To see the other types of publications on this topic, follow the link: Équations d'Hamilton Jacobi.

Dissertations / Theses on the topic 'Équations d'Hamilton Jacobi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Équations d'Hamilton Jacobi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Rouy, Elisabeth. "Approximation numérique des solutions de viscosité des équations d'Hamilton-Jacobi et exemple." Paris 9, 1992. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1992PA090010.

Full text
Abstract:
Cette thèse concerne l'approximation numérique des solutions de viscosité, telles qu'elles ont été définies par Michael Grain Crandall et Pierre-Louis Lions, des équations Hamilton-Jacobi du premier ordre qui sont des équations aux dérivées partielles non linéaires, ainsi que l'étude d'un exemple issu du traitement d'images, le shape-from-shading, qui consiste en la reconstruction d'un relief à trois dimensions à partir de la donnée d'une image en deux dimensions, d'une photographie par exemple. Le premier chapitre est une présentation succincte des solutions de viscosité des équations d’Hamilton-Jacobi et de quelques résultats d'existence et d'unicité. Le second chapitre décrit les différentes méthodes développées pour approcher ces solutions, et relève de l'analyse numérique. Le troisième chapitre, plus appliqué, a pour but d'expliquer comment, concrètement, on peut écrire un schéma d'approximation des solutions de viscosité. Enfin, l'exemple est étudié de façon précise (en reprenant les différents développements des premiers chapitres de la thèse): on montre comment le relief peut être interprété comme la solution de viscosité d'une équation d’Hamilton-Jacobi; on étudie les différentes formalisations possibles pour les bords de l'image afin de parvenir à des résultats d'existence et d'unicité satisfaisants. Puis un schéma est construit et applique à la reconstruction numérique de différentes images
APA, Harvard, Vancouver, ISO, and other styles
2

Costeseque, Guillaume. "Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d'Hamilton-Jacobi." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1081/document.

Full text
Abstract:
Ce travail porte sur la modélisation et la simulation du trafic routier sur un réseau. Modéliser le trafic sur une section homogène (c'est-à-dire sans entrée, ni sortie) trouve ses racines au milieu du XXème siècle et a généré une importante littérature depuis. Cependant, la prise en compte des discontinuités des réseaux comme les jonctions, n'a attiré l'attention du cercle scientifique que bien plus récemment. Pourtant, ces discontinuités sont les sources majeures des congestions, récurrentes ou non, qui dégradent la qualité de service des infrastructures. Ce travail se propose donc d'apporter un éclairage particulier sur cette question, tout en s'intéressant aux problèmes d'échelle et plus particulièrement au passage microscopique-macroscopique dans les modèles existants. La première partie de cette thèse est consacrée au lien existant entre les modèles de poursuite microscopiques et les modèles d'écoulement macroscopiques. Le passage asymptotique est assuré par une technique d'homogénéisation pour les équations d'Hamilton-Jacobi. Dans une deuxième partie, nous nous intéressons à la modélisation et à la simulation des flux de véhicules au travers d'une jonction. Le modèle macroscopique considéré est bâti autour des équations d'Hamilton-Jacobi. La troisième partie enfin, se concentre sur la recherche de solutions analytiques ou semi-analytiques, grâce à l'utilisation de formules de représentation permettant de résoudre les équations d'Hamilton-Jacobi sous de bonnes hypothèses. Nous nous intéressons également dans cette thèse, à la classe générique des modèles macroscopiques de trafic de second ordre, dits modèles GSOM
This work focuses on modeling and simulation of traffic flows on a network. Modeling road traffic on a homogeneous section takes its roots in the middle of XXth century and it has generated a substantial literature since then. However, taking into account discontinuities of the network such as junctions, has attracted the attention of the scientific circle more recently. However, these discontinuities are the major sources of traffic congestion, recurring or not, that basically degrades the level of service of road infrastructure. This work therefore aims to provide a unique perspective on this issue, while focusing on scale problems and more precisely on microscopic-macroscopic passage in existing models. The first part of this thesis is devoted to the relationship between microscopic car-following models and macroscopic continuous flow models. The asymptotic passage is based on a homogenization technique for Hamilton-Jacobi equations. In a second part, we focus on the modeling and simulation of vehicular traffic flow through a junction. The considered macroscopic model is built on Hamilton-Jacobi equations as well. Finally, the third part focuses on finding analytical or semi-analytical solutions, through representation formulas aiming to solve Hamilton-Jacobi equations under adequate assumptions. In this thesis, we are also interested in a generic class of second order macroscopic traffic flow models, the so-called GSOM models
APA, Harvard, Vancouver, ISO, and other styles
3

Hocquellet, Thierry. "Une technique eulerienne de maillage adaptatif controlé par des équations d'Hamilton Jacobi : application à la propagation d'ondes de détonation en milieu océanique." Bordeaux 1, 1990. http://www.theses.fr/1990BOR10631.

