx.doi.org/10.3390/app131810037.
Full textSaenz, J. A., B. D. Taylor, and D. S. Stewart. "Asymptotic calculation of the dynamics of self-sustained detonations in condensed phase explosives." Journal of Fluid Mechanics 710 (August 31, 2012): 166–94. http://dx.doi.org/10.1017/jfm.2012.358.
Full textWang, Jinhuan, Yicheng Pang, and Yu Zhang. "Limits of Solutions to the Isentropic Euler Equations for van der Waals Gas." International Journal of Nonlinear Sciences and Numerical Simulation 20, no. 3-4 (2019): 461–73. http://dx.doi.org/10.1515/ijnsns-2018-0263.
Full textTytarenko, P. V., and V. I. Zhdanov. "Existence and stability of shock waves in relativistic hydrodynamics with general equation of state." Physics Letters A 240, no. 6 (1998): 295–300. http://dx.doi.org/10.1016/s0375-9601(97)00973-0.
Full textChashechkin, Yuli D. "Singular perturbed components of flows – linear precursors of shock waves." Mathematical Modelling of Natural Phenomena 13, no. 2 (2018): 17. http://dx.doi.org/10.1051/mmnp/2018020.
Full textJahan, Sharmin, Booshrat E. Sharmin, Nure Alam Chowdhury, Abdul Mannan, Tanu Shree Roy, and A. A. Mamun. "Electrostatic Ion-Acoustic Shock Waves in a Magnetized Degenerate Quantum Plasma." Plasma 4, no. 3 (2021): 426–34. http://dx.doi.org/10.3390/plasma4030031.
Full textGojani, A. B., and Kazuyoshi Takayama. "Experimental Determination of Shock Hugoniot for Water, Castor Oil, and Aqueous Solutions of Sodium Chloride, Sucrose and Gelatin." Materials Science Forum 566 (November 2007): 23–28. http://dx.doi.org/10.4028/www.scientific.net/msf.566.23.
Full textGUARDONE, ALBERTO, CALIN ZAMFIRESCU, and PIERO COLONNA. "Maximum intensity of rarefaction shock waves for dense gases." Journal of Fluid Mechanics 642 (December 23, 2009): 127–46. http://dx.doi.org/10.1017/s0022112009991716.
Full textYOSHIDA, Masatake. "Study of Equation of State Using Laser-Induced Shock-Wave Compression: Generation and Properties of Laser-Induced Shock Waves." Journal of Plasma and Fusion Research 80, no. 6 (2004): 427–31. http://dx.doi.org/10.1585/jspf.80.427.
Full textKonyukhov, A. V., P. R. Levashov, A. P. Likhachev, and I. L. Iosilevskii. "Instability of relativistic shock waves: numerical study on the basis of model equation of state." Vestnik Ob"edinennogo instituta vysokikh temperatur 3, no. 2 (2019): 43–49. http://dx.doi.org/10.33849/2019208.
Full textZhdanov, V. I., and P. V. Tytarenko. "Criterion for existence of shock waves in relativistic magnetohydrodynamics with a general equation of state." Physics Letters A 235, no. 1 (1997): 71–75. http://dx.doi.org/10.1016/s0375-9601(97)00549-5.
Full textKonyukhov, A. V., A. P. Likhachev, P. R. Levashov, and I. L. Iosilevskiy. "Instability of relativistic shock waves: Numerical study on the basis of model equation of state." Journal of Physics: Conference Series 1147 (January 2019): 012024. http://dx.doi.org/10.1088/1742-6596/1147/1/012024.
Full textCrandall, L. E., J. R. Rygg, D. K. Spaulding, et al. "Equation-of-state, sound speed, and reshock of shock-compressed fluid carbon dioxide." Physics of Plasmas 28, no. 2 (2021): 022708. http://dx.doi.org/10.1063/5.0039967.
Full textLukyanov, A. A. "An equation of state of a carbon-fibre epoxy composite under shock loading." European Physical Journal B 74, no. 1 (2010): 35–45. http://dx.doi.org/10.1140/epjb/e2010-00043-4.
Full textNADIM, A., D. GOLDMAN, J. J. CARTMELL, and P. E. BARBONE. "A PHASE-PLANE DESCRIPTION OF NONLINEAR TRAVELING WAVES IN BUBBLY LIQUIDS." Journal of Computational Acoustics 07, no. 02 (1999): 71–82. http://dx.doi.org/10.1142/s0218396x99000072.
Full textKoroleva, M. R., O. V. Mishchenkova, V. A. Tenenev, and T. Raeder. "Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State." Nelineinaya Dinamika 17, no. 1 (2021): 119–38. http://dx.doi.org/10.20537/nd210109.
Full textDeka, Manoj K., Balaram Pradhan, Apul N. Dev, Deepsikha Mahanta, Jalil Manafian, and Khaled H. Mahmoud. "Shock Waves in Ion-Beam-Depleted Spin-Polarized Quantum Plasma with Ionic Pressure Anisotropy." Plasma 8, no. 1 (2025): 3. https://doi.org/10.3390/plasma8010003.
Full textde la Cruz-Hernández, Manuel E., and Sergio Mendoza. "Full analytical ultrarelativistic 1D solutions of a planar working surface." Monthly Notices of the Royal Astronomical Society 507, no. 2 (2021): 1827–35. http://dx.doi.org/10.1093/mnras/stab2158.
Full text