Dissertations / Theses on the topic 'Équations de convection-diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 dissertations / theses for your research on the topic 'Équations de convection-diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Marzouki, Zerouali Maryem. "Quelques méthodes de résolution des équations de convection-diffusion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25673.pdf.
Full textFraisse, Mélanie. "Quelques aspects mathématiques d'un modèle réduit de réaction-diffusion avec convection." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1300/.
Full textIn this thesis, we study the solutions of a Burgers-Boussinesq system in one dimension in space. This model was proposed by P. Constantin, J. -M. Roquejoffre, L. Ryzhik et N. Vladimirova (CRRV) to study compressible effects in flame models. We precise in this thesis some points of the study of (CRRV) that have been studied only from a formal asymptotic point of view. A first part studies a special case of self-similar solutions. We prove precise asymptotic results and the uniqueness of the solution. In a second part, we investigate the non-reactive Burgers-Boussinesq model, in large time. We highlight a large range of behaviours. A third part proves the existence of travelling waves in a large range of parameters
Dauphin-Meunier, A. "Contribution au développement de logiciels d'intégration numérique des équations de transport stationnaires par diffusion et diffusion-convection." Doctoral thesis, Universite Libre de Bruxelles, 1987. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213474.
Full textTexier, Picard Rozenn. "Problèmes de réaction-diffusion avec convection : une étude mathématique et numérique." Lyon 1, 2002. http://tel.archives-ouvertes.fr/docs/00/04/50/62/PDF/tel-00002038.pdf.
Full textSerghini, Mounim Abdellatif. "Méthodes d'éléments finis mixtes hybrides, application aux équations de convection-diffusion et de Navier-Stokes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ52259.pdf.
Full textMichel, Anthony. "Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires." Phd thesis, Université de Provence - Aix-Marseille I, 2001. http://tel.archives-ouvertes.fr/tel-00002553.
Full textBelk, Michaël. "Stabilité structurelle de solutions invariantes par translation : application à des problèmes de réaction-diffusion avec convection." Lyon 1, 2003. http://www.theses.fr/2003LYO10260.
Full textJasor, Marie-Josée. "Perturbations singulières d'équations non linéaires de diffusion-convection, modèlisant des écoulements diphasiques incompressibles en milieu poreux." Pau, 1992. http://www.theses.fr/1992PAUU3013.
Full textTexier-Picard, Rozenn. "Problèmes de réaction-diffusion avec convection : Une étude mathématique et numérique." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00002038.
Full textAtallah, Nabil. "Analyse des méthodes itératives par points pour les problèmes de diffusion-convection approchés par les schémas compacts." Toulouse 3, 2002. http://www.theses.fr/2002TOU30010.
Full textDucrot, Arnaud. "Problèmes élliptiques dans des domaines non bornés et propagation d'ondes de réaction-diffusion." Ecully, Ecole centrale de Lyon, 2004. http://www.theses.fr/2004ECDL0025.
Full textIn this work we theorically and numerically study reaction-diffusion and reactiondiffusion-convection problems. The theorical part is interested in multi-dimensional travelling waves solutions for reaction-diffuion systems with linearly dependant reaction terms. We develop new approach to study such systems with non Fredholm operators. This approach essentially concists in a reformulation of the equations with an integro-differential operator. It allows us to derive sorne existence results. The numerical part is interested in the influence of natural convection on the ignition of a reaction front. We study numerically study two models based on reaction-diffusionconvection systems. It is shown that natural convection can influence the place where a frontal polymerization starts together with critical conditions of ignition
Di, Pietro Daniele Antonio. "Méthodes non conformes pour des équations aux dérivées partielles avec diffusion." Habilitation à diriger des recherches, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00550230.
Full textPardo, Olivier. "Contribution à l'étude et à la modélisation d'un modèle de convection-diffusion dégénéré. : Application à l'étude du comportement migratoire des civelles dans l'Estuaire de l'Adour." Pau, 2002. http://www.theses.fr/2002PAUU3020.
