Contents
Academic literature on the topic 'Équation Smoluchowski'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équation Smoluchowski.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Équation Smoluchowski"
Botet, Robert. "Formation d'agrégats fractals par collage d'amas en diffusion : simulations numériques et théorie." Paris 11, 1985. http://www.theses.fr/1985PA112289.
Full textNormand, Raoul. "Modèles déterministes et aléatoires d'agrégation limitée et phénomène de gélification." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00631419.
Full textAhadi, Mostafa. "Contribution à l'étude théorique de la relaxation de spin dans les systèmes bidimensionnels en présence d'un potentiel intermoléculaire." Paris 6, 1986. http://www.theses.fr/1986PA066156.
Full textCepeda, Eduardo. "Contribution à l'étude probabiliste et numérique des équations homogènes de coagulation - fragmentation." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00833475.
Full textGalanti, Marta. "Processus de diffusion et réaction dans des milieux complexes et encombrés." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2004/document.
Full textThe overall purpose of this thesis is to analyze diffusion processes and diffusion-reaction processes in different types of non-ideal conditions, and to identify to which extent these non-ideal conditions influence the mobility of particles and the rate of the reactions occurring between molecules. In the first part of the thesis we concentrate on the effects of macromolecular crowding on the mobility of the agents, providing therefore a description of various diffusion processes in densely populated media. All the processes are analyzed by modeling the dynamics of the single agents as microscopic stochastic processes that keep track of the macromolecular crowding. The second part of the thesis aims at characterizing the role of the environment’s geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) on the reaction between selected molecules. The Smoluchowski theory for diffusion influenced reactions is thus adapted to domains arbitrarily decorated with obstacles and reactive boundaries, and the stationary diffusion equation is explicitly solved through harmonic-based techniques. The explicit calculation of the reaction rate constant and the derivation of simple approximated formulas are used for investigating nano-technological applications and naturally occurring reactions
Tanré, Etienne. "Étude probabiliste des équations de SmoluchowskiSchéma d'Euler pour des fonctionnellesAmplitude du mouvement brownien avec dérive." Nancy 1, 2001. http://www.theses.fr/2001NAN10178.
Full textCepeda, Chiluisa Eduardo. "Contribution à l'étude probabiliste et numérique d'équations homogènes issues de la physique statistique : coagulation-fragmentation." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00952117.
Full text