Academic literature on the topic 'Équation Smoluchowski'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équation Smoluchowski.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Équation Smoluchowski"

1

Botet, Robert. "Formation d'agrégats fractals par collage d'amas en diffusion : simulations numériques et théorie." Paris 11, 1985. http://www.theses.fr/1985PA112289.

Full text
Abstract:
Explication et quantification des expériences ou une phase de particules dispersées dans un milieu fluide peut se condenser en amas de structure géométrique désordonnée très tenue : si l'agrégation se fait par collages successifs des amas en diffusion et s'ils sont rigides, les agrégats formes présentent une structure géométrique fractale autosimilaire, caractérisée par un exposant géométrique, la dimension fractale peu sensible à divers paramètres physiques. Étude de la cinétique du phénomène d'agrégat, bien décrite par des équations de cinétique classique.
APA, Harvard, Vancouver, ISO, and other styles
2

Normand, Raoul. "Modèles déterministes et aléatoires d'agrégation limitée et phénomène de gélification." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00631419.

Full text
Abstract:
Dans cette thèse, nous étudions des modèles d'agrégation limitée, qui modélisent la coalescence de particules ayant des "bras", c'est-à-dire un nombre fixé de liens potentiels. Une particule ne peut donc créer plus de liens que son nombre de bras. On s'intéresse en particulier à une variante de l'équation de Smoluchowski introduite par Jean Bertoin. Ce document comprend, outre l'introduction, trois chapitres. Le premier est dévolu à l'étude d'un modèle sexué de coagulation, où les particules ont des bras mâles et femelles et seuls des bras de sexes opposés peuvent se joindre. Ce modèle généralise et unifie ceux de Bertoin, dont on peut en particulier retrouver les résultats. Le second chapitre comprend un travail en collaboration avec Lorenzo Zambotti. On s'y intéresse à l'unicité des solutions d'équations de coagulation après gélification, en particulier l'équation de Smoluchowski avec noyau multiplicatif et l'équation d'agrégation limitée. En particulier, on donne des preuves rigoureuses de certaines heuristiques de la littérature physique, par exemple en calculant précisément le temps de gélification. Dans le cas d'agrégation limitée, on obtient aussi des formules particulièrement simples pour les concentrations limites. Pour expliquer celles-ci, on étudie dans le dernier chapitre un modèle microscopique pour l'équation de Smoluchowski d'agrégation limitée. Ceci est un travail commun avec Mathieu Merle. On parvient à décrire précisément l'état microscopique du système à tout temps et ainsi à retrouver les formules du second chapitre. Une caractéristique frappante de ce modèle est qu'il possède une propriété de criticalité auto-organisée.
APA, Harvard, Vancouver, ISO, and other styles
3

Ahadi, Mostafa. "Contribution à l'étude théorique de la relaxation de spin dans les systèmes bidimensionnels en présence d'un potentiel intermoléculaire." Paris 6, 1986. http://www.theses.fr/1986PA066156.

Full text
Abstract:
Présentation d'un formalisme très général de la relaxation de spin par suite de la diffusion relative des molécules dans un fluide 2d, au moyen d'une équation de Smoluchowski qui tient compte du potentiel intermoléculaire et qui est résolue par la technique des différences finies. Déduction des expressions des fonctions de corrélation, des densités spectrales et des vitesses de relaxation de spin associés à un mécanisme de relaxation dipolaire, dû à une diffusion moléculaire sur des supports bidimensionnels. Application à l'étude de la géométrie des phases lamellaires.
APA, Harvard, Vancouver, ISO, and other styles
4

Cepeda, Eduardo. "Contribution à l'étude probabiliste et numérique des équations homogènes de coagulation - fragmentation." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00833475.