Full textThe management of the sea resources is one of the major stakes of the 21st century. The work described in this thesis deals with the study of the migratory behaviour of eels glass in the estuary of the Adour river. The model, wich consists of a degenerated convection-diffusion partial defferential equation in 2 dimensions, takes into account the influence of dynamic tide cycles (Saint Venant's system of degenerated non linear equations) and the intensity of light in the water column. First, applying the theory of topological degrees, we have showed the existence of stationary solutions within the hydrodynamic model. Then, by injecting these solutions into our migratory model, we have established the existence of these solutions by applying the semigroups theory, the caracteristics method and J. -L. Lions theorem. Positivity and a priori estimates of biological densities have been determined beforehand. Secondly, we have proceeded to a numerical analysis. Thanks to alternate derections and the fractional steps method in a real 30 km long area, with variable water levels (actual bathmetry and influence of the tides) the results we have obtained do match, from a qualitative vewpoint, the results expected
Martin, Véronique. "Méthodes de décomposition de domaine de type relaxation d'ondes pour des équations de l'océanographie." Phd thesis, Université Paris-Nord - Paris XIII, 2003. http://tel.archives-ouvertes.fr/tel-00583196.
Full textTaik, Ahmed. "Modélisation et analyse asymptotique des fronts de réaction." Lyon 1, 1995. http://www.theses.fr/1995LYO10104.
Full textWakrim, Mohamed. "Analyse numérique des équations de Navier-Stokes incompressibles et simulations dans des domaines axisymétriques." Saint-Etienne, 1993. http://www.theses.fr/1993STET4015.
Full textVidalain, Guillaume. "Modélisation des phénomènes convectifs lors du changement de phase solide-liquide par utilisation de l'équation de diffusion de la chaleur et d'une forme modifiée de la conductivité." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24407/24407.pdf.
Full textPARDO, OLIVIER. "Contribution à l'étude et à la modélisation d'un modèle de convection-diffusion dégénéré : application à l'étude du comportement migratoire des civelles dans l'estuaire de l'Adour." Phd thesis, Université de Pau et des Pays de l'Adour, 2002. http://tel.archives-ouvertes.fr/tel-00002291.
Full textChalhoub, Nancy. "Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis." Phd thesis, Université Paris-Est, 2012. http://pastel.archives-ouvertes.fr/pastel-00794392.
Full textVohralík, Martin. "Méthodes numériques pour les équations elliptiques et paraboliques non linéaires : application à des problèmes d'écoulement en milieux poreux et fracturés." Paris 11, 2004. https://tel.archives-ouvertes.fr/tel-00008451.
Full textWe study numerical methods for the simulation of flow and contaminant transport in porous and fractured media. In Chapter 1 we propose a scheme allowing for efficient, robust, conservative, and stable discretizations of nonlinear degenerate parabolic convection–reaction–diffusion equations on unstructured grids in two or three space dimensions. We discretize the generally anisotropic diffusion term by means of the nonconforming finite element method and the other terms by means of the finite volume method and show the existence and uniqueness of a discrete solution and its convergence to a weak solution. We finally propose a version of this scheme for nonmatching grids and apply it to real simulations. In Chapter 2 we present a direct proof of the discrete Poincaré–Friedrichs inequalities and indicate optimal values of the constants in these inequalities. The results are important in the analysis of nonconforming numerical methods. In Chapter 3 we show that the lowest-order Raviart–Thomas mixed finite element method is equivalent to a particular multi-point finite volume scheme. This approach allows significant reduction of the computational time of the mixed finite element method without any loss of its high precision, which is confirmed by numerical experiments. Finally, in Chapter 4 we propose a version of the lowest-order Raviart–Thomas mixed finite element method for flow simulation in fracture networks that perturb rock massifs, prove that it is well posed, and study its relation to the nonconforming finite element method
Muller, Nicolas. "Études mathématiques et numériques de problèmes non-linéaires et non-locaux issus de la biologie." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05S016.