Full text
Abstract:
Dans le but de reduire les couts de calcul, nous presentons une methode de maillage adaptatif en configuration eulerienne. Dans un premier temps, la methode est appliquee aux equations scalaires, puis au systeme de la dynamique des gaz et enfin au systeme de la mecanique des milieux continus. Dans une seconde partie, nous testons la methode pour un probleme concret: la detonation sous-marine. Enfin nous presentons et etudions un schema numerique resolvant des equations d'hamilton-jacobi qui permettent de gerer le deplacement du maillage fin en deux dimensions d'espace
APA, Harvard, Vancouver, ISO, and other styles
4

Leblanc, Matthieu. "Sur-réplication et volatilité incertaine : options européennes, américaines et passeports." Paris 7, 2002. http://www.theses.fr/2002PA077105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Basco, Vincenzo. "Infinite Horizon Control Problems under State Constraints and Hamilton-Jacobi-Bellman equations." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS025.

Full text
Abstract:
Dans cette thèse, nous abordons des problèmes de contrôle optimal non autonomes à l’horizon infini soumis à des contraintes d’état. Des relations de sensibilité, partielle et totale, sont obtenues, en supposant que la fonction valeur associée soit localement Lipschitzienne par rapport à la variable d’état. Nous discutons également des conditions suffisantes pour la régularité Lipschitz de la fonction valeur. Nous nous concentrons sur les problèmes liés aux fonctions de coût admettant un facteur d’actualisation, avec la dynamique et le Lagrangien dépendant du temps. De plus, les contraintes d’état peuvent être non-bornés et peuvent avoir une frontière non lisse. La régularité Lipschitz est obtenue à partir d’estimations sur la distance d’une trajectoire donnée de l’ensemble de toutes les trajectoires viables, à condition que le taux d’actualisation soit suffisamment élevé. Nous étudions également l’existence et l’unicité des solutions faibles des équations non autonomes d’Hamilton-Jacobi-Bellman sur un domaine de la forme (0, ∞)×A. L’Hamiltonien est supposé être uniquement mesurable par rapport au temps et l’ensemble A est fermé. En présence de contraintes d’état, (en général) l’équation d’Hamilton-Jacobi-Bellman n’admet pas de solutions continues. Dans ce travail, nous proposons une notion de solution faible pour laquelle, sous une hypothèse de contrôlabilité appropriée, les théorèmes d’existence et d’unicité sont valides dans la classe des fonctions semi-continues inférieurement s’annulant à l’infini. Enfin, nous étudions une équation autonome d’Hamilton-Jacobi-Bellman sur un sous-ensemble compact, avec des conditions de Dirichlet sur la frontière. Dans ce contexte, nous obtenons des résultats de semi-concavité de l’unique solution de l’équation et les relations de sensibilité sous la forme d’inclusions différentielles. Nous étendons ainsi un résultat connu pour la distance sous-Riemannienne sous la condition d’Hörmander
In this thesis we address infinite horizon control problems subject to state constraints. Partial and full sensitivity relations are obtained for nonautonomous optimal control problems in this setting, assuming the associated value function to be locally Lipschitz in the state. We also discuss sufficient conditions for the Lipschitz regularity of the value function. We focus on problems with cost functionals admitting a discount factor and allow time dependent dynamics and Lagrangians. Furthermore, state constraints may be unbounded and may have a nonsmooth boundary. Lipschitz regularity is recov- ered as a consequence of estimates on the distance of a given trajectory from the set of all its viable (feasible) trajectories, provided the discount rate is sufficiently large. We investigate as well the existence and uniqueness of weak solutions of nonautonomous Hamilton-Jacobi-Bellman equations on the domain (0, ∞) × A. The Hamiltonian is assumed to be merely measurable in time and the set A is closed. When state constraints arise, the classical analysis of the Hamilton-Jacobi-Bellman equation lacks an appropriate notion of solution because continuous solutions may not exist. In this work, we propose a notion of weak solution for which, under a suitable controllability assumption, existence and uniqueness theorems are valid in the class of lower semicontinuous functions vanishing at infinity. Finally, we study an autonomous Hamilton-Jacobi-Bellman equation, with Dirichlet boundary conditions, on a compact subset. We give semiconcavity results on its (unique) solution and sensitivity relations in terms of differential inclusions, extending a known result for the point-to-point sub-Riemannian distance when the Hörmander condition holds true
APA, Harvard, Vancouver, ISO, and other styles
6

Sedrakyan, Hayk. "Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066681/document.

Full text
Abstract:
Cette thèse se compose de deux parties principales. Dans la première partie, le Chapitre 3 est consacré à l'étude du comportement limite d'un système contrôlé singulièrement perturbé avec deux variables d'état qui sont faiblement couplées. Afin de prouver notre résultat d'approximation, nous utilisons la méthode de moyennisation et un résultat récent sur le contrôle nonexpansif. La principale nouveauté de notre approche est de permettre la dynamique limite de dépendre de l'état initial du système rapide. Notons que dans la littérature, le comportement limite d'un tel système a été généralement traité dans des conditions qui garantissent que la limite est indépendante de l'état initial du système rapide. Dans le Chapitre 4, nous généralisons les résultats du Chapitre 3 supposant une condition de nonexpansivité plus générale. De plus, nous considérons un exemple ou la nouvelle condition de nonexpansivité est satisfaite, mais pas la condition de nonexpansivité du Chapitre 3. Dans la deuxième partie de la thèse, le Chapitre 5 porte sur les représentations stables des Hamiltoniens convexes associant à un Hamiltonien donné des fonctions correspondant au problème de Bolza en controle optimal. Dans le Chapitre 6 nous étudions également la stabilité des solutions des équations d'Hamilton-Jacobi-Bellman sous contraintes d'état en exploitant la stabilité des fonctions valeur d'une famille de problèmes de contrôle optimal de Bolza sous contraintes d'état. Nous montrons que sous des hypothèses appropriées, la fonction valeur est la solution unique d'équation d'Hamilton-Jacobi-Bellman et que les solutions sont stables par rapport à l'Hamiltonien et les contraintes d'état
This thesis consists of two main parts. In the first part, Chapter 3 is devoted to the investigation of the limit behavior of a singularly perturbed control system with two state variables which are weakly coupled. In order to prove our approximation result we use the so called averaging method and a recent result on nonexpansive control. The main novelty of our averaging approach lies in the fact that the limit dynamic may depend on the initial condition of the fast system. In the literature, the investigation of the limit behavior of such systems has been usually addressed under conditions that ensure that the limit dynamic is independent from the initial condition of the fast system. In Chapter 4, we generalise the results of Chapter 3 by considering a more general nonexpansivity condition. Moreover, we consider an example where the new nonexpansity condition is satisfied but the nonexpansivity condition of Chapter 3 does not hold true. The second part deals with Hamilton-Jacobi equations under state constraints. Chapter 5 focuses on the stable representation of convex Hamiltonians by functions describing a Bolza optimal control problem. In Chapter 6 we investigate stability of solutions of Hamilton-Jacobi-Bellman equations under state constraints by studying stability of value functions of a suitable family of Bolza optimal control problems under state constraints. We show that under suitable assumptions, the value function is a unique viscosity solution to Hamilton-Jacobi-Bellman equation and that solutions are stable with respect to Hamiltonians and state constraints
APA, Harvard, Vancouver, ISO, and other styles
7

Scarinci, Teresa. "Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066573.

Full text
Abstract:
Dans cette thèse nous étudions une classe d’équations de Hamilton-Jacobi-Bellman provenant de la théorie du contrôle optimal des équations différentielles ordinaires. Nous nous intéressons principalement à l’analyse de la sensibilité de la fonction valeur des problèmes de contrôle optimal associés à de telles équations de H-J-B. Dans la littérature, les relations de sensibilité fournissent une “mesure” de la robustesse des stratégies optimales par rapport aux variations de la variable d’état. Ces résultats sont des outils très importants pour le contrôle appliqué, parce qu’ils permettent d’étudier les effets que des approximations des données du système peuvent avoir sur les politiques optimales. Cette thèse est dédiée également à l’étude des problèmes de Mayer et de temps minimal. Nous supposons que la dynamique du problème soit une inclusion différentielle, afin de permettre aux données d’être non régulières et d’embrasser un ensemble plus grand d’applications. Néanmoins, cette tâche rend notre analyse plus difficile. La première contribution de cette étude est une extension de quelques résultats classiques de la théorie de la sensibilité au domaine des problèmes non paramétrées. Ces relations prennent la forme d’inclusions d’état adjoint, figurant dans le principe du maximum de Pontryagin, dans certains gradients généralisés de la fonction valeur évalués le long des trajectoires optimales. En deuxième lieu, nous développons des nouvelles relations de sensibilité impliquant des approximations du deuxième ordre de la fonction valeur. Cette analyse mène à de nouvelles applications concernant la propagation, tant ponctuel que local, de la régularité de la fonction valeur le long des trajectoires optimales. Nous proposons également des applications aux conditions d’optimalité
This dissertation investigates a class of Hamilton-Jacobi-Bellman equations arising in optimal control of O.D.E.. We mainly focus on the sensitivity analysis of the optimal value function associated with the underlying control problems. In the literature, sensitivity relations provide a measure of the robustness of optimal control strategies with respect to variations of the state variable. This is a central tool in applied control, since it allows to study the effects that approximations of the inputs of the system may produce on the optimal policies. In this thesis, we deal whit problems in the Mayer or in the minimum time form. We assume that the dynamic is described by a differential inclusion, in order to allow data to be nonsmooth and to embrace a large area of concrete applications. Nevertheless, this task makes our analysis more challenging. Our main contribution is twofold. We first extend some classical results on sensitivity analysis to the field of nonparameterized problems. These relations take the form of inclusions of the co-state, featuring in the Pontryagin maximum principle, into suitable gradients of the value function evaluated along optimal trajectories. Furthermore, we develop new second-order sensitivity relations involving suitable second order approximations of the optimal value function. Besides being of intrinsic interest, this analysis leads to new consequences regarding the propagation of both pointwise and local regularity of the optimal value functions along optimal trajectories. As applications, we also provide refined necessary optimality conditions for some class of differential inclusions
APA, Harvard, Vancouver, ISO, and other styles
8