Full text
Abstract:
Cette thèse est consacrée à l'étude de systèmes subissant des coagulations et fragmentations succesives. Dans le cas déterministe, on travaille avec des solutions mesures de l'équation de coagulation - multifragmentation. On étudie aussi la contrepartie stochastique de ces systèmes : les processus de coalescence - multifragmentation qui sont des processus de Markov à sauts. Dans un premier temps, on étudie le phénomène de coagulation seul. D'un côté, l'équation de Smoluchowski est une équation intégro-différentielle déterministe. D'un autre côté, on considère le processus stochastique connu sous le nom de Marcus-Lushnikov qui peut être regardé comme une approximation de la solution de l'équation de Smoluchowski. Nous étudions la vitesse de convergence par rapport à la distance de type Wassertein entre les mesures lorsque le nombre de particules tend vers l'infini. Notre étude est basée sur l'homogénéité du noyau de coagulation $K$. On complémente les calculs pour obtenir un résultat qui peut être interprété comme une généralisation de la Loi des Grands Nombres. Des conditions générales et suffisantes sur des mesures discrètes et continues $mu_0$ sont données pour qu'une suite de mesures $mu_0^n$ à support compact existe. On a donc trouvé un taux de convergence satisfaisant du processus Marcus-Lushnikov vers la solution de l'équation de Smoluchowski par rapport à la distance de type Wassertein égale à $1/sqrt{n}$. Dans un deuxième temps on présente les résultats des simulations ayant pour objectif de vérifier numériquement le taux de convergence déduit précédemment pour les noyaux de coagulation qui y sont étudiés. Finalement, on considère un modèle prenant en compte aussi un phénomène de fragmentation où un nombre infini de fragments à chaque dislocation est permis. Dans la première partie on considère le cas déterministe, dans la deuxième partie on étudie un processus stochastique qui peut être interprété comme la version macroscopique de ce modèle. D'abord, on considère l'équation intégro-partielle différentielle de coagulation - multifragmentation qui décrit l'évolution en temps de la concentration $\mu_t(x)$ de particules de masse $x>0$. Le noyau de coagulation $K$ est supposé satisfaire une propriété de $\lambda$-homogénéité pour $lambda in (0,1]$, le noyau de fragmentation $F$ est supposé borné et la mesure $beta$ sur l'ensemble de ratios est conservative. Lorsque le moment d'ordre $lambda$ de la condition initial $mu_0$ est fini, on est capable de montrer existence et unicité d'une solution mesure de l'équation de coagulation - multifragmentation. Ensuite, on considère la version stochastique de cette équation, le processus de coalescence - fragmentation est un processus de Markov càdlàg avec espace d'états l'ensemble de suites ordonnées et est défini par un générateur infinitésimal donné. On a utilisé une représentation Poissonienne de ce processus et la distance $\delta_{\lambda}$ entre deux processus. Grâce à cette méthode on est capable de construire une version finie de ce processus et de coupler deux processus démarrant d'états initiaux différents. Lorsque l'état initial possède un moment d'ordre $lambda$ fini, on prouve existence et unicité de ces processus comme la limite de suites de processus finis. Tout comme dans le cas déterministe, le noyau de coagulation $K$ est supposé satisfaire une propriété d'homogénéité. Les hypothèses concernant la mesure $\beta$ sont exactement les mêmes. D'un autre côté, le noyau de fragmentation $F$ est supposé borné sur tout compact dans $(0,\infty)$. Ce résultat est meilleur que celui du cas déterministe, cette amélioration est due à la propriété intrinsèque de masse totale non-explosive que possède un système avec un moment fini d'ordre $\lambda$.
APA, Harvard, Vancouver, ISO, and other styles
5

Galanti, Marta. "Processus de diffusion et réaction dans des milieux complexes et encombrés." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2004/document.

Full text
Abstract:
L'objectif général de cette thèse est d'analyser les processus de diffusion et les processus de réaction-diffusion dans plusieurs types de conditions non-idéales, et d'identifier dans quelle mesure ces conditions non idéales influencent la mobilité des particules et les réactions entre les molécules. Dans la première partie de la thèse, nous nous concentrons sur les effets de l'encombrement macromoléculaire sur la mobilité, ainsi élaborant une description des processus de diffusion dans des milieux densément peuplés. Tous les processus sont analysés à partir de la description microscopique du mouvement des agents individuels sous forme de marche aléatoire, tenant compte de l'espace occupé par les particules voisines. La deuxième partie de la thèse vise à caractériser le rôle de la géométrie de l'environnement et de la réactivité des corps qui y sont contenus sur la réaction entre des molécules sélectionnées. La théorie classique de Smoluchowski, formulée pour les réactions contrôlées par la diffusion dans un milieu dilué, est ainsi adaptée à des domaines arbitrairement décorés par des obstacles, dont certains réactifs, et l'équation stationnaire de diffusion est résolue avec des techniques d’analyse harmonique. Finalement, le calcul explicit de la constante de réaction et la dérivation des formules approximées sont utilisés pour étudier des applications biologiques et nano-technologiques
The overall purpose of this thesis is to analyze diffusion processes and diffusion-reaction processes in different types of non-ideal conditions, and to identify to which extent these non-ideal conditions influence the mobility of particles and the rate of the reactions occurring between molecules. In the first part of the thesis we concentrate on the effects of macromolecular crowding on the mobility of the agents, providing therefore a description of various diffusion processes in densely populated media. All the processes are analyzed by modeling the dynamics of the single agents as microscopic stochastic processes that keep track of the macromolecular crowding. The second part of the thesis aims at characterizing the role of the environment’s geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) on the reaction between selected molecules. The Smoluchowski theory for diffusion influenced reactions is thus adapted to domains arbitrarily decorated with obstacles and reactive boundaries, and the stationary diffusion equation is explicitly solved through harmonic-based techniques. The explicit calculation of the reaction rate constant and the derivation of simple approximated formulas are used for investigating nano-technological applications and naturally occurring reactions
APA, Harvard, Vancouver, ISO, and other styles
6

Tanré, Etienne. "Étude probabiliste des équations de SmoluchowskiSchéma d'Euler pour des fonctionnellesAmplitude du mouvement brownien avec dérive." Nancy 1, 2001. http://www.theses.fr/2001NAN10178.

