Dissertations / Theses on the topic 'Equations de fonctions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Equations de fonctions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bachmann, Florence. "Equations hyperboliques scalaires à flux discontinu." Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11033.
Full textAboudi, Nabil. "Equations de Liouville et noyaux de Bergman." Bordeaux 1, 2005. http://www.theses.fr/2005BOR13008.
Full textDouai, Antoine. "Equations aux différences finies, intégrales de fonctions multiformes et polyèdres de Newton." Paris 6, 1993. http://www.theses.fr/1993PA066075.
Full textHdhiri, Ibtissam. "Equations différentielles stochastiques rétrogrades et applications." Le Mans, 2006. http://cyberdoc.univ-lemans.fr/theses/2006/2006LEMA1028.pdf.
Full textThis thesis deals with the Backward stochastic differential equations (BSDEs for short) and their applications. The first part is devoted to the double barrier refiected BSDEs. We show the existence of a solution for su ch equations when the barriers are completely separate and the generator is continuous with quadratic growth. As an application we solve the risk-sensitive mixed zero-sum stochastic differential game. Ln addition we deal with recallable options under K nightian uncertainty. Ln the second part, we focus on a real option problem namely the starting and stopping problem when the noise is driven by a Brownian motion and an independent Poisson process. This problem is tackled in using the notion of Snell envelope and BSDEs with jumps. We de rive a stochastic verification theorem which we show later that is satisfied. LVhen the random noise stems from a standard SDE with jumps we show that the problem is related to a system of two variational inequalities, hence we give a deterministic verification result. Finally, we deal with the problem with exponential utilities
Kouki, Rahim. "ENSEIGNEMENT ET APPRENTISSAGE DES EQUATIONS, INEQUATIONS ET FONCTIONS AU SECONDAIRE : ENTRE SYNTAXE ET SEMANTIQUE." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00346287.
Full textNotre recherche s'inscrit dans la continuité des travaux de recherche de Durand-Guerrier et nous soutenons la thèse selon laquelle la logique des prédicats est pertinente pour l'analyse des questions liées l'articulation des deux points de vue sémantique et syntaxique dans l'enseignement et l'apprentissage des équations, inéquations et fonctions au secondaire.
Pour compléter les éclairages apportés par la sémantique logique, nous avons conduit une étude historique circonscrite des relations entre ces concepts mathématiques. Nous avons ainsi croisé cette étude avec notre perspective logique en vue de repérer la dyade sémantique/ syntaxe au moment de la formation de ces concepts.
La question principale étudiée dans l'exploration didactique concerne la possibilité de repérer, dans le développement des concepts d'équation, d'inéquation et de fonction, des phénomènes liés à la dialectique sémantique / syntaxe. Pour cela, nous avons conduit une analyse des programmes et des manuels de l'enseignement secondaire tunisien ; soumis un questionnaire à des élèves du secondaire et des étudiants de classes préparatoires ; proposé une situation d'apprentissage à quelques élèves volontaires et réalisé quelques entretiens avec des enseignants. Nos travaux montrent un recul du point de vue sémantique dès que les techniques syntaxiques sont disponibles, et une quasi absence d'articulation entre syntaxe et sémantique.
Ponomarev, Dmitry. "Quelques problèmes inverses avec des données partielles." Thesis, Nice, 2016. http://www.theses.fr/2016NICE4027/document.
Full textThe thesis consists of three parts. In Part I, we consider partially overdeterminedboundary-value problemS for Laplace PDE in a planar simply connected domain withLipschitz boundary. Assuming Dirichlet and Neumann data available on its part to be realvaluedfunctions of certain regularity, we develop a non-iterative method for solving thisill-posed Cauchy problem choosing as a regularizing parameter L2 bound of the solutionon complementary part of the boundary. The present complex-analytic approach alsonaturally allows imposing additional pointwise constraints on the solution which, onpractical side, can help incorporating outlying boundary measurements without changingthe boundary into a less regular one. Part II is concerned with spectral structure of atruncated Poisson operator arising in various physical applications. We deduce importantproperties of solutions, discuss connections with other problems and pursue differentreductions of the formulation for large and small values of asymptotic parameter yieldingsolutions by means of solving simpler integral equations and ODEs. In Part III, we dealwith a particular inverse problem arising in real physical experiments performed withSQUID microscope. The goal is to recover certain magnetization features of a sample frompartial measurements of one component of magnetic field above it. We develop newmethods based on Kelvin and Fourier transformations resulting in estimates of netmoment components
Lu, Hoang-Chinh. "Equations hessiennes complexes." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1961/.
Full textIn this thesis we study the complex hessian equations locally in Cn and globally on compact manifolds. In the first chapter, we study finite energy classes of Cegrell's type on m-hyperconvex domain. We then use a varational method to solve the complex hessian equation with rather singular right hand side. In the second chapter, we solve a degenerate complex hessian equation on compact Kahler manifolds with the right hand side also depends on the unknown and belongs to some Lp space. The last chapter is devoted to a viscosity approach which is a very efficient method to solve real degenerate elliptic equations of second order. It is recently used in the complex case. This method allows us to obtain a new existence and uniqueness result in the case of hermitain homogeneous compact manifolds
Béreux, Natacha. "Étude des résonances pour les équations de Maxwell dans quelques structures." Palaiseau, Ecole polytechnique, 1998. http://www.theses.fr/1998EPXX0043.
