Academic literature on the topic 'Equations d'évolution non locales en temps'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Equations d'évolution non locales en temps.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Equations d'évolution non locales en temps"

1

Nguyen, Thanh Nam. "Equations d'évolution non locales et problèmes de transition de phase." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00919784.

Full text
Abstract:
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle d
APA, Harvard, Vancouver, ISO, and other styles
2

Dannawi, Ihab. "Contributions aux équations d'évolutions non locales en espace-temps." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS007/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'étude de quatre équations d'évolution non-locales. Les solutions de ces quatre équations peuvent exploser en temps fini. Dans la théorie des équations d'évolution non-linéaires, une solution est qualifiée de globale si elle est définie pour tout temps positif. Au contraire, si une solution existe seulement sur un intervalle de temps [0; T) borné, elle est dite locale. Dans ce dernier cas et quand le temps maximal d'existence est relié à une alternative d'explosion, on dit aussi que la solution explose en temps fini. Dans un premier travail, nous cons
APA, Harvard, Vancouver, ISO, and other styles
3

Nabti, Abderrazak. "Non linear, non-local evolution equations : theory and application." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS032.

Full text
Abstract:
Cette thèse concerne l’étude qualitative (existence locale, existence globale, explosion en temps fini) de quelques équations de Schrödinger non-linéaires non-locales. Dans le cas où les solutions explosent en temps fini, l’estimation du temps maximal d’existence des solutions sera présentée. Le chapitre 1 concerne l’étude d’une équation de Schrödinger non-linéaire sur RN. On s’intéresse à l’existence locale d’une solution pour toute condition initiale donnée dans L2(RN). De plus, on montre que la norme-L2 de la solution explose en temps fini T < 1. Les démonstrations reposent essentielleme
APA, Harvard, Vancouver, ISO, and other styles
4

Belin, Théo. "On the free boundary of a forward-backward parabolic equation." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM040.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à un problème parabolique de type avance-rétrograde ainsi que la frontière libre qui en découle. L'équation modélise un changement de phase dirigé par un problème de Stefan couplé avec un opérateur d'hystérésis non local en temps. Notre étude s'occupe de questions théoriques et numériques soulevées par ce type d'équations non locales en temps, notamment autour de la frontière libre.Premièrement nous établissons une équivalence entre des inégalités d'entropie associées au problème avance-rétrograde et une formulation faible de l'opérateur d'hystérésis. Ce
APA, Harvard, Vancouver, ISO, and other styles
5

Nguyen, Thi Tuyen. "Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S089/document.

Full text
Abstract:
La motivation principale de cette thèse est l'étude du comportement en temps grand des solutions non-bornées d'équations de Hamilton-Jacobi visqueuses dans RN en présence d'un terme d'Ornstein-Uhlenbeck. Nous considérons la même question dans le cas d'une équation de Hamilton-Jacobi du premier ordre. Dans le premier cas, qui constitue le cœur de la thèse, nous généralisons les résultats de Fujita, Ishii et Loreti (2006) dans plusieurs directions. La première est de considérer des opérateurs de diffusion plus généraux en remplaçant le Laplacien par une matrice de diffusion quelconque. Nous cons
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!