Full textWe investigate the influence of the environment on the behaviour of a cell in two different situations. In each of these situations, there is a non-linear coupling of the drift due to a non-local term coming from the boundary of the domain.The first part focuses on the modeling of cell polarisation during the mating of yeast. We use a convection-diffusion model with a non-linear and non-local drift. This model is similar to the Keller-Segel model, the source of the attractive potential comes from the boundary of the domain. We study the long time behaviour of the one-dimensional case by using logarithmic Sobolev and HWI inequalities.By relying on a heuristic, we reduce the study of our model in the two-dimensional case to the boundary of the domain. We validate the model with data provided by M. Piel. This validation requires adding a dynamical noise in our numerical simulations. We study then the cell discussion between yeast of opposite gender. In the second part we study the immune response in atherosclerosis. We build and then develop an age structured model in order to describe the inflammation. For specific parameters, we investigate the long time behaviour of our system by using a Lyapunov functional
El, Hamidi Abdallah. "Analyse asymptotique et simulation numérique de problèmes de combustion." Lyon 1, 1996. http://www.theses.fr/1996LYO10022.
Full textElhajjar, Bilal. "Sur le couplage thermodiffusion-convection : séparation et instabilités induites par de nouvelles configurations géométriques et thermiques." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/348/.
Full textIn the present work, the coupling between thermo-diffusion and convection in new thermal and geometrical configurations was studied in order to improve the thermo-gravitational separation of mixture components. The thermo-gravitational separation phenomenon has been essentially studied in vertical columns subjected to horizontal temperature gradient. It was shown in this study that it is possible to obtain an equivalent level of separation in the Rayleigh-Bénard configuration, in a horizontal cell subjected to a thermal gradient with a linear horizontal component and constant vertical component and in inclined thermo-gravitational cell. High frequency and small amplitude vibrations enabled us to increase the level of separation in the Rayleigh-Bénard configuration for a larger range of physical parameter variations. The analytical, numerical and experimental results are in good agreement
El, Alaoui Lakhnati Linda. "Analyse d'esrreur a priori et a posteriori pour des méthodes d'éléments finis mixtes non-conformes." Marne-la-vallée, ENPC, 2005. https://pastel.archives-ouvertes.fr/pastel-00001267.
Full textEl, Alaoui Lakhnati Linda. "Analyse d'erreur a priori et a posteriori pour des méthodes d'éléments finis mixtes non-conformes." Phd thesis, Ecole des Ponts ParisTech, 2005. http://pastel.archives-ouvertes.fr/pastel-00001267.
Full textGhilani, Mustapha. "Simulation numérique de flammes planes stationnaires avec chimie complexe." Paris 11, 1987. http://www.theses.fr/1987PA112325.
Full textEtchegaray, Christèle. "Modélisation mathématique et numérique de la migration cellulaire." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS428/document.