Rondepierre, Aude. "Algorithmes hybrides pour le contrôle optimal des systèmes non linéaires." Phd thesis, Grenoble INPG, 2006. http://tel.archives-ouvertes.fr/tel-00112203.

Full text
Abstract:
Cette thèse est consacrée à la résolution des problèmes de contrôle non linéaires par des méthodes de calcul hybride. L'idée défendue est que la modélisation par les systèmes hybrides permet la résolution approchée des problèmes non linéaires sans connaissance a priori du comportement du système étudié. Dans un premier temps, nous nous intéressons à la modélisation des systèmes de contrôle non linéaires par une nouvelle classe de systèmes hybrides affines par morceaux. Un soin particulier est apporté à l'étude de l'erreur et de la convergence de l'approximation hybride. La deuxième partie est consacrée au problème de la contrôlabilité à l'origine des systèmes non linéaires. Nous nous intéressons tout d'abord à la quantification de l'erreur commise entre le domaine contrôlable non linéaire et son approximation hybride. Nous proposons ensuite une approche constructive pour le calcul du domaine contrôlable, permettant alors de réduire l'exploration des états discrets de l'automate hybride. La dernière partie est dédiée à la recherche de solutions optimales des problèmes de contrôle non linéaires et hybrides. Nous justifions tout d'abord la pertinence de la modélisation hybride à travers deux approches : le principe du maximum de Pontryagin et les solutions de viscosité des équations d'Hamilton-Jacobi-Bellman. Nous énonçons en particulier un principe du maximum hybride qui nous permet alors de déterminer la structure du contrôle optimal hybride. Ces trois parties répondent à un objectif principal : développer par le calcul hybride combinant analyse numérique et calcul formel, des outils mathématiques et algorithmiques efficaces pour l'étude de dynamiques contrôlées non linéaires.
APA, Harvard, Vancouver, ISO, and other styles
9

Bandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.

Full text
Abstract:
Dans le présent document on aborde trois divers thèmes liés au contrôle et au calcul stochastiques, qui s'appuient sur la notion d'équation différentielle stochastique rétrograde (EDSR) dirigée par une mesure aléatoire. Les trois premiers chapitres de la thèse traitent des problèmes de contrôle optimal pour différentes catégories de processus markoviens non-diffusifs, à horizon fini ou infini. Dans chaque cas, la fonction valeur, qui est l'unique solution d'une équation intégro-différentielle de Hamilton-Jacobi-Bellman (HJB), est représentée comme l'unique solution d'une EDSR appropriée. Dans le premier chapitre, nous contrôlons une classe de processus semi-markoviens à horizon fini; le deuxième chapitre est consacré au contrôle optimal de processus markoviens de saut pur, tandis qu'au troisième chapitre, nous examinons le cas de processus markoviens déterministes par morceaux (PDMPs) à horizon infini. Dans les deuxième et troisième chapitres les équations d'HJB associées au contrôle optimal sont complètement non-linéaires. Cette situation survient lorsque les lois des processus contrôlés ne sont pas absolument continues par rapport à la loi d'un processus donné. Etant donné ce caractère complètement non-linéaire, ces équations ne peuvent pas être représentées par des EDSRs classiques. Dans ce cadre, nous avons obtenu des formules de Feynman-Kac non-linéaires en généralisant la méthode de la randomisation du contrôle introduite par Kharroubi et Pham (2015) pour les diffusions. Ces techniques nous permettent de relier la fonction valeur du problème de contrôle à une EDSR dirigée par une mesure aléatoire, dont une composante de la solution subit une contrainte de signe. En plus, on démontre que la fonction valeur du problème de contrôle originel non dominé coïncide avec la fonction valeur d'un problème de contrôle dominé auxiliaire, exprimé en termes de changements de mesures équivalentes de probabilité. Dans le quatrième chapitre, nous étudions une équation différentielle stochastique rétrograde à horizon fini, dirigée par une mesure aléatoire à valeurs entières sur $R_+ times E$, o`u $E$ est un espace lusinien, avec compensateur de la forme $nu(dt, dx) = dA_t phi_t(dx)$. Le générateur de cette équation satisfait une condition de Lipschitz uniforme par rapport aux inconnues. Dans la littérature, l'existence et unicité pour des EDSRs dans ce cadre ont été établies seulement lorsque $A$ est continu ou déterministe. Nous fournissons un théorème d'existence et d'unicité même lorsque $A$ est un processus prévisible, non décroissant, continu à droite. Ce résultat s’applique par exemple, au cas du contrôle lié aux PDMPs. En effet, quand $mu$ est la mesure de saut d'un PDMP sur un domaine borné, $A$ est prévisible et discontinu. Enfin, dans les deux derniers chapitres de la thèse nous traitons le calcul stochastique pour des processus discontinus généraux. Dans le cinquième chapitre, nous développons le calcul stochastique via régularisations des processus à sauts qui ne sont pas nécessairement des semimartingales. En particulier nous poursuivons l'étude des processus dénommés de Dirichlet faibles, dans le cadre discontinu. Un tel processus $X$ est la somme d'une martingale locale et d'un processus adapté $A$ tel que $[N, A] = 0$, pour toute martingale locale continue $N$. Pour une fonction $u: [0, T] times R rightarrow R$ de classe $C^{0,1}$ (ou parfois moins), on exprime un développement de $u(t, X_t)$, dans l'esprit d'une généralisation du lemme d'Itô, lequel vaut lorsque $u$ est de classe $C^{1,2}$. Le calcul est appliqué dans le sixième chapitre à la théorie des EDSRs dirigées par des mesures aléatoires. Dans de nombreuses situations, lorsque le processus sous-jacent $X$ est une semimartingale spéciale, ou plus généralement, un processus de Dirichlet spécial faible, nous identifions les solutions des EDSRs considérées via le processus $X$ et la solution $u$ d’une EDP intégro-différentielle associée
In the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
APA, Harvard, Vancouver, ISO, and other styles
10