Full text
Abstract:
Cette thèse est composée de trois parties indépendantes. La première partie est une étude probabiliste des équations de coagulation de Smoluchowski. Une représentation des solutions est établie grâce à des processus de branchement de type Galton-Watson. On montre par ailleurs une correspondance entre les noyaux additif et multiplicatif. Le comportement asymptotique des solutions après renormalisation est également étudié. Enfin, on construit un processus, solution d'une E. D. S. Non-linéaire gouvernée par un processus de Poisson, dont les marginales temporelles sont solutions des équations de Smoluchowski. Ce processus permet d'obtenir des approximations au moyen d'un système de particules. Dans la deuxième partie, nous estimons l'erreur commise en remplaçant une diffusion régulière par son approximation obtenue avec le schéma d'Euler pour calculer l'espérance de certaines fonctionnelles irrégulières de la trajectoire de cette diffusion. Nous obtenons notamment la vitesse optimale de convergence dans le cas de l'intégrale d'une fonction seulement mesurable et bornée de la trajectoire. Dans la troisième partie, nous étudions le processus de l'amplitude d'un mouvement brownien avec dérive non nulle. Nous donnons une décomposition des trajectoires en utilisant les extremums successifs en remontant le temps. Les résultats sont obtenus notamment à l'aide de techniques de grossissements de filtrations.
APA, Harvard, Vancouver, ISO, and other styles
7

Cepeda, Chiluisa Eduardo. "Contribution à l'étude probabiliste et numérique d'équations homogènes issues de la physique statistique : coagulation-fragmentation." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00952117.

Full text
Abstract:
Cette thèse est consacrée à l'étude de systèmes subissant des coagulations et fragmentations successives. Dans le cas déterministe, on travaille avec des solutions mesures de l'équation de coagulation - multifragmentation. On étudie aussi la contrepartie stochastique de ces systèmes : les processus de coalescence - multifragmentation qui sont des processus de Markov à sauts. Dans un premier temps, on étudie le phénomène de coagulation seul. D'un côté, l'équation de Smoluchowski est une équation intégro-différentielle déterministe. D'un autre côté, on considère le processus stochastique connu sous le nom de Marcus-Lushnikov qui peut être regardé comme une approximation de la solution de l'équation de Smoluchowski. Nous étudions la vitesse de convergence par rapport à la distance de type Wassertein $d_{lambda}$ entre les mesures lorsque le nombre de particules tend vers l'infini. Notre étude est basée sur l'homogénéité du noyau de coagulation $K$.On complémente les calculs pour obtenir un résultat qui peut être interprété comme une généralisation de la Loi des Grands Nombres. Des conditions générales et suffisantes sur des mesures discrètes et continues $mu_0$ sont données pour qu'une suite de mesures $mu_0^n$ à support compact existe. On a donc trouvé un taux de convergence satisfaisant du processus Marcus-Lushnikov vers la solution de l'équation de Smoluchowski par rapport à la distance de type Wassertein $d_{lambda}$ égale à $1/sqrt{n}$.Dans un deuxième temps on présente les résultats des simulations ayant pour objectif de vérifier numériquement le taux de convergence déduit précédemment pour les noyaux de coagulation qui y sont étudiés. Finalement, on considère un modèle prenant en compte aussi un phénomène de fragmentation où un nombre infini de fragments à chaque dislocation est permis. Dans la première partie on considère le cas déterministe, dans la deuxième partie on étudie un processus stochastique qui peut être interprété comme la version macroscopique de ce modèle. D'abord, on considère l'équation intégro-partielle différentielle de coagulation - multifragmentation qui décrit l'évolution en temps de la concentration $mu_t(x)$ de particules de masse $x>0$. Le noyau de coagulation $K$ est supposé satisfaire une propriété de $lambda$-homogénéité pour $lambdain(0,1]$, le noyau de fragmentation $F$ est supposé borné et la mesure $beta$ sur l'ensemble de ratios est conservative. Lorsque le moment d'ordre $lambda$ de la condition initial $mu_0$ est fini, on est capable de montrer existence et unicité d'une solution mesure de l'équation de coagulation - multifragmentation. Ensuite, on considère la version stochastique de cette équation, le processus de coalescence - fragmentation est un processus de Markov càdlàg avec espace d'états l'ensemble de suites ordonnées et est défini par un générateur infinitésimal donné. On a utilisé une représentation Poissonienne de ce processus et la distance $delta_{lambda}$ entre deux processus. Grâce à cette méthode on est capable de construire une version finie de ce processus et de coupler deux processus démarrant d'états initiaux différents. Lorsque l'état initial possède un moment d'ordre $lambda$ fini, on prouve existence et unicité de ces processus comme la limite de suites de processus finis. Tout comme dans le cas déterministe, le noyau de coagulation $K$ est supposé satisfaire une propriété d'homogénéité. Les hypothèses concernant la mesure $beta$ sont exactement les mêmes. D'un autre côté, le noyau de fragmentation $F$ est supposé borné sur tout compact dans $(0,infty)$. Ce résultat est meilleur que celui du cas déterministe, cette amélioration est due à la propriété intrinsèque de masse totale non-explosive que possède un système avec un moment fini d'ordre $lambda$
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography