Academic literature on the topic 'Équations de Navier-Stokes – Solutions numériques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équations de Navier-Stokes – Solutions numériques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Équations de Navier-Stokes – Solutions numériques"
Gallagher, Isabelle, Slim Ibrahim, and Mohamed Majdoub. "Solutions axisymétriques des équations de Navier–Stokes." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 9 (May 2000): 791–94. http://dx.doi.org/10.1016/s0764-4442(00)00262-7.
Full textGrandmont, C., and A. Soualah. "Solutions fortes des équations de Navier-Stokes avec conditions dissipatives naturelles." ESAIM: Proceedings 25 (2008): 1–18. http://dx.doi.org/10.1051/proc:082501.
Full textFurioli, Giulia, Pierre-Gilles Lemarié-rieusset, and Elide Terraneo. "Sur l'unicité dans L3ℝ3 des solutions « mild » des équations de Navier-Stokes." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 12 (December 1997): 1253–56. http://dx.doi.org/10.1016/s0764-4442(97)82348-8.
Full textGilles Lemarié-Rieusset, Pierre. "Solutions faibles d'énergie infinie pour les équations de Navier—Stokes dans ℝ3." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 12 (June 1999): 1133–38. http://dx.doi.org/10.1016/s0764-4442(99)80427-3.
Full textLemarié-Rieusset, Pierre Gilles. "Une remarque sur l'analyticité des solutions milds des équations de Navier–Stokes dans." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 3 (February 2000): 183–86. http://dx.doi.org/10.1016/s0764-4442(00)00103-8.
Full textDuchon, Jean, and Raoul Robert. "Dissipation d'énergie pour des solutions faibles des équations d'euler et navier-stokes incompressibles." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 3 (August 1999): 243–48. http://dx.doi.org/10.1016/s0764-4442(00)88601-2.
Full textLemarié-Rieusset, Pierre-Gilles. "Nouvelles remarques sur l'analyticité des solutions milds des équations de Navier–Stokes dans." Comptes Rendus Mathematique 338, no. 6 (March 2004): 443–46. http://dx.doi.org/10.1016/j.crma.2004.01.015.
Full textMay, Ramzi. "Unicité des solutions des équations de Navier–Stokes dans les espaces de Morrey–Campanato." Bulletin des Sciences Mathématiques 133, no. 8 (December 2009): 817–36. http://dx.doi.org/10.1016/j.bulsci.2008.12.003.
Full textBresch, Didier, and Benoît Desjardins. "Stabilité de solutions faibles globales pour les équations de Navier–Stokes compressible avec température." Comptes Rendus Mathematique 343, no. 3 (August 2006): 219–24. http://dx.doi.org/10.1016/j.crma.2006.05.016.
Full textGallagher, Isabelle, Dragoş Iftimie, and Fabrice Planchon. "Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes." Comptes Rendus Mathematique 334, no. 4 (January 2002): 289–92. http://dx.doi.org/10.1016/s1631-073x(02)02255-0.
Full textDissertations / Theses on the topic "Équations de Navier-Stokes – Solutions numériques"
Badra, Mehdi. "Stabilisation par feedback et approximation des équations de Navier-Stokes." Toulouse 3, 2006. http://www.theses.fr/2006TOU30242.
Full textThis thesis deals with some feedback stabilization problems for the Navier-Stokes equations around an unstable stationary solution. The case of a distributed control localized in a part of the geomatrical domain and the case of a boundary control are considered. The control is expressed in function of the velocity field by a linear feedback law. The feedback law is provided by an algebraic Riccati equation which is obtained with the tools of the optimal control theory. The question of approximating such controlled systems is also considered. We first study the approximation of the linearized Navier-Stokes equations (the so-called Oseen equations) for rough boundary and divergence data. General error estimates are given and Galerkin methods are investigated. We also prove a general nonconform approximation theorem for closed-loop systems obtained from the Riccati theory. We apply this theorem to study the approximation of the Oseen closed-loop system
Mullaert, Chloé. "Etude mathématique des équations de Saint-Venant et de Navier-Stokes." Paris 6, 2011. http://www.theses.fr/2011PA066538.