Full textCollective or individual cell displacements are essential in fundamental physiological processes (immune response, embryogenesis) as well as in pathological developments (tumor metastasis). The intracellular processes responsible for cell motion have a complex self-organized activity spanning different time and space scales. Highlighting general principles of migration is therefore a challenging task.In a first part, we build stochastic particular models of migration. To do so, we describe key intracellular processes as discrete in space by using stochastic population models. Then, by a renormalization in large population, infinitesimal size and accelerated dynamics, we obtain continuous stochastic equations for the dynamics of interest, allowing a relation between the intracellular dynamics and the macroscopic displacement.First, we study the case of a leukocyte carried by the blood flow and developing adhesive bonds with the artery wall, until an eventual stop. The binding dynamics is described by a stochastic Birth and Death with Immigration process. These bonds correspond to resistive forces to the motion. We obtain explicitly the mean stopping time of the cell.Then, we study the case of cell crawling, that happens by the formation of protrusions on the cell edge, that grow on the substrate and exert traction forces. We describe this dynamics by a structured population process, where the structure comes from the protrusions' orientations. The limiting continuous model can be analytically studied in the 1D migration case, and gives rise to a Fokker-Planck equation on the probability distribution for the protrusion density. For a stationary profile, we can show the existence of a dichotomy between a non motile state and a directional displacement state.In a second part, we build a deterministic minimal migration model in a discoïdal cell domain. We base our work on the idea such that the structures responsible for migration also reinforce cell polarisation, which favors in return a directional displacement. This positive feedback loop involves the convection of a molecular marker, whose inhomogeneous spatial repartition is characteristic of a polarised state.The model writes as a convection-diffusion problem for the marker's concentration, where the advection field is the velocity field of the Darcy fluid that describes the cytoskeleton. Its active character is carried by boundary terms, which makes the originality of the model.From the analytical point of vue, the 1D model shows a dichotomy depending on a critical mass for the marker. In the subcritical and critical cases, it is possible to show global existence of weak solutions, as well as a rate-explicit convergence of the solution towards the unique stationary profile, corresponding to a non-motile state. Above the critical mass, for intermediate values, we show the existence of two additional stationary solutions corresponding to polarised motile profiles. Moreover, for asymmetric enough initial profiles, we show the finite time apparition of a blowup.Studying a more complex model involving activation of the marker at the cell membrane permits to get rid of this singularity.From the numerical point of vue, numerical experiments are led in 2D either in finite volumes (Matlab) or finite elements (FreeFem++) discretizations. They allow to show both motile and non motile profiles. The effect of stochastic fluctuations in time and space are studied, leading to numerical simulations of cases of responses to an external signal, either chemical (chemotaxis) or mechanical (obstacles)
Hauer, Daniel. "Problèmes d'évolution associés au p-laplacien : comportement asymptotique et non-existence." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0269.
Full textThis thesis is dedicated to the study of two subjects in the field of evolution problems associated with the $p$-Laplace operator. The first subject is concerned with the study of long time behavior of bounded solutions and the second subject is devoted to the study of nonexistence of positive nontrivial solutions. The first chapter of this thesis is devoted to a general introduction to the p-Laplace operator and a résumé of this thesis. The first chapter is written in French. Chapter 2 is dedicated to the study of convergence as the time $t\to+\infty$ of bounded solutions of evolution problems associated with the p-Laplace operator on a bounded interval with homogeneous Dirichlet, Neumann, or Robin boundary conditions converges. The results of Chapter 2 are contained in article \cite{hauer-convergence-2012}, which was published in the journal « Nonlinear Differential Equations and Applications NoDea ». Chapter 3 is devoted to the study of nonexistence of positive nontrivial weak solutions of parabolic equations associated to the p-Laplace operator with a convection term and a singular potential. The results of Section 3.2 and Section 3.4.1 of Chapter 3 are contained in article \cite{Hauer:2012fk}, which was accepted for publication in the journal « Archiv der Mathematik ». The results of Section 3.4.2 of Chapter 3 are not yet published
Bessemoulin-Chatard, Marianne. "Développement et analyse de schémas volumes finis motivés par la préservation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00763720.
Full textVohralik, Martin. "Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00008451.
Full textBrenner, Konstantin. "Méthodes de volumes finis sur maillages quelconques pour des systèmes d'évolution non linéaires." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00647336.
Full textHassnaoui, El Hassan. "Etude mathématique, simulation et contribution à la modélisation d'un réacteur de craquage catalytique." Saint-Etienne, 1992. http://www.theses.fr/1992STET4020.
Full textMadiot, François. "Méthodes éléments finis de type MsFEM pour des problèmes d'advection-diffusion." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1052/document.
Full textThis work essentially deals with the development and the study of multiscale finite element methods for multiscale advection-diffusion problems in the advection-dominated regime. Two types of approaches are investigated: Take into account the advection in the construction of the approximation space, or apply a stabilization method. We begin with advection-dominated advection-diffusion problems in heterogeneous media. We carry on with advection-dominated advection-diffusion problems posed in perforated domains.Here, we focus on the Crouzeix-Raviart type boundary condition for the construction of the multiscale finite elements. We consider two different situations depending on the condition prescribed on the boundary of the perforations: the homogeneous Dirichlet condition or the homogeneous Neumann condition. This study relies on a coercivity assumption.Lastly, we consider a general framework where the advection-diffusion operator is not coercive, possibly in the advection-dominated regime. We propose a Finite Element approach based on the use of an invariant measure associated to the adjoint operator. This approach is unconditionally well-posed in the mesh size. We compare it numerically to a standard stabilization method
Mollard, Adeline. "Méthodes de caractéristiques multi-niveaux en espace et en temps pour une équation de convection-diffusion : Cas d'une approximation pseudo-spectrale." Ecully, Ecole centrale de Lyon, 1998. http://www.theses.fr/1998ECDL0036.
Full textIgonin, Maksim. "Instabilités hydrodynamiques des liquides magnétiques miscibles et non miscibles dans une cellule de Hele-Shaw." Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00007716.
Full textVu, Do Huy Cuong. "Méthodes numériques pour les écoulements et le transport en milieu poreux." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112348/document.
Full textThis thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We apply the standard finite volume method to compute the solutions of a problem involving a rotating interface between salt and fresh water and of Henry's problem. We then apply the SUSHI scheme to the same problems as well as to a three dimensional saltpool problem. We use adaptive meshes, based upon square volume elements in space dimension two and cubic volume elements in space dimension three. In Chapter 2, we apply the generalized finite volume method SUSHI to the discretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and heterogeneous. This class of locally conservative methods can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon a priori estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present numerical tests. In Chapter 3, we study a gradient scheme for the Signorini problem. Gradient schemes are nonconforming methods written in discrete variational formulation which are based on independent approximations of the functions and the gradients. We prove the existence and uniqueness of the discrete solution as well as its convergence to the weak solution of the Signorini problem. Finally we introduce a numerical scheme based upon the SUSHI discretization and present numerical results. In Chapter 4, we apply a semi-implicit scheme in time together with a generalized finite volume method for the numerical solution of density driven flows in porous media; it comes to solve nonlinear convection-diffusion parabolic equations for the solute and temperature transport as well as for the pressure. We compute the solutions for a specific problem which describes the advance of a warm fresh water front coupled to heat transfer in a confined aquifer which is initially charged with cold salt water. We use adaptive meshes, based upon square volume elements in space dimension two
Mildner, Marcus. "Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart." Phd thesis, Université du Littoral Côte d'Opale, 2013. http://tel.archives-ouvertes.fr/tel-00839524.
Full textMarchand, Estelle. "Analyse de sensibilité déterministe pour la simulation numérique du transfert de contaminants." Phd thesis, Université Paris Dauphine - Paris IX, 2007. http://tel.archives-ouvertes.fr/tel-00271632.
Full textAlengry, Jonathan. "Etude expérimentale et modélisation de la longueur de bon mélange. Application à la représentativité des points de prélèvement en conduit." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4308/document.
Full textMonitoring of gaseous releases from nuclear installations in the environment and air cleaning efficiency measurement are based on regular measurements of concentrations of contaminants in outlet chimneys and ventilation systems. The concentration distribution may be heterogeneous at the measuring point if the distance setting of the mixing is not sufficient. The question is about the set up of the measuring point in duct and the error compared to the homogeneous concentration in case of non-compliance with this distance. This study defines the so-called "well mixing length" from laboratory experiments. The bench designed for these tests allowed to reproduce flows in long circular and rectangular ducts, each including a bend. An optical measurement technique has been developed, calibrated and used to measure the concentration distribution of a tracer injected in the flow. The experimental results in cylindrical duct have validated an analytical model based on the convection-diffusion equation of a tracer, and allowed to propose models of good mixing length and representativeness of sampling points. In rectangular duct, the acquired measures constitute a first database on the evolution of the homogenization of a tracer, in the perspective of numerical simulations exploring more realistic conditions for measurements in situ
Serov, Alexander S. "Modeling Oxygen Transport in the Human Placenta." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01205237/document.