Full textMilce, Aril. "Fonctions Presque Automorphes et Applications aux EquationsDynamiques sur Time Scales." Thesis, Antilles, 2015. http://www.theses.fr/2015ANTI0011/document.
Full textIn this thesis, we refine the notion of almost automorphic functions on time scales introduced in the literature by Lizama and Mesquita, we explore some new properties of such functions and apply the results to study the existence and uniqueness of almost automorphic solution for a new class of dynamic equations on time scales. Then we introduce the concept of almost automorphic functions of order n on time scales, we investigate the fundamental properties of these functions and we use the findings to establish the existence and uniqueness and the global stability of almost automorphic solution of one to a first order dynamical equation with finite time varying delay. Then we present the concept of asymptotically almost automorphic functions of order n on time scales. We study the properties of these functions and we use the results to prove, under suitable hypothesis, that the unique solution to a problem with initial condition is asymptotically almost automorphic of order one at the one hand, and the existence and uniqueness of asymptotically almost automorphic solution for an integro-dynamic equation with nonlocal initial conditon on time scales in other hand. Finally, using the concept of semigroup on time scales introduced by Hamza and Oraby, we generalize the results in Lizama and Mesquita's paper for abstract Banach spaces, that is, we study the existence and uniqueness of almost automorphic solution for semilinear abstract dynamic equations on time scales
Sedrakyan, Hayk. "Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066681/document.
Full textThis thesis consists of two main parts. In the first part, Chapter 3 is devoted to the investigation of the limit behavior of a singularly perturbed control system with two state variables which are weakly coupled. In order to prove our approximation result we use the so called averaging method and a recent result on nonexpansive control. The main novelty of our averaging approach lies in the fact that the limit dynamic may depend on the initial condition of the fast system. In the literature, the investigation of the limit behavior of such systems has been usually addressed under conditions that ensure that the limit dynamic is independent from the initial condition of the fast system. In Chapter 4, we generalise the results of Chapter 3 by considering a more general nonexpansivity condition. Moreover, we consider an example where the new nonexpansity condition is satisfied but the nonexpansivity condition of Chapter 3 does not hold true. The second part deals with Hamilton-Jacobi equations under state constraints. Chapter 5 focuses on the stable representation of convex Hamiltonians by functions describing a Bolza optimal control problem. In Chapter 6 we investigate stability of solutions of Hamilton-Jacobi-Bellman equations under state constraints by studying stability of value functions of a suitable family of Bolza optimal control problems under state constraints. We show that under suitable assumptions, the value function is a unique viscosity solution to Hamilton-Jacobi-Bellman equation and that solutions are stable with respect to Hamiltonians and state constraints
Portal, Pierre. "Analyse harmonique des fonctions a valeurs dans un espace de Banach pour l'etude des equations d'evolution paraboliques." Phd thesis, Université de Franche-Comté, 2004. http://tel.archives-ouvertes.fr/tel-00006730.
Full textRoussillon, Julien. "Fonctions de Painlevé et blocs conformes irréguliers." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4006/document.
Full textThe aim of this thesis is to solve several connection problems and describe asymptotic properties of Painlevé V and I functions. In the case of Painlevé V equation, we approach these problems by developing a new toolbox based on two dimensional conformal field theory. We propose to compute irregular conformal blocks of the first and second kind by confluence of regular Virasoro conformal blocks. One consequence of this construction is the solution of the connection problem for Painlevé V equation between 0 and +i∞. Formulas for the relative normalizations (connection constants) of Painlevé V tau function between 0, +∞, and +i∞ are also proposed. Finally, the full asymptotic expansion of the tau function at short distances for generic monodromy data is proved. This result is obtained by constructing a Fredholm determinant representation for the tau function. In the case of Painlevé I equation, we present connection constants relating asymptotics of the tau function on the five canonical rays at infinity. This result is obtained by extending the definition of the Jimbo-Miwa-Ueno differential to the space of monodromy data. These connection constants are expressed in terms of dilogarithms of cluster type coordinates on the space of Stokes data
Chouikha, Raouf. "Aspects des fonctions elliptiques. \\ Solutions périodiques d'équations différentielles.\\ Métriques pseudo-cylindriques. \\ Problèmes isopérimètriques plans." Habilitation à diriger des recherches, Université de Rouen, 2003. http://tel.archives-ouvertes.fr/tel-00003633.
Full textLassoued, Dhaou. "Fonctions presque-périodiques et Équations Différentielles." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00942969.
Full textJbilou, Asma. "Equations hessiennes complexes sur des variétés kählériennes compactes." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00463111.
Full textHnaien, Dorsaf. "Equations aux dérivées fractionnaires : propriétés et applications." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS038.
Full textOur objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior
Yang, Jie. "Solving Partial Differential Equations by Taylor Meshless Method." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0032/document.