Full textThis thesis is divided into two parts. In the _rst one, we are interested in the Equatorial Shallow Water equations which modelize the behaviour of shallow homogeneous _uids in the equatorial zone in case of large rotation of the Earth. Thanks to these hypotheses, using the Navier-Stokes equations, we get a penalized system. The penalization parameter is called " and takes into account the smallness hypotheses. Studying the penalization term, we exhibit a formal limit system when the parameter " tends to zero. Finally, we prove the convergence of the _ltered solutions toward the solution of the limit system. In the second part, we exhibit a class of initial data which generate a global solution of the Navier-Stokes equations in R3. These equations are well-posed in R2 but in R3 we need, for example, to add a su_cient smallness condition on the initial data. When the inital data spectrum is near the horizontal plane then we will prove that it generates a global solution to the Navier-Stokes equations. Moreover, we establish that, under some hypotheses, the perturbation of an initial data generating a global solution, by these data with quasi- horizontal spectrum, also generates a global solution
Rabearivelo, Patrice Maminirina. "Contribution à la résolution des équations de Navier Stokes par une méthode de réanalyse." Paris 12, 2005. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990003939800204611&vid=upec.
Full textOur work is centred on the problem of the nurnerical modeling of the nonlincar equations of Navier Stokes. On the basis of a discretization of the equations by an approach finite elements, we develop an another version of the formulation by the reanalysis method. It aliows the taking into account of variations of boundary conditions without having to rebuild the whole of the associated linear system. Two methods are then proposed, one corresponds to the stationary regime while the other milked the nonpermanent fiows. For thc validation of our studies, we developed a computer code treating the "window problem". We used several configurations there corresponding to boundary conditions different and we observed profits of appreciable calculations compared to the professional computer codes. Our work crosses several fields of research; it thus offers very encouraging prospects for application
Guevel, Yann. "Méthodes numériques adaptées à la résolution des équations de Navier-Stokes." Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS392/document.
Full textThe research group "Instabilités et Méthodes Numériques Spéci-fiques" operates in the development of numerical tools for solving nonlinear problems by using, in particluar, the Asymptotic Numer- ical Method (ANM). Based on coupling a perturbation method and a spatial discretization, the ANM is effective and makes it possible to precisely determine the transitions such as, for example, loss of uniqueness of the solution. The objective of this thesis is to offer al- ternative numerical methods both robust and effective, for solving the Navier-Stokes equations. We are interested in steady bifurcation analysis, and in time dependent flow simulation .Initially, numerical bifurcation analysis techniques for steady flow problems in very large number of degrees of freedom are de- scribed. These techniques, based on the ANM, are implemented in the multiphysics ELMER open-source software. We detail the im- plementation of the steady bifurcation analysis methods such as continuation of solution branches, detection of load parameter critical values and branch switching at steady bifurcation point. The emer- gence of a geometric progression in ANM series terms in the vicinity of a singularity is described. Discussions are proposed for the case of symmetry breaking bifurcations. The methods described in this the- sis are validated using reference cases of the literature, such as flow in pipe with sudden expansion/contraction. New results for three- dimensional flow in a sudden expansion, are obtained according to a parametric study. The use of high performance computing libraries makes possible the bifurcation analysis for models with high number of degrees of freedom, in affordable computing times. Secondly, high-order solvers are proposed for the simulation of un- steady flows. Homotopy with convex combination and a perturba- tion technique, are coupled to a time integration scheme in order to solve the unsteady Navier-Stokes equations. The case of two- dimensional flow around a fixed cylinder is studied. This reference problem allows us to validate and discuss proposed improvements. In this way, we confirm, in the numerical tests, that it is possible to reduce the computation time by avoiding operators assembly and resolution of unuseful linear systems in respect to the solution quality. In addition, new lighting is provided on the use of Padé approximants over previous work. The use of these nonlinear solvers allows us to significantly reduce the number of matrix factorization retaining them valid for many time steps, and sometimes on the complete time do- main. Many opportunities are envisaged, in particular the analysis of ANM series for the case of limit point, the Hopf bifurcation, the study of other cases of three-dimensional flow, the fluid-structure interaction. Similarly, the combination of ANM models with reduction techniques f stable periodic orbits are possible
Maltese, David. "Quelques résultats en analyse théorique et numérique pour les équations de Navier-Stokes compressibles." Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0005/document.
Full textIn this thesis, we deal with mathematical and numerical analysis of compressible Navier-Stokes equations inbarotropic regime. Most of these works presented here combine mathematical analysis of partial differentialequations and numerical methods with aim to shred more light on the construction of weak solutions on oneside and on the convergence mechanisms of numerical methods approximating these weak solutions on theother side. Indeed, the compressible Navier-Stokes equations are strongly nonlinear and their mathematicalanalysis necessarily relies on the structure of equations. More precisely, we prove in the theorical part theexistence of weak solutions for a model a flow of compressible viscous fluid with variable entropy where theentropy is transported. We use the classical techniques to prove the existence of weak solutions for thecompressible Navier-Stokes equations in barotropic regime. We also investigate the 3D/2D dimensionreduction in the compressible Navier-Stokes equations using the relative energy method. In the numerical wedeal with unconditionally error estimates for numerical schemes approximating weak solutions of thecompressible Navier-Stokes equations. These error estimates are obtained by using the discrete version of therelative energy method. These error estimates are obtained for a academic finite volume/finite element schemeand for the Marker-and-Cell scheme. We also prove that the Marker-and-cell scheme is unconditionally anduniformly asymptotically stable at the Low Mach number regime. These are the first results onunconditionally error estimates for numerical schemes approximating the compressible Navier-Stokesequations in barotropic regime
Rechia, Ahmed. "Résolution numérique des équations de Navier-Stokes en bidimensionnel incompressible : méthode d'Euler-Lagrange avec pénalité et maillage non structuré." Lille 1, 1992. http://www.theses.fr/1992LIL10095.