Laurent-Brouty, Nicolas. "Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4056.

Full text
Abstract:
Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application des modèles macroscopiques en milieu urbain. Les zones urbaines sont désormais régulièrement confrontées à des niveaux de congestion record et à des épisodes de pollution atmosphérique causés par le trafic routier. L’objectif de cette thèse est alors de développer des modèles de trafic qui représentent de manière réaliste l’évolution des véhicules en milieu urbain. Dans un premier temps, nous considérons le modèle Aw-Rascle-Zhang avec relaxation. Nous construisons une suite de solutions approchées à l'aide de la méthode de suivi des fronts (wave-front tracking en anglais) couplée à une méthode de décomposition temporelle (splitting en anglais) en référentiel Lagrangien. Pour chaque valeur du paramètre de relaxation, nous montrons que cette suite converge vers une solution faible et entropique du système pour une donnée initiale à variation bornée. Par la suite, nous calculons une borne supérieure sur la décroissance des ondes positives. Nous démontrons que les solutions du système convergent vers une solution faible du modèle Lighthill-Whitham-Richards (LWR), c'est à dire vers la solution de la loi de conservation scalaire, lorsque le paramètre de relaxation tend vers zéro. Nous concluons par une discussion sur le caractère entropique de cette solution faible du modèle LWR. Dans un second temps, nous proposons un nouveau modèle macroscopique de trafic routier qui préserve le caractère borné de l'accélération des véhicules. Notre modèle couple une Équation aux Dérivées Partielles (EDP), la loi de conservation scalaire, à plusieurs Équations aux Dérivées Ordinaires (EDO), décrivant la trajectoire de véhicules accélérant à taux constant. Ces véhicules sont traités dans le modèle comme des goulots d'étranglement mobiles. Nous proposons la construction de solutions approchées avec un algorithme de suivi des fronts d'ondes et prouvons l'existence et l'unicité de la solution pour le problème de Cauchy associé à une donnée initiale constante par morceaux. Nous produisons ensuite des simulations numériques de notre modèle dans différentes situations urbaines, allant de la résolution du problème de Riemann à la simulation d'un axe urbain comportant plusieurs feux de signalisation. Enfin nous comparons ces simulations aux solutions du modèle LWR appliqué aux mêmes situations. Pour terminer, nous proposons un nouveau modèle macroscopique de trafic routier avec des stockages tampon (buffers en anglais) aux intersections afin de résoudre le modèle LWR sur des réseaux routiers. Ce modèle utilise des buffers de dimension finie, qui garantissent la propagation de la congestion au sein du réseau. Il comporte également des fonctions de répartition de véhicules aux jonctions qui sont dépendantes du temps, et peuvent dès lors être contrôlées au cours du temps. La dynamique du trafic est d'abord établie à l'aide des lois de conservation hyperboliques, conformément au modèle LWR, puis retranscrite dans une formulation de Hamilton-Jacobi. Nous prouvons alors l'existence, l'unicité et la stabilité des solutions vis à vis des données initiales en résolvant un problème de point fixe dans un espace de Banach approprié. La propriété de stabilité garantit que la solution du problème peut être contrôlée et optimisée en modifiant les fonctions de répartition des véhicules aux jonctions. Cela représente une avancée dans la résolution du problème d'assignation dynamique du trafic routier (Dynamic Traffic Assignment en anglais). Pour finir, nous détaillons l'application du modèle à un réseau routier réaliste comportant plusieurs intersections et des routes de longueur finie
This thesis is devoted to the modeling of traffic flow using hyperbolic conservation laws, with a specific focus on urban applications. Urban areas are today facing severe episodes of air pollution and increasing congestion due to traffic. The objective is to overcome some of the current limitations of macroscopic traffic flow models in urban situations. We first study the seminal Aw-Rascle-Zhang model with relaxation. We prove well-posedness of the model using wave-front tracking approximations and splitting technique in a Lagrangian setting. Besides, we provide an estimate on the decay of positive waves. We then show that the solutions of the Aw-Rascle-Zhang system with relaxation converge to a weak solution of the LWR model when the relaxation parameter goes to zero. Finally, we propose a discussion on the entropy aspect of this weak solution of the LWR model. We then propose a new macroscopic traffic flow model accounting for the boundedness of traffic acceleration, which is required for physical realism. Our model is built on the coupling between the scalar conservation law accounting for the conservation of vehicles and a number of ordinary differential equations describing the trajectories of accelerating vehicles, which we treat as moving constraints. We detail a wave-front tracking algorithm to construct approximate solutions of the model, with general flux functions and show existence of solutions to the Cauchy problem for a piecewise constant initial datum. Finally, we provide numerical simulations of the model in different urban situations, from a single Riemann problem to sequences of traffic lights, and confront the results to numerical simulations of the LWR model. Finally, we introduce a new macroscopic traffic flow model with buffers on road networks. This model features buffers of finite size, enabling backward propagation of congestion on the network, and time-dependent routing functions at the junctions. The dynamics are first defined on the level of conservation laws, and then transformed in an Hamilton-Jacobi formulation. We prove existence, uniqueness and stability of the solutions with respect to the routing ratios and initial datum using a fixed-point problem in a proper Banach space. Thanks to stability, the model provides a controllable framework, using routing ratios as control parameters. This represents an advance towards solving the Dynamic Traffic Assignment (DTA) problem. In the end we detail how this framework applies to a classical road network with several intersections and finite-length links
APA, Harvard, Vancouver, ISO, and other styles
11