Full textThe efficient functioning of the human placenta is crucial for the favorable outcome of the pregnancy. This thesis aims at developing a mathematical model of respiratory gas exchange in the human placenta, which would improve our understanding of the relation between the structure and the function of the organ. Taking advantage of the precise 2D placental structure provided by the placental histology, we construct a 3D model of oxygen transport in the placenta by extending 2D histological cross-sections along the third dimension. The model simultaneously accounts for both diffusion and convention of oxygen in the intervillous space and allows us to predict the oxygen uptake of a placentone. In the first part of the thesis, the diffusion-convection equation governing oxygen exchange is numerically solved for different densities of circular fetal villi in a placentone. These calculations provide estimations of the oxygen uptake of a placentone with an arbitrary villi density and demonstrate the existence of an optimal villi density maximizing the uptake. This optimality is explained as a trade-off between the incoming oxygen flow and the absorbing villous surface. As a next step, the assumption of circular villi is relaxed and an approximate analytical solution is proposed for the diffusion-convection equation. It is shown that only two geometrical characteristics — the villi density and the effective villi radius — are required to predict the fetal oxygen uptake. Two combinations of physiological parameters that determine oxygen uptake in a given placenta are also identified: (i) the maximal oxygen inflow of a placentone, and (ii) the Damköhler number defined as the ratio of the transit time of the maternal blood through the intervillous space to a characteristic oxygen extraction time in a cross-section. Analytical formulas for fast and simple calculation of oxygen uptake are derived, and two diagrams of oxygen transport efficiency in an arbitrary placental cross-section are provided. The theory also suggests a method of how the results of artificial placenta perfusion experiments performed with no-hemoglobin blood can be recalculated to account for oxygen-hemoglobin dissociation. Finally, an automatic image analysis method is developed allowing one to analyze large histological human placenta cross-sections and to determine areas, perimeters and shapes of villous, intervillous space and fetal capillary compartments. These data can then be used as input data for the model. This method is applied to 25 cross-sections from 22 healthy and 3 pathological pregnancies. By combination of the obtained data with the described efficiency diagrams, it is demonstrated that the villi density of a healthy human placenta lies within 10% of the optimal value. The overall geometry efficiency of a healthy placenta was found to be rather low (around 30–40 %). In a perspective, the presented model can constitute the base of a reliable tool of assessment of oxygen exchange efficiency in the human placenta from histological measurements post partum, or, in a longer term, from non-invasive in utero measurements
Darrigrand, Vincent. "Goal-Oriented Adaptivity using Unconventional Error Representations." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3011/document.