Full textBased on Taylor Meshless Method (TMM), the aim of this thesis is to develop a simple, robust, efficient and accurate numerical method which is capable of solving large scale engineering problems and to provide a new idea for the follow-up study on meshless methods. To this end, the influence of the key factors in TMM has been studied by solving three-dimensional and non-linear Partial Differential Equations (PDEs). The main idea of TMM is to use high order polynomials as shape functions which are approximated solutions of the PDE and the discretization concerns only the boundary. To solve the unknown coefficients, boundary conditions are accounted by collocation procedures associated with least-square method. TMM that needs only boundary collocation without integration process, is a true meshless method. The main contributions of this thesis are as following: 1) Based on TMM, a general and efficient algorithm has been developed for solving three-dimensional PDEs; 2) Three coupling techniques in piecewise resolutions have been discussed and tested in cases of large-scale problems, including least-square collocation method and two coupling methods based on Lagrange multipliers; 3) A general numerical method for solving non-linear PDEs has been proposed by combining Newton Method, TMM and Automatic Differentiation technique; 4) To apply TMM for solving problems with singularities, the singular solutions satisfying the control equation are introduced as complementary shape functions, which provides a theoretical basis for solving singular problems
Ennaji, Hamza. "Variational methods for Hamilton-Jacobi equations and applications." Thesis, Limoges, 2021. http://www.theses.fr/2021LIMO0013.
Full textIn this thesis we propose some variational methods for the mathematical and numerical analysis of a class of HJ equations. Thanks to the metric character of these equations, the set of subsolution corresponds to the set of 1-Lipschitz functions with respect to the Finsler metric associated to the Hamiltonian. Equivalently, it corresponds to the set of functions whose gradient belongs to a Finsler ball. The solution we are looking for is the maximal one, which can be described via a Hopf-Lax formula, solves a maximization problem under gradient constraint. We derive the associated dual problem which involves the Finsler total variation of vector measures under a divergence constraint. We take advantage of this saddle-point structure to use the augmented Lagrangian method for the numerical approximation of HJ equation. This characterization of the HJ equation allows making the link with some optimal transport problems. This link with optimal transport leads us to generalize the Evans-Gangbo approach. In fact, we show that the maximal viscosity subsolution of the HJ equation can be recovered by taking p→ ∞ in a class of Finslerp-Laplace problems with boundary obstacles. In addition, this allows us to construct the optimal flow for the associated Beckmann problem. As an application, we use our variational approach for the Shape from Shading problem
Xie, Chunmei. "An efficient method for the calculation of the free-surface Green function using ordinary differential equations." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0013/document.
Full textThe boundary element method (BEM) with constant panels is a common approach for wave-structure interaction problems. It is based on the linear potential-flow theory. It relies on the frequency-domain free-surface Green function, which is the focus of this thesis. First, the mathematical expressions and numerical methods for the frequency-domain free-surface Green function are investigated. Twelve different expressions are reviewed and analyzed. Several existing numerical methods are compared including their computational time and accuracies. Then, a series of ordinary differential equations (ODEs) for the time-domain and frequency-domain free-surface Green functions and their derivatives are derived. These ODEs can be used to better understand the properties of the Green function and can be an alternative way to calculate the Green functions and their derivatives. However, it is challenging to solve the ODEs for the frequency-domain Green function with initial conditions at the origin due to the singularity. This difficulty is removed by modifying the ODEs by using new functions free of singularity. The new ODEs are then transformed in their canonic form by using a novel definition of the vector functions. The canonic form can be solved with the initial conditions at the origin since all involved terms are finite. An expansion method based on series of logarithmic function together with ordinary polynomials which is very efficient for low frequency problems is also developed to obtain analytical solutions. Finally, the ODE-based method to calculate the Green function is implemented and an efficient BEM solver is obtained. The removal of irregular frequencies is included. The new solver is validated by comparison of hydrodynamic coefficients to analytical solutions for a heaving and surging hemisphere, and to numerical results obtained with a commercial solver for a box barge and the KCS container ship
Riquet, Alain-Jérôme. "Méthodes de Krylov par blocs pour les équations matricielles en théorie du contrôle." Littoral, 2002. http://www.theses.fr/2002DUNK0076.
Full textIn this thesis, we explore some methods for solving large numerical problems. These techniques are based on projection processes onto subspaces. We study different projection methods on block krylov subspaces for some large matrix equations. In the first chapter, we propose block Krylov subspace methods for solving Sylvester matrix equations. The proposed methods are based on block Arnoldi, block GMRES and nonsymmetric block Lanczos algorithms. We give some theorical results and numerical experiments to compare the performance of the different methods. In a second chapter, we propose a new Krylov subspace method for solving large Lyapunov matrix equations. The proposed methods are based on the Global-Arnoldi process. We give a new expression of the solution and show how to extract low rank approximate solutions to the Lyapunov matrix equation. We detail also some theorical results. We show how the Krylov subspaces techniques considered above can be applied to the discrete-time Lyapunov equation. We give the Stein-Arnoldi algorithm is a restarted mode. In the third chapter, we give a new block Krylov subspace method to a longe dynamical system by a reduced-order one. The theorical properties of this method are investigated, and a new expression of the Frobenius norm of the approximate residu is derived. We consider an implicity restarted method that can be used to accelerate the convergence speed. We also give experimental results. In the fourth chapter, we describe an algorithm based on the block Lanczos procedure for computing some eigenvalues. We present comparaisons between block Arnoldi and Lanczos procedures for computing eigenvalues of large matrices. We propose the block Chebyshev-Lanczos method for solving nonsymmetric eigenvalues problems. The behavior of this algorithm is illustrated by numerical examples
Devoue, Victor. "Sur les singularités de certains problèmes différentiels." Phd thesis, Université des Antilles-Guyane, 2005. http://tel.archives-ouvertes.fr/tel-00012098.