Wahbi, Wassim. "Contrôle stochastique sur les réseaux." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED072.

Full text
Abstract:
Cette thèse se décompose en trois grandes parties, qui traitent des EDP quasi linéaires paraboliques sur une jonction, des diffusions stochastiques sur une jonction, et du contrôle optimal également sur une jonction, avec contrôle au point de jonction. Nous commençons au premier Chapitre par introduire une nouvelle classe d'EDP non dégénérée et quasi linéaire, satisfaisant une condition de Neumann (ou de Kirchoff) non linéaire et non dynamique au point de jonction. Nous prouvons l'existence d'une solution classique, ainsi que son unicité. L'une des motivations portant sur l'étude de ce type d'EDP, est de faire le lien avec la théorie du contrôle optimale sur les jonctions, et de caractériser la fonction valeur de ce type de problème à l'aide des équations d'Hamilton Jacobi Bellman. Ainsi, au Chapitre suivant, nous formulons une preuve donnant l'existence d'une diffusion sur une jonction. Ce processus admet un temps local, dont l'existence et la variation quadratique dépendent essentiellement de l'hypothèse d'ellipticité des termes du second ordre au point de jonction. Nous formulerons une formule d'Itô pour ce processus. Ainsi, grâce aux résultats de ces deux Chapitres, nous formulerons dont le dernier Chapitre un problème de contrôle stochastique sur les jonctions, avec contrôle au point de jonction. L'espace des contrôles est celui des mesures de Probabilités résolvant un problème martingale. Nous prouvons la compacité de l'espace des contrôles admissibles, ainsi que le principe de la programmation dynamique
This thesis consists of three parts which deal with quasi linear parabolic PDE on a junction, stochastic diffusion on a junction and stochastic control on a junction with control at the junction point. We begin in the first Chapter by introducing and studying a new class of non degenerate quasi linear parabolic PDE on a junction, satisfying a Neumann (or Kirchoff) non linear and non dynamical condition at the junction point. We prove the existence and the uniqueness of a classical solution. The main motivation of studying this new mathematical object is the analysis of stochastic control problems with control at the junction point, and the characterization of the value function of the problem in terms of Hamilton Jacobi Bellman equations. For this end, in the second Chapter we give a proof of the existence of a diffusion on a junction. The process is characterized by its local time at the junction point, whose quadratic approximation is centrally related to the ellipticty assumption of the second order terms around the junction point.We then provide an It's formula for this process. Thanks to the previous results, in the last Chapter we study a problem of stochastic control on a junction, with control at the junction point. The set of controls is the set of the probability measures (admissible rules) satisfying a martingale problem. We prove the compactness of the admissible rules and the dynamic programming principle
APA, Harvard, Vancouver, ISO, and other styles
12