Full textIn Goal-Oriented Adaptivity (GOA), the error in a Quantity of Interest (QoI) is represented using global error functions of the direct and adjoint problems. This error representation is subsequently bounded above by element-wise error indicators that are used to drive optimal refinements. In this work, we propose to replace, in the error representation, the adjoint problem by an alternative operator. The main advantage of the proposed approach is that, when judiciously selecting such alternative operator, the corresponding upper bound of the error representation becomes sharper, leading to a more efficient GOA. These representations can be employed to design novel h, p, and hp energy-norm and goal-oriented adaptive algorithms. While the method can be applied to a variety of problems, in this Dissertation we first focus on one-dimensional (1D) problems, including Helmholtz and steady state convection-dominated diffusion problems. Numerical results in 1D show that for the Helmholtz problem, it is advantageous to select the Laplace operator for the alternative error representation. Specifically, the upper bounds of the new error representation are sharper than the classical ones used in both energy-norm and goal-oriented adaptive methods, especially when the dispersion (pollution) error is significant. The 1D steady state convection-dominated diffusion problem with homogeneous Dirichlet boundary conditions exhibits a boundary layer that produces a loss of numerical stability. The new error representation based on the Laplace operator delivers sharper error upper bounds. When applied to a p-GOA, the alternative error representation captures earlier the boundary layer, despite the existing spurious numerical oscillations. We then focus on the two- and three-dimensional (2D and 3D) Helmholtz equation. We show via extensive numerical experimentation that the upper bounds provided by the alternative error representations are sharper than the classical ones. When using the alternative error indicators, a naive p-adaptive process converges, whereas under the same conditions, the classical method fails and requires the use of the so-called Projection Based Interpolation (PBI) operator or some other technique to regain convergence. We also provide guidelines for finding operators delivering sharp error representation upper bounds
En un contexto de adaptatividad orientada a un objetivo, el error en una cantidad de interés está representado a través de los errores globales de los problemas directo y adjunto. Esta representación del error se acota superiormente por una suma de indicadores de error de cada elemento. Estos se utilizan para producir refinamientos óptimos. En este trabajo, proponemos representar el error del problema adjunto utilizando un operador alternativo. La principal ventaja de nuestro enfoque es que cuando se elige correctamente dicho operador alternativo, la correspondiente cota superior se vuelve más cercana al error en la cantidad de interés, lo que permite una adaptatividad más eficiente. Estas representaciones pueden ser utilizadas para diseñar algoritmos adaptativos en h, p o hp, basados en la norma de la energía o para aproximar una cantidad de interés específica. Aunque el método propuesto se puede aplicar a una amplia gama de problemas, en esta tesis doctoral nos centramos primero en problemas unidimensionales (1D), tales como el problema de Helmholtz y el problema estacionario de convección-difusión con convección dominante. Los resultados numéricos en 1D muestran que, para los problemas de propagación de ondas, las ventajas de este método son notorias cuando se considera el operador de Laplace para la representación del error. Específicamente, las cotas superiores derivadas de la nueva representación son más cercanas a la cantidad de interés que las del método convencional. Esto es cierto tanto para la norma de la energía global como para una cantidad de interés particular, especialmente cuando el error de dispersión es significativo. El problema estacionario 1D de convección-difusión con convección dominante y con condiciones de Dirichlet homogéneas tiene una capa límite que produce una pérdida de estabilidad numérica. La nueva representación del error proporciona cotas superiores más cercanas a la cantidad de interés. Cuando se aplica a un algoritmo adaptativo en p orientado a un objetivo, la representación alternativa del error captura antes la capa límite, a pesar de las existentes oscilaciones numéricas no físicas. En esta tesis doctoral, también nos centramos en la ecuación de Helmholtz en dos y tres dimensiones (2D y 3D). Mostramos a través de múltiples experimentos numéricos que las cotas superiores proporcionadas por las representaciones alternativas del error son más cercanas a la cantidad de interés que cuando uno considera la representación clásica. Al utilizar los indicadores alternativos del error, un algoritmo adaptativo en p sencillo converge, mientras que en las mismas condiciones, el método convencional falla y requiere el uso de operadores de proyección o de otras técnicas para recuperar la convergencia. En este trabajo, también determinamos operadores que proporcionan representaciones del error que inducen cotas superiores más ajustadas. Establecemos resultados similares tanto para el problema estacionario de convección-difusión con convección dominante en 2D como para problemas 2D con materiales discontinuos. Finalmente, se considera un problema sónico en pozos petrolíferos para ilustrar la aplicabilidad del método propuesto
El, Ossmani Mustapha. "Méthodes Numériques pour la Simulation des Ecoulements Miscibles en Milieux Poreux Hétérogènes." Phd thesis, Université de Pau et des Pays de l'Adour, 2005. http://tel.archives-ouvertes.fr/tel-00009683.
Full textChargy, Didier. "Etude numérique d'écoulements réactifs transsoniques." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1991. http://tel.archives-ouvertes.fr/tel-00523155.
Full text