Full textNon, Étienne. "Détermination numérique des solutions du système de Navier-Stokes périodiques dans une dimension spatiale." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27109/27109.pdf.
Full textTilch, Ralf. "Unstructures grids for the compressible Navier-Stokes equations : or CFD with less contraints." Toulouse, INPT, 1991. http://www.theses.fr/1991INPT108H.
Full textRavalason, William. "Résolution numérique des équations de Navier-Stokes pour les écoulements transsoniques autour d'arrière-corps droits." Lille 1, 1985. http://www.theses.fr/1985LIL10117.
Full textFrey, Jean-Michel. "Interactions hydrodynamiques entre particule et paroi en écoulement de Stokes : application à la filtration." Toulouse, INPT, 1998. http://www.theses.fr/1998INPT049H.
Full textBooks on the topic "Équations de Navier-Stokes – Solutions numériques"
1940-, Heywood J. G., ed. The Navier-Stokes equations II: Theory and numerical methods : proceedings of a conference held in Oberwolfach, Germany, August 18-24, 1991. Berlin: Springer-Verlag, 1992.
Find full textRautmann, R., J. G. Heywood, and K. Masuda. The Navier-Stokes Equations Ii-Theory and Numerical Methods: Proceedings of a Conference Held in Oberwolfach, Germany, August 18-24, 1991 (Lecture Notes in Mathematics). Springer, 1993.
Find full textThe Navier-Stokes Equations Ii-Theory and Numerical Methods (Lecture Notes in Mathematics). Springer Verlag, 1993.
Find full textNavier-Stokes equations and nonlinear functional analysis. 2nd ed. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1995.
Find full textNumerical Methods for Unsteady Compressible Flow Problems. Taylor & Francis Group, 2021.
Find full textBirken, Philipp. Numerical Methods for Unsteady Compressible Flow Problems. Taylor & Francis Group, 2021.
Find full textBirken, Philipp. Numerical Methods for Unsteady Compressible Flow Problems. Taylor & Francis Group, 2021.
Find full textWagner, Siegfried. Computational fluid dynamics on parallel systems: Proceedings of a CNRS-DFG Symposium in Stuttgart, December 9 and 10, 1993. 1995.
Find full textRoos, Hans-Görg, Martin Stynes, and Lutz Tobiska. Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems (Springer Series in Computational Mathematics). Springer, 1996.
Find full textBook chapters on the topic "Équations de Navier-Stokes – Solutions numériques"
Caltagirone, Jean-Paul. "Solutions exactes des équations de Navier-Stokes." In Physique des Écoulements Continus, 89–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39510-9_4.
Full text"4.2. Solutions faibles." In Introduction aux équations de Navier-Stokes incompressibles, 124–28. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c020.
Full text"8.3. Construction de solutions." In Introduction aux équations de Navier-Stokes incompressibles, 298–302. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c052.
Full text"9.3. Existence de solutions stationnaires." In Introduction aux équations de Navier-Stokes incompressibles, 321–28. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c058.
Full text"4.3. Formulation intégrale et solutions mild." In Introduction aux équations de Navier-Stokes incompressibles, 128–38. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c021.
Full text"3.4. Solutions classiques des équations de Navier-Stokes." In Introduction aux équations de Navier-Stokes incompressibles, 74–89. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c014.
Full text"4.4. Un théorème d’existence de solutions mild." In Introduction aux équations de Navier-Stokes incompressibles, 138–43. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c022.
Full text"7.4. Inégalité d’énergie et solutions régularisées globales." In Introduction aux équations de Navier-Stokes incompressibles, 284–86. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c046.
Full text"4.8. Temps d’existence des solutions et critères d’explosion." In Introduction aux équations de Navier-Stokes incompressibles, 160–68. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c026.
Full text"3.6. Propriétés de décroissance spatiale des solutions classiques." In Introduction aux équations de Navier-Stokes incompressibles, 93–113. EDP Sciences, 2025. https://doi.org/10.1051/978-2-7598-3635-2.c016.
Full text