Le, Guyader Carole. "Imagerie Mathématique: segmentation sous contraintes géométriques ~ Théorie et Applications." Phd thesis, INSA de Rouen, 2004. http://tel.archives-ouvertes.fr/tel-00009036.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à des problèmes de segmentation d'images sous contraintes géométriques. Cette problématique a émergé suite à l'analyse de plusieurs méthodes classiques de détection de contours qui a été faite. En effet, ces méthodes classiques (Modèles déformables, contours actifs géodésiques, 'fast marching', etc...) se révèlent caduques quand des données de l'image sont manquantes ou de mauvaise qualité. En imagerie médicale par exemple, des phénomènes d'occlusion peuvent se produire : des organes peuvent se masquer en partie l'un l'autre (ex du foie). Par ailleurs, deux objets qui se jouxtent peuvent posséder des textures intrinsèques homogènes si bien qu'il est difficile d'identifier clairement l'interface entre ces deux objets. La définition classique d'un contour qui est caractérisé comme étant le lieu des points connexes présentant une forte transition de luminosité ne s'applique donc plus. Enfin, dans certains contextes d'étude, comme en géophysique, on peut disposer en plus des doneées d'imagerie, de données géométriques à intégrer au processus de segmentation.

Pour pallier ces difficultés, nous proposons ici des modèles de segmentation intégrant des contraintes géométriques et satisfaisant les critères classiques de détection avec en particulier la régularité sur le contour que cela implique.
APA, Harvard, Vancouver, ISO, and other styles
13

Le, Guyader Carole. "Imagerie mathématique : segmentation sous contraintes géométriques : théorie et applications." Phd thesis, Rouen, INSA, 2004. http://www.theses.fr/2004ISAM0016.

Full text
Abstract:
Dans cette thèse, nous nous sommes intéressés à des problèmes de segmentation d'images sous contraintes géométriques. Cette problématique a émergé suite à l'analyse de plusieurs méthodes classiques de détection de contours qui a été faite. En effet, ces méthodes classiques (Modèles déformables, contours actifs géodésiques, "fast marching", etc. . . ) se révèlent caduques quand des données de l'image sont manquantes ou de mauvaise qualité. En imagerie médicale par exemple, des phénomènes d'occlusion peuvent se produire : des organes peuvent se masquer en partie l'un l'autre (ex. Du foie). Par ailleurs, deux objets qui se jouxtent peuvent posséder des textures intrinsèques homogènes si bien qu'il est difficile d'identifier clairement l'interface entre ces deux objets. La définition classique d'un contour qui est caractérisé comme étant le lieu des points connexes présentant une forte transition de luminosité ne s'applique donc plus. Enfin, dans certains contextes d'étude, comme en géophysique, on peut disposer en plus des données d'imagerie, de données géométriques à intégrer au processus de segmentation. Pour pallier ces difficultés, nous avons développé des modèles de segmentation intégrant des contraintes géométriques et satisfaisant les critères classiques de détection avec en particulier la régularité sur le contour que cela implique. Deux méthodes ont été développées. Dans la première (qui permet d'établir un problème d'interpolation), on s'attache à définir un problème de minimisation de fonctionnelle sur un espace de Hilbert. L'introduction des contraintes géométriques conduit à résoudre ce problème sur un sous-espace vectoriel fermé d'un espace de Hilbert. L'utilisation des multiplicateurs de Lagrange nous permet d'établir la formulation variationnelle du problème qui est ensuite discrétisé à l'aide d'une méthode différences finies pour la discrétisation temporelle et via une méthode e��léments finis pour la discrétisation spatiale. Des applications numériques viennent se greffer sur cette première partie. Un second modèle a été élaboré et s'appuie sur la recherche d'une courbe géodésique dans un espace de Riemann dont la métrique est liée à la fois au contenu de l'image et aux contraintes géométriques. Il s'agit ici d'un problème d'approximation et non plus d'interpolation. Un problème parabolique avec conditions au bord de type Neumann homogènes est établi. L'existence et l'unicité de la solution au sens de la viscosité est démontrée. La discrétisation est réalisée via un schéma AOS qui présente l'intérêt d'être inconditionnellement stable. Des applications sur des données réelles attestent de la bonne efficacité de l'algorithme.
APA, Harvard, Vancouver, ISO, and other styles
14

Bianchi, Granato Giovanni. "Optimal power Management of Hybrid Vehicles." Palaiseau, Ecole polytechnique, 2012. https://theses.hal.science/docs/00/78/81/60/PDF/_GRANATO_print_.pdf.