Full textJbilou, Asma. "Équations hessiennes complexes sur des variétés kählériennes compactes." Nice, 2010. http://www.theses.fr/2010NICE4006.
Full textOn a compact connected 2m-dimensional Kähler manifold with Kähler form !, given a volume form 2 [!]m and an integer 1 < k < m, we want to solve uniquely in [!] the equation ˜!k ^!m−k = , relying on the notion of k-positivity for ˜! 2 [!] (the extreme cases are solved : k = m by Yau, k = 1 trivially). We solve by the continuity method the corresponding complex elliptic k-th Hessian equation under the assumption that the holomorphicbisectionalcurvatureofthemanifoldisnon-negative,requiredhereonlyto deriveanapriorieigenvaluespinching
Bakhta, Athmane. "Modèles mathématiques et simulation numérique de dispositifs photovoltaïques." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1046/document.
Full textThis thesis includes two independent parts, both motivated by mathematical modeling and numerical simulation of photovoltaic devices. Part I deals with cross-diffusion systems of partial differential equations, modeling the evolution of concentrations or volume fractions of several chemical or biological species. We present in Chapter 1 a succinct introduction to the existing mathematical results about these systems when they are defined on fixed domains. We present in Chapter 2 a one-dimensional system that we introduced to model the evolution of the volume fractions of the different chemical species involved in the physical vapor deposition process (PVD) used in the production of thin film solar cells. In this process, a sample is introduced into a very high temperature oven where the different chemical species are injected in gaseous form, so that atoms are gradually deposited on the sample, forming a growing thin film. In this model, both the evolution of the film surface during the process and the evolution of the local volume fractions within this film are taken into account, resulting in a cross-diffusion system defined on a time dependent domain. Using a recent method based on entropy estimates, we show the existence of weak solutions to this system and study their asymptotic behavior when the external fluxes are assumed to be constant. Moreover, we prove the existence of a solution to an optimization problem set on the external fluxes. We present in Chapter3 how was this model adapted and calibrated on experimental data. Part II is devoted to some issues related to the calculation of the electronic structure of crystalline materials. We recall in Chapter 4 some classical results about the spectral decomposition of periodic Schrödinger operators. In text of Chapter 5, we try to answer the following question: is it possible to determine a periodic potential such that the first energy bands of the associated periodic Schrödinger operator are as close as possible to certain target functions? We theoretically show that the answer to this question is positive when we consider the first energy band of the operator and one-dimensional potentials belonging to a space of periodic measures that are lower bounded in certain ness. We also propose an adaptive method to accelerate the numerical optimization procedure. Finally, Chapter 6 deals with a greedy algorithm for the compression of Wannier functions into Gaussian-polynomial functions exploiting their symmetries. This compression allows, among other things, to obtain closed expressions for certain tight-binding coefficients involved in the modeling of 2D materials
Fueyo, Sébastien. "Systèmes à retard instationnaires et EDP hyperboliques 1-D instationnaires, fonctions de transfert harmoniques et circuits électriques non-linéaires." Thesis, Université Côte d'Azur, 2020. http://theses.univ-cotedazur.fr/2020COAZ4103.
Full textAmplifiers contain linear, passive components as well as nonlinear, active ones, all of which can be described by finitely many state variables; but they also contain transmission lines, typically modeled by simple hyperbolic Partial Differential Equations (PDE) like lossless telegrapher equations, that make the global state space of the circuit infinite-dimensional. Using an integrated form of telegraphers equations,one obtains a model comprised of delay difference and differential equations. Using first order approximation, this reduces to exponential stability of the time-periodic linear system obtained by linearizing around the periodic solution, which is a network of delay difference equations whose boundary conditions are coupled by differential equations. The stability of this kind of equation is strongly correlated with the stability of a periodic linear difference delay system (via a compact perturbation argument). The thesis then establishes conditions to guarantee the stability of periodic difference delay system systems. Due to the huge number of electronic components, it is known in electronic engineering textbooks that stability cannot be determined directly from the linearized system. To study the stability properties of the previously-described linearized system, one constructs a family of input-output systems, obtained by perturbing the linearized system by a small current $i$ at some node of the circuit and observing the resulting perturbation of the voltage $v$ between two nodes. Via a Fourier development, stability is studied through the singularities of the harmonic transfer function (HTF) which is an infinite matrix depending on a complex variable with Banach value. Under high frequency dissipativity assumption, which are always verified for amplifiers, the HTF has at most poles in a complex right half-plane containing strictly the imaginary axis. These poles are in particular the logarithms of a finite family of complex numbers, and under an assumption of controllability and observability, the periodic solution is locally stable if and only if the HTF has no poles in the complex right half-plane
Deheuvels, Thibaut. "Contributions à l'étude d'espaces de fonctions et d'EDP dans une classe de domaines à frontière fractale auto-similaire." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00869946.
Full textLemor, Jean-Philippe. "Approximation par projections et simulations de Monte-Carlo des équations différentielles stochastiques rétrogrades." Phd thesis, Ecole Polytechnique X, 2005. http://pastel.archives-ouvertes.fr/pastel-00001396.
Full textLey, Olivier. "Evolution de fronts avec vitesse non-locale et équations de Hamilton-Jacobi." Habilitation à diriger des recherches, Université François Rabelais - Tours, 2008. http://tel.archives-ouvertes.fr/tel-00362409.
Full textLe premier chapitre concerne l'évolution de fronts avec une vitesse normale prescrite. Pour étudier ce genre de problème, une première approche, dite par lignes de niveaux, consiste àreprésenter le front comme une ligne de niveau d'une fonction auxiliaire u. Cette approche ramène l'étude du problème d'évolution géométrique à un problème d'EDP puisque u vérifie une équation de Hamilton-Jacobi. Quelques résultats dans le cas de vitesses locales comme la courbure moyenne sont présentés mais la majorité des résultats concerne le cas de vitesses non-locales décrivant la dynamique des dislocations dans un cristal ou modélisant l'asymptotique d'un système de FitzHugh-Nagumo apparaissant en biologie. Une approche différente, basée sur des solutions de viscosité géométriques, est utilisée pour étudier des problèmes de propagation de fronts apparaissant en optimisation de formes. Le but est de trouver un ensemble optimal minimisant une énergie du type capacité à volume ou périmètre constant. L'idée est de déformer le bord d'un ensemble donné avec une vitesse normale adéquate de manière à diminuer au plus son énergie. La mise en oeuvre de cette idée nécessite la construction rigoureuse d'une telle évolution pour tout temps et la preuve de la convergence vers une solution du problème initial. De plus, la décroissance de l'énergie est obtenue le long du flot.
Le deuxième chapitre décrit des résultats d'unicité, d'existence et d'homogénéisation pour des équations de Hamilton-Jacobi-Bellman. La majeure partie du travail effectué concerne des équations provenant de problèmes de contrôle stochastique avec des contrôles non-bornés. Les équations comportent alors des termes quadratiques par rapport au gradient et les solutions étudiées sont elles-mêmes à croissance quadratique. Des liens entre ces solutions et les fonctions valeurs des problèmes de contrôle correspondants sont établis. La seconde partie est consacrée à un théorème d'homogénéisation pour un système d'équations de Hamilton-Jacobi du premier ordre.
Le troisième et dernier chapitre traite d'un sujet un peu à part, à savoir le lien entre les flots de gradient et l'inégalité de Lojasiewicz. La principale originalité de ce travail est de placer l'étude dans un cadre hilbertien pour des fonctions semiconvexes, ce qui sort du cadre de l'inégalité de Lojasiewicz classique. Le principal théorème produit des caractérisations de cette inégalité. Les résultats peuvent être précisés dans le cas des fonctions convexes ; en particulier, un contre-exemple de fonction convexe ne vérifiant pas l'inégalité de Lojasiewicz est construit. Cette dernière inégalité est reliée à la longueur des trajectoires de gradient. Une borne de cette longueur est obtenue pour les fonctions convexes coercives en dimension deux même lorsque cette inégalité n'est pas vérifiée.
Hayat, Amaury. "Stabilisation de systèmes hyperboliques non-linéaires en dimension un d’espace." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS131.
Full textThis thesis is devoted to study the stabilization of nonlinear hyperbolic systems of partial differential equations. The main goal is to find boundary conditions ensuring the exponential stability of the system. In a first part, we study general systems that we aim at stabilizing in the C^1 norm by introducing a certain type of Lyapunov functions. Then we take a closer look at systems of two equations and we compare the results with the stabilization in the H^2 norm. In a second part we study a few physical equations: Burgers' equation and the density-velocity systems, which include the Saint-Venant equations and the Euler isentropic equations. Using a local dissipative entropy, we show that these systems can be stabilized with very simple boundary controls which, remarkably, do not depend directly on the parameters of the system, provided some physical admissibility condition. Besides, we develop a way to stabilize shock steady-states in the case of Burgers' and Saint-Venant equations. Finally, in a third part, we study proportional-integral (PI) controllers, which are very popular in practice but seldom understood mathematically for nonlinear infinite dimensional systems. For scalar systems we introduce an extraction method to find optimal conditions on the parameters of the controller ensuring the stability. Finally, we deal with the Saint-Venant equations with a single PI control
Ramoul, Hichem. "Inégalités de Carleman pour des systèmes paraboliques et applications aux problèmes inverses et à la contrôlabilité : contribution à la diffraction d'ondes acoustiques dans un demi-plan homogène." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10025.
Full textIn the first part, we prove Carleman estimates for parabolic systems. In chapter1, we prove stability inequalities for 2 x 2 parabolic system using Carleman estimates with one observation. It is concerns to the identification of the coefficients and initial conditions of the system. The chapter2 is devoted to th Carleman estimates of parabolic systems for which the diffusion coefficients are assumed to be ofclass piecewise C1 or with bounded variations. In the end, we give some applications to the null controllability. The second part is devoted to the study of the scattering problem of acoustics waves in a homogeneous half-plane. It is about a boundary value problem associated to the Helmholtz equation in theupper half-plane with a nonhomogeneous Neumann boundary data. We provide some answers to the question of uniqueness and existence of solutions for some classes of the boundary data
Lokhov, Alexey. "Etude non-perturbative de corrélateurs en QCD." Phd thesis, Ecole Polytechnique X, 2006. http://tel.archives-ouvertes.fr/tel-00114163.
Full textest la simulation numérique sur réseau. Cet outil a été largement utilisé en phénoménologie,
mais il peut aussi servir pour étudier les paramètres fondamentaux de la théorie (tels que la
constante de couplage) et ses propriétés fondamentales. Ceci est le but principal de la présente
thèse. Nous avons étudié les fonctions de corrélation de la théorie Yang-Mills pure en jauge
de Landau, notamment les propagateurs du gluon et du fantôme. Nous nous sommes particulièrement
intéressés au paramètre LQCD qui est extrait à l'aide des prédictions de la théorie des
perturbations (jusqu'à l'ordre NNNLO). Les corrections dominantes en puissance sont aussi considérées,
nous montrons qu'elles sont importantes même à des énergies assez grandes (de l'ordre
de 10 GeV). Une méthode de soustraction de ces termes correctifs est proposée, ce qui permet
une meilleur estimation de LQCD. Notre résultat final est Lambda_nf_MSbar = 269(5)+12−9 MeV. Une autre
question que nous considéons est celle du comportement infrarouge des fonctions de Green (aux
énergies de l'ordre de ou inférieur à LQCD). A ces énergies le comportement des fonctions de
Green change de manière radicale, et cela est probablement lié au confinement. Nous cherchons
à clarifier la nature de ces changements afin de comprendre ses origines. Beaucoup de questions
se posent: l'ambigu¨té de Gribov, la portée de diverses relations non-perturbatives entre les
fonctions de Green, la cohéence de l'approche nuérique aux petites énergies. Les simulations
sur réseau permettent de vérifier les prédicitons analytiques, elles donnent accès aux corrélateurs
non-perturbatifs. Notre analyse suggère que le propagateur du gluon est fini et non nul dans
l'infrarouge, et que le comportement en puissance du propagateur du fanôme est le même que
dans le cas libre.
Mitschi, Claude. "Groupes de galois differentiels et g-fonctions." Université Louis Pasteur (Strasbourg) (1971-2008), 1989. http://www.theses.fr/1989STR13016.
Full textPintoux, Caroline. "Calculs stochastique et de Malliavin appliqués aux modèles de taux d'intérêt engendrant des formules fermées." Phd thesis, Université de Poitiers, 2010. http://tel.archives-ouvertes.fr/tel-00555727.
Full textMaxime, Camille. "Localisation de la lumière dans des rugosités de taille nanométrique de surfaces métalliques traitée par les équations intégrales et les ondelettes." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00681803.
Full textTorrelli, Tristan. "Equations fonctionnelles pour une fonction surun espace singulier." Phd thesis, Université de Nice Sophia-Antipolis, 1998. http://tel.archives-ouvertes.fr/tel-00011262.
Full textAprès avoir donné des résultats sur les polynômes de Bernstein associés aux sections d'un D-Module holonome, nous faisons l'étude du cas g lisse à l'origine, puis f lisse et X hypersurface. Nous étudions ensuite l'existence de polynômes de Bernstein génériques et relatifs des sections de R associées à une déformation analytique, reliant ces questions à la géométrie d'espaces conormaux.
Reprenant des idées de B. Malgrange, nous donnons ensuite une construction adaptée à l'étude des polynômes de Bernstein des sections de R lorsque les morphismes g et (f,g) définissent des intersections complètes à singularité isolée à l'origine. Cette construction impose notamment la quasi-homogénéité de g et nécessite des calculs d'annulateurs. Nous nous consacrons enfin aux calculs de polynômes de Bernstein basés sur ces résultats. Nous donnons d'abord un algorithme de calcul lorsque en plus des hypothèses adéquates, nous supposons que la partie initiale de f définit une singularité isolée sur X. Quand de plus f est quasi-homogène, nous obtenons des formules explicites. Nous terminons notre étude par des exemples de calculs lorsque X est un cône quadratique non dégénéré.
HECART, JEAN-MARC. "Fonctions separement solutions d'une equation aux derivees partielles elliptique." Toulouse 3, 1998. http://www.theses.fr/1998TOU30203.
Full textTORRELLI, TRISTAN. "Equations fonctionnelles pour une fonction sur un espace singulier." Nice, 1998. http://www.theses.fr/1998NICE5202.
Full textColas, des Francs Gérard. "Optique sub-longueur d'onde et fluorescence moléculaire perturbée." Toulouse 3, 2002. http://www.theses.fr/2002TOU30095.
Full textWe propose here to study near-field optics interaction with a fluorescent molecule. In the first part, we use the Drude-Lorentz model to describe the fluorescent signal in confined geometry. That leads us to introduce the field-susceptibility formalism. The field-susceptibility is a tensor which gives the electric field scattered by an oscillating dipole, taking into account the surroundings influence. Then, we apply this formalism to two configurations of scanning near-field optical microscopes using a single fluorescent molecule probe as a detector or a light source. In particular, we precise the role of the local density of states in the images formation. .
Guillois, Florian. "Analyse du transport turbulent dans une zone de mélange issue de l'instabilité de Richtmyer-Meshkov à l'aide d'un modèle à fonction de densité de probabilité : Analyse du transport de l’énergie turbulente." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC020/document.
Full textThe aim of the thesis is to simulate a turbulent mixing zone resulting from the Richtmyer-Meshkov instability using a probability density function (PDF) model. An emphasis is put on the analysis of the turbulent kinetic energy transport.To this end, we first highlight the link existing between the one-point statistics of the flow and its initial conditions at large scales. This link is expressed through the principle of permanence of large eddies, and allows to establish predictions for quantities of the mixing zone, such as its growth rate or its anisotropy.We then derive a Langevin PDF model which is able to reproduce this dependency of the statistics on the initial conditions. This model is then validated by comparing it against large eddy simulations (LES).Finally, an asymptotic analysis of the derived model helps to improve our understanding of the turbulent transport. A diffusion regime is identified, and the expression of the diffusion coefficient associated with this regime confirms the influence of the permanence of large eddies on the turbulent transport.Throughout this thesis, our numerical results were based on Monte Carlo simulations for the Langevin model. In this regard, we proceeded to the development of a specific Eulerian method and its comparison with Lagrangian counterparts
Abadie, Jean-Francois. "Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading »." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS445.
Full textThe work presented in the first part of this thesis is the result of a collaboration between Alstom and the RATP. We present various models and algorithms that can be used to bound a real-valued function f defined on an interval I and its (d−1) first derivativesby knowingreliable boundson f in some discrete points and globalboundson its dth derivative. These results are applied to a situation inspired by the railway world. Finally, we present various extensions of our work, and we explain how the previous models can be easily generalized to vector-valuedapplications defined on an interval. The second part of this thesis is dedicated to the theoretical and numerical study of a shape from shading problem, which consists in a surface reconstitution from a black and white picture, by knowing only the shades of gray and the altitude of the surface at some points. We remind how the viscosity solutions framework allows us to obtain a well-posed formulation of this problem. Then we expose an explicit expression of an approximation scheme associated to this problem, and we propose a significant optimization of some algorithmsused to solve numerically such a problem. In the future, the works presented in the two parts of the thesis could be coupled to allow a real-time guidance of flying objects like drones overa given region
Lévêque, Gaëtan. "Manipulation d'atomes froids par champs optiques confinés : théorie et simulation numérique." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00006141.
Full textLiu, Yu. "Algorithmes pour la méthode des éléments finis et pour la méthode de continuation : application à la contrôlabilité exacte." Compiègne, 1989. http://www.theses.fr/1989COMPD197.
Full textBoudjema, Souhila. "OSCILLATIONS DANS DES ÉQUATIONS DE LIÉNARD ET DES ÉQUATIONS D'ÉVOLUTION SEMI-LINÉAIRES." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00903302.
Full textChaabi, Slah. "Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non-bornées." Phd thesis, Aix-Marseille Université, 2013. http://tel.archives-ouvertes.fr/tel-00916049.
Full textPerrin, Nicolas. "Méthodes stochastiques en dynamique moléculaire." Thesis, Nice, 2013. http://www.theses.fr/2013NICE4011/document.
Full textThis thesis presents two independent research topics. Both are related to the application of stochastic problems to molecular dynamics. In the first part, we present a work related to the probabilistic interpretation of the Poisson-Boltzmann equation. This equation describes the electrostatic potential of a molecular system. After an introduction to the Poisson-Boltzmann equation, we focus on the parabolic and linear equation. After extending an existence and uniqueness result for backward stochastic differential equations, we establish a probabilistic interpretation of the nonlinear Poisson-Boltzmann equation with backward stochastic differential equations. Finally, in a more prospective second part, we initiate a study of a slow and fast variables detection method due to Paul Malliavin
Éon, Richard. "Asymptotique des solutions d'équations différentielles de type frottement perturbées par des bruits de Lévy stables." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S024/document.
Full textThis thesis deals with the study of friction type differential equations, in other words, attractive equations, with a unique stable point 0, describing the speed of an object submitted to a frictional force. This object's speed is disturbed by Lévy type random perturbations. In a first part, one is interested in fondamental properties of these SDE: existence and unicity of a solution, Markov and ergodic properties, and more particularly the case of stable Lévy processes.In a second part, one study the stability of the solution of these SDE when the perturbation is an stable Lévy process that tends to 0. In fact, one proves the existence of a Taylor expansion of order one around the deterministic solution for the object's speed and position. In a third part, one study the asymptotic behaviour of the solutions when the initial speed is 0 and the perturbation is a symmetric stable Lévy process. One proves that the amount of perturbations, if the stability's index of the Lévy process and the increasing of the potential are big enough, leads to a gaussian asymptotic behaviour for the object's position.In a forth part, one relaxes the assumption of symmetry of the perturbation by proving the same result as in the third part but with a drift. To do so, one first studies the tail of the invariant measure of the object's speed.Finally, in a last part, one is interested in the same result as in the third part when the perturbation is the sum of the Brownian motion and a pure jump stable Lévy process. Then, one begins the study of the dimension two by considering the case where the equations are separated but where the driving Brownian motions are dependent
Tumuluri, suman Kumar. "Age-structured nonlinear renewal equations." Paris 6, 2009. http://www.theses.fr/2009PA066233.
Full textJacquier, Marine. "Mathematical modeling of the hormonal regulation of food intake and body weight : applications to caloric restriction and leptin resistance." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1027/document.
Full textThe regulation of food intake and energy expenditure usually limits important loss or gain of body weight. Hormones (leptin, ghrelin, insulin) and nutrients (glucose, triglycerides) are among the main regulators of food intake. Leptin is also involved in leptin resistance, often associated with obesity and characterized by a reduced efficacy to regulate food intake. Mathematical models describing the dynamics of body weight have been used to assist clinical weight loss interventions or to study an experimentally inaccessible phenomenon, such as starvation experiments in humans. Modeling of the effect of hormones on body weight has however been largely ignored.In this thesis, we first consider a model of body weight regulation by hormones in rats, made of nonlinear differential equations. It describes the dynamics of food intake, body weight and energy expenditure, regulated by leptin, ghrelin and glucose. It is able to reproduce and predict the evolution of body weight and food intake in rats submitted to different patterns of caloric restriction, showing the importance of the adaptation of energy expenditure. Second, we introduce the first model of leptin resistance development, based on the regulation of food intake by leptin and leptin receptors. We show that healthy individuals may become leptin resistant and obese due to perturbations in food intake or leptin concentration. Finally, modifications of these models are presented, characterized by simplified yet realistic body weight dynamics. The models prove able to fit the previous, as well as new sets of experimental data and allow to build a complete model combining both previous models regulatory mechanisms
Le, Blanc Valérie. "Stabilité d’ondes périodiques, schéma numérique pour le chimiotactisme." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10091/document.
Full textThis thesis is organized around two aspects of the study of partial differentialequations. In a first part, we study the stability of periodic solutions for conservationlaws. First, we prove asymptotic L1-stability of periodic solutions of scalarinhomogeneous conservation laws. Then, we show a result on structural stability ofroll-waves. More precisely, we prove that periodic solutions of a hyperbolic systemwithout viscosity are the limits of the solutions of the problem with viscosity, as theviscous term tends to 0. In a second part, we study a system of partial differentialequations derived from biology: the model of Patlak-Keller-Segel in dimension 2, describingthe phenomena of chemotaxis. For this model, we construct a finite-volumescheme, which approaches the solution while keeping some properties of the system:positivity, conservation of mass, energy estimate
Terrand-Jeanne, Alexandre. "Régulation des systèmes à paramètres distribués : application au forage." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1283/document.
Full textThis monograph is devoted to the output regulation of some distributed parameters systems. To reach this objective, a simply proportional integral controller is implemented. Then the stability of the closed loop is proved using a Lyapunov functional that can be built given a Lyapunov functional for the open-loop system. The main contribution of this work is the method to build the Lyapunov functional, it is inspired by a well-known method in non-linear system theory : the forwarding. In a first part, the system studied is an abstract Cauchy problem and the problematic is stated using semigroup theory. Thanks to the Lyapunov employed, the regulation can be guaranteed providing some assumption on the systems operators. The second part detailed how the output regulation can be obtain for all linear outputs when the system is a n × n systems of linear balance laws in one space dimension. The result is given in the case where inputs and outputs act on the PDE’s boundary conditions and for open-loop stabilizable system. It generalize many contribution in the topic of output regulation for systems of linear balance laws. Last but not least, a part is devoted to the study of mechanicals vibrations in a drill pipe. In a first time, the behavior of the solutions for different kind of models use to model the drill pipe is detailed. Then, it is shown that the new Lyapunov functional allow to take into account complex, infinite dimensional model and to regulate the drill pipe velocity at the bottom of the wellbore by only measuring the surface velocity and with a P-I controller. At the end, some simulations are given that illustrate the result
Hmili, Hadda. "Echanges d'intervalles. Equations cohomologiques et distributions invariantes." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2012. http://tel.archives-ouvertes.fr/tel-00716435.
Full text