Full text
Abstract:
L'objectif de ce travail consiste à appliquer des techniques de contrôle optimal pour améliorer la performance des lois de gestion d'énergie. Plus précisément, les techniques étudiées sont les solutions de viscosité de l'équation de Hamilton-Jacobi, des méthodes level-set pour l'étude de l'atteignabilité, la programmation dynamique stochastique, la programmation dynamique stochastique duale et les contraintes en probabilité. En premier lieu, ce document débute avec la présentation des outils techniques et modèles nécessaires à l'étude de l'optimisation des lois de gestion d'énergie au sein des véhicules hybrides. En deuxième lieu, nous regardons la synthèse des lois de gestion d'énergie en prenant compte des incertitudes dans le profil de vitesse du véhicule. Dans un premier moment, cette étude porte sur l'utilisation de la programmation dynamique stochastique. Dans un second moment, la programmation dynamique stochastique duale est analysée. Ensuite, nous introduisons une formulation du problème de contrôle optimal avec des contraintes en probabilités, visant la synthèse de lois plus flexibles. En troisième lieu, des résultats théoriques sur l'étude de l'atteignabilité des systèmes hybrides sont démontrés. L'ensemble des états atteignables est caractérisé par une fonction valeur. Nous démontrons ensuite que cette fonction valeur est l'unique solution d'un système d'inégalités quasi-variationnelles dans le sens de la viscosité. Aussi, nous montrons la convergence d'une classe de schémas numériques permettant le calcul de cette fonction valeur. Visant à approfondir l'étude sur l'atteignabilité, nous nous intéressons à une formulation de la dynamique hybride en temps discret, ce qui amène à l'utilisation d'un algorithme directement basé sur la programmation dynamique pour caractériser la fonction valeur
The purpose of the this work is to apply optimal control techniques to enhance the performance of the power management of hybrid vehicles. More precisely, the techniques concerned are viscosity solutions of Hamilton-Jacobi equations, level set methods in reachability analysis, stochastic dynamic programming, stochastic dual dynamic programming and chance constrained optimal control. This document starts by presenting the necessary technical background and models for the study of optimal power management of hybrid vehicles. The synthesis of efficient power management strategies for hybrid vehicles accounting for uncertainty in the vehicle speed is studied next. This is done via a stochastic dynamic algorithm, at a first time, and then by a stochastic dual dynamic programming algorithm. In addition, we introduce a chance constrained optimal control problem that can be used to synthesize more flexible optimal control strategies. We detail a dynamic programming principle in a form that can be readily used for the numerical synthesis of optimal feedback using a dynamic programming algorithm. Later, theoretical results regarding the reachability analysis of hybrid systems are obtained. The reachability set of a continuous-time hybrid system is characterized by a value function via a level set approach. Furthermore, we show that the value function of a hybrid optimal control problem is the unique solution of a system of quasi-variational inequalities in the viscosity sense. Then, we prove the convergence of a class of numerical schemes for the computation of the value function. As a further step in the reachability analysis, we study of the discrete-time dynamical system and the discrete-time optimal control problem for the reachability analysis of hybrid systems. Here, the focus is on a discrete-time modeling of the hybrid system, which leads to dynamic programming principle, which can be used to characterize the value function. Lastly, we describe the construction of a stochastic model of the speed profile for electric vehicles
APA, Harvard, Vancouver, ISO, and other styles
15

Granato, Giovanni. "Optimisation de Lois de Gestion Énergétiques des Véhicules Hybrides." Phd thesis, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00788160.

Full text
Abstract:
L'objectif de ce travail consiste à appliquer des techniques de contrôle optimal pour améliorer la performance des lois de gestion d'énergie. Plus précisément, les techniques étudiées sont les solutions de viscosité de l'équation de Hamilton-Jacobi, des méthodes level-set pour l'étude de l'atteignabilité, la programmation dynamique stochastique, la programmation dynamique stochastique duale et les contraintes en probabilité. En premier lieu, ce document débute avec la présentation des outils techniques et modèles nécessaires à l'étude de l'optimisation des lois de gestion d'énergie au sein des véhicules hybrides. En deuxième lieu, nous regardons la synthèse des lois de gestion d'énergie en prenant compte des incertitudes dans le profil de vitesse du véhicule. Dans un premier moment, cette étude porte sur l'utilisation de la programmation dynamique stochastique. Dans un second moment, la programmation dynamique stochastique duale est analysée. Ensuite, nous introduisons une formulation du problème de contrôle optimal avec des contraintes en probabilités, visant la synthèse de lois plus flexibles. En troisième lieu, des résultats théoriques sur l'étude de l'atteignabilité des systèmes hybrides sont démontrés. L'ensemble des états atteignables est caractérisé par une fonction valeur. Nous démontrons ensuite que cette fonction valeur est l'unique solution d'un système d'inégalités quasi-variationnelles dans le sens de la viscosité. Aussi, nous montrons la convergence d'une classe de schémas numériques permettant le calcul de cette fonction valeur. Visant à approfondir l'étude sur l'atteignabilité, nous nous intéressons à une formulation de la dynamique hybride en temps discret, ce qui amène à l'utilisation d'un algorithme directement basé sur la programmation dynamique pour caractériser la fonction valeur. Finalement, nous
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography