Dissertations / Theses on the topic 'Équations de réaction-diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Équations de réaction-diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Laliberté, Édith. "Modélisation de motifs avec des équations de réaction-diffusion." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25377/25377.pdf.
Full textLaliberté, Édith. "Génération de motifs avec des équations de réaction-diffusion." Master's thesis, Université Laval, 2008. http://hdl.handle.net/20.500.11794/20046.
Full textNordmann, Samuel. "Équations de réaction-diffusion, propriétés qualitatives et dynamique des populations." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS278.
Full textWe are interested in some problems arising in reaction-diffusion equations and their application to population dynamics. The first part deals with stable stationary solutions of reaction-diffusion equations. More precisely, our aim is to understand the influence of the geometry of the domain on the existence of stable non-constant solutions, called patterns. We establish a criterion for the non-existence of patterns in general domains. In the second part, we address a Hamilton-Jacobi model for Darwin's theory of evolution. This models features a concentration phenomenon, that is, the solution converges to a Dirac mass when a rescaling parameters goes to 0. We study the case of a population structured by age and phenotype, subject to competition between individuals. In a second step, we add the effect of mutations. We also consider a model which features a phenomenon of evolutionary rescue, in which the population can have cyclic dynamics. The third part is devoted to the study of systems of reaction-diffusion equations. Our framework encompasses the epidemiological SI model, and extends some results to a broader class. Finally, we propose a model to account for the dynamics of riots and social unrest
Allali, Karam. "Analyse et simulation numérique des problèmes de réaction-diffusion avec hydrodynamique." Lyon 1, 2000. http://www.theses.fr/2000LYO10118.
Full textSchmitt, Didier. "Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse." Nancy 1, 1995. http://www.theses.fr/1995NAN10283.
Full textDucasse, Romain. "Équations et systèmes de réaction-diffusion en milieux hétérogènes et applications." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE054/document.
Full textThis thesis is dedicated to the study of reaction-diffusion equations and systems in heterogeneous media. It is divided into two parts. The first one is devoted to the study of reaction-diffusion equations in periodic media. We pay a particular attention to equations set on domains that are not the whole space $\mathbb{R}^{N}$, but periodic domains, with "obstacles". In a first chapter, we study how the geometry of the domain can influence the speed of invasion of solutions. After establishing a Freidlin-Gartner type formula, we construct domains where the speed of invasion is strictly less than the critical speed of fronts. We also give geometric criteria to ensure the existence of directions where the invasion occurs with the critical speed. In the second chapter, we give necessary and sufficient conditions to ensure that invasion occurs, and we construct domains where intermediate phenomena (blocking, oriented invasion) occur. The second part of this thesis is dedicated to the study of models describing the influence of lines with fast diffusion (a road, for instance) on the propagation of invasive species. Indeed, it was observed that some species, such as the tiger mosquito, invade faster than expected some areas along the road-network. We study two models : the first one describes the influence of a curved road on the propagation. We study in particular the case of two non-parallel roads. The second model describes the influence of a road on an ecological niche, in presence of climate change. The main result is that the effect of the road is ambivalent: if the niche is stationary, then effect of the road is deleterious. However, if the niche moves, because of a shifting climate, the road can actually help the population to persist. To study this model, we introduce a notion of generalized principal eigenvalue for KPP-type systems, and we derive a Harnack inequality, that is new for this type of systems
El, Smaily Mohammad. "Equations de réaction-diffusion dans des milieux hétérogènes non bornés." Aix-Marseille 3, 2008. http://www.theses.fr/2008AIX30010.
Full textIn this thesis, we study some propagation phenomena related to the heterogenous reaction-advection-diffusion. This thesis is composed of three parts. If the nonlinearity f is of "KPP", there exists a minimal speed c*. In the first part, we study the asymptotics and some homogenization regimes of the minimal speed c* with respect to the factors of reaction and diffusion and with respect to the parameter of periodicity. In the second part, we give several min-max and max-min formulae for the speeds of pulsating travelling fronts according to the type of the nonlinearity. The third part is concerned with the variation of the minimal speed with respect to the periodicity parameter L and also with the homogenized speed of a reaction-diffusion equation in the one dimensional case, but in a setting more general than that of the first part
Dietrich, Laurent. "Accélération de la propagation dans les équations de réaction-diffusion par une ligne de diffusion rapide." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30048/document.
Full textThe aim of the thesis is the study of enhancement of propagation in reaction-diffusion equations, through a new mechanism involving a line with fast diffusion. We answer the question of the influence of such a coupling with strong diffusion on propagation by generalizing a result of Berestycki, Roquejoffre and Rossi (2013). The model under study was proposed to give a mathematical understanding of the influence of transportation networks on biological invasions. The first chapter shows existence and uniqueness of travelling waves solutions with a continuation method. The transition occurs through a singular perturbation - new in this context - connecting the system with a Wentzell boundary value problem. The second chapter is concerned with the speed of the waves : we show that it grows as the square root of the diffusivity on the line, generalizing and showing the robustness of the result by Berestycki, Roquejoffre and Rossi. Moreover, the growth ratio is characterized as the unique admissible velocity for the waves of an hypoelliptic a priori degenerate system. The last part is about the dynamics : we show that the waves attract a large class of initial data. In particular, we shed light on a new mechanism of attraction which enables the waves to attract initial data with size independent of the diffusivity on the line : this is a new result, in the sense than usually, enhancement of propagation has to be paid by strengthening the assumptions on the initial data for invasion to happen
Fraisse, Mélanie. "Quelques aspects mathématiques d'un modèle réduit de réaction-diffusion avec convection." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1300/.
Full textIn this thesis, we study the solutions of a Burgers-Boussinesq system in one dimension in space. This model was proposed by P. Constantin, J. -M. Roquejoffre, L. Ryzhik et N. Vladimirova (CRRV) to study compressible effects in flame models. We precise in this thesis some points of the study of (CRRV) that have been studied only from a formal asymptotic point of view. A first part studies a special case of self-similar solutions. We prove precise asymptotic results and the uniqueness of the solution. In a second part, we investigate the non-reactive Burgers-Boussinesq model, in large time. We highlight a large range of behaviours. A third part proves the existence of travelling waves in a large range of parameters
Boy, Agnès. "Analyse mathématique d'un modèle biologique régi par un système d'équations de réaction diffusion couplées." Pau, 1997. http://www.theses.fr/1997PAUU3028.
Full textTexier, Picard Rozenn. "Problèmes de réaction-diffusion avec convection : une étude mathématique et numérique." Lyon 1, 2002. http://tel.archives-ouvertes.fr/docs/00/04/50/62/PDF/tel-00002038.pdf.
Full textUrruty, Patrick. "Solutions fortes et solutions renormalisées pour des équations générales de la diffusion en milieu poreux." Pau, 1997. http://www.theses.fr/1997PAUU3006.
Full textFréjacques, Guillaume. "Ondes progressives pour des équations de réaction-diffusion avec des coefficients périodiques en temps." Aix-Marseille 3, 2005. http://www.theses.fr/2005AIX30074.
Full textThis paper is devoted to the study of pulsating travelling fronts for reaction-diffusion-advection equations in infinite cylinders with time-periodic diffusion and advection coefficients. Existence of a unique propagation speed and unicity up to translation of a pulsating travelling wave solution is proved for combustion-type reaction term. For a positive reaction-term, we prove the existence of a semifinite interval of possible propagation speeds. We derive a variationnal formula for the minimal speed for KPP-type nonlinearities. Continuity with respect to the period and estimates for the minimal speed are also derived
Chasseigne, Emmanuel. "Contribution à la théorie des traces pour des équations paraboliques quasi-linéaires." Tours, 2000. http://www.theses.fr/2000TOUR4041.
Full textLaamri, El Haj. "Existence globale pour des systèmes de réaction-diffusion dans L**(1)." Nancy 1, 1988. http://www.theses.fr/1988NAN10164.
Full textPradeilles, Frédéric. "Une méthode probabiliste pour l'étude des fronts d'onde dans les équations et systèmes d'équations de réaction-diffusion." Aix-Marseille 1, 1995. http://www.theses.fr/1995AIX11058.
Full textFresnel, Christophe. "Résolution numérique d'un problème d'interdiffusion intervenant en métallurgie." Bordeaux 1, 1987. http://www.theses.fr/1987BOR10537.
Full textSagon, Grégory. "Sur des problèmes de réaction-diffusion appliqués à la combustion." Rouen, 2006. http://www.theses.fr/2006ROUES063.
Full textThe present work deals with reaction-diffusion problems applied to combustion. Within the framework of the thermodiffusive model for flame propagation, we investigate the qualitative properties of travelling waves solutions. The first part is devoted to premixed flame deflagration in exterior domains, under a reasonable smallness assumption on the velocity field at infinity. In the second part, the analysis of partially premixed fronts in a strained mixing layer is carried out thanks to a variational approach to counterflow diffusion flames. Theoretical results combined with numerical simulations involve nonlinear analysis including standard elliptic estimates, calculus of variations (constrained minization, mountain pass theorem), nonvariational techniques (maximun principles, sliding method, topological degree), singular perturbations and uniform estimates for regularizations of free boundary problems
Yangari, Sosa Miguel Angel. "Fractional reaction-diffusion problems." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2270/.
Full textThis thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power , where and is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). For the first problem, we prove that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in terms of the decay of the initial condition. In the second problem, we prove that the propagation speed is exponential in time, and we find a precise exponent depending on the smallest index of the fractional laplacians and of the nonlinearity, also we note that it does not depend on the space direction
Perrut, Anne. "Systèmes de particules : un processus de réaction-diffusion à deux espèces et un modèle non gradient." Rouen, 1998. http://www.theses.fr/1998ROUES074.
Full textDkhil, Fathi. "Analyse de systèmes de réaction-diffusion-advection apparaissant dans des modèles de chimie et de biomathématiques." Cergy-Pontoise, 2002. http://www.theses.fr/2002CERG0143.
Full textIn this work, we study some examples of reaction-diffusion-advection systems which appear in models of physics, chemistry and biology. In the first, part we study the Gray-Scott system, which modelizes a cubic autocatalytic reaction. We first establish the global existence and uniqueness of a non trivial solution of this system in a bounded domain. We also prove the non-existence of non-constant stationary solution and of traveling pulse for some domain of parameters. As for traveling waves we first give an exact solution in the bistable case. Using a perturbation method and a fixed point argument, we show that this solution still exists near this case. In the second part we are interested in traveling wave solutions of a cross-diffusion system modelizing a combustion phenomenon in a porous medium. Using the topological degree method, we show the existence of a solution of the problem in a bounded domain. Then, by a compactness argument, we show that the solution obtained this way converges to a solution of the limit problem over on the line. In the last part, we study the singular limit of a degenerate reaction-diffusion-advection equation modelizing a chemotaxis phenomenon. We prove the convergence to a solution of a free boundary problem where the equation of the interface motion is a first-order Hamilton-Jacobi equation. The proof is based on the comparison principle and on the construction of sub- and super-solutions
Belk, Michaël. "Stabilité structurelle de solutions invariantes par translation : application à des problèmes de réaction-diffusion avec convection." Lyon 1, 2003. http://www.theses.fr/2003LYO10260.
Full textLe, Balc'h Kévin. "Contrôlabilité de systèmes de réaction-diffusion non linéaires." Thesis, Rennes, École normale supérieure, 2019. http://www.theses.fr/2019ENSR0016/document.
Full textThis thesis is devoted to the control of nonlinear partial differential equations. We are mostly interested in nonlinear parabolic reaction-diffusion systems in reaction kinetics. Our main goal is to prove local or global controllability results in small time or in large time.In a first part, we prove a local controllability result to nonnegative stationary states in small time, for a nonlinear reaction-diffusion system.In a second part, we solve a question concerning the global null-controllability in small time for a 2 × 2 nonlinear reaction-diffusion system with an odd coupling term.The third part focuses on the famous open problem due to Enrique Fernndez-Cara and Enrique Zuazua in 2000, concerning the global null-controllability of the weak semi-linear heat equation. We show that the equation is globally nonnegative controllable in small time and globally null-controllable in large time.The last part, which is a joint work with Karine Beauchard and Armand Koenig, enters the hyperbolic world. We study linear parabolic-transport systems with constant coeffcients. We identify their minimal time of control and the influence of their algebraic structure on the controllability properties
Texier-Picard, Rozenn. "Problèmes de réaction-diffusion avec convection : Une étude mathématique et numérique." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00002038.
Full textPhan, Quoc Hung. "Analyse qualitative des solutions de systèmes de réaction-diffusion et théorèmes de type Liouville." Paris 13, 2013. http://scbd-sto.univ-paris13.fr/secure/edgalilee_th_2013_phan.pdf.
Full textThis dissertation is devoted to the study of qualitative properties of solutions for some nonlinear elliptic and parabolic equations and systems. In the first part of the dissertation, we are interested in elliptic equations and systems with singular or degenerate coefficients of Hardy-Hénon type, in parabolic equations of the same type, and in a noncooperative parabolic system with constant coefficients. We obtain elliptic and parabolic Liouville-type theorems and we develop their applications : a priori estimates, singularity estimates in space or in time, decay estimates. In the second part, we prove the global existence and a priori bound of solutions of a Keller-Segel type, strongly coupled, parabolic system arising in crime modelling
Phan, Van Long Em. "Analyse asymptotique de réseaux complexes de systèmes de réaction-diffusion." Thesis, Le Havre, 2015. http://www.theses.fr/2015LEHA0012/document.
Full textThe neuron, a fundamental unit in the nervous system, is a point of interest in many scientific disciplines. Thus, there are some mathematical models that describe their behavior by ODE or PDE systems. Many of these models can then be coupled in order to study the behavior of networks, complex systems in which the properties emerge. Firstly, this work presents the main mechanisms governing the neuron behaviour in order to understand the different models. Several models are then presented, including the FitzHugh-Nagumo one, which has a interesting dynamic. The theoretical and numerical study of the asymptotic and transitory dynamics of the aforementioned model is then proposed in the second part of this thesis. From this study, the interaction networks of ODE are built by coupling previously dynamic systems. The study of identical synchronization phenomenon in these networks shows the existence of emergent properties that can be characterized by power laws. In the third part, we focus on the study of the PDE system of FHN. As the previous part, the interaction networks of PDE are studied. We have in this section a theoretical and numerical study. In the theoretical part, we show the existence of the global attractor on the space L2(Ω)nd and give the sufficient conditions for identical synchronization. In the numerical part, we illustrate the synchronization phenomenon, also the general laws of emergence such as the power laws or the patterns formation. The diffusion effect on the synchronization is studied
Choubane, Mohamed. "Résolution numérique à l'aide des schémas aux différences finies des équations de réaction - diffusion provenant de la biochimie." Paris 6, 1988. http://www.theses.fr/1988PA066148.
Full textKasbarian, Claudine. "Etude numérique pour les problèmes d'advection-diffusion : application à la modélisation d'écoulements turbulents compressibles." Lyon 1, 1995. http://www.theses.fr/1995LYO10106.
Full textContri, Benjamin. "Equations de réaction-diffusion dans un environnement périodique en temps - Applications en médecine." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4711/document.
Full textThis phD thesis investigates reaction-diffusion equations in a time periodic environment. These equations model the evolution of a cancerous tumor in the presence of a treatment that corresponds to an immunotherapy in the firs part of the manuscript, and to a cytotoxic chemotherapy after. We begin by considering time-periodic nonlinearities for which 0 and 1 are linearly stable equilibrium states. We study uniqueness, monotonicity and stability of pulsating fronts. We also provide some conditions for the existence and non-existence of such solutions.In the second part of the manuscript, we begin by working on time-periodic nonlinearities which are the sum of a positive function which stands for the growth of the tumor in the absence of treatment and of a death term of cancerous cells due to treatment. We are interested in equilibrium states of such nonlinearities, and we will infer from this study spreading properties and existence of pulsating fronts. We then refine the model by considering nonlinearities which are the sum of an asymptotic periodic nonlinearity and of a small perturbation. In particular we prove that the spreading properties remain valid in this case. To finish, we are interested in the influence of the protocol of the treatment
Labadie, Mauricio. "Equations de réaction-diffusion et quelques applications à la Biologie." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00666581.
Full textDucrot, Arnaud. "Problèmes élliptiques dans des domaines non bornés et propagation d'ondes de réaction-diffusion." Ecully, Ecole centrale de Lyon, 2004. http://www.theses.fr/2004ECDL0025.
Full textIn this work we theorically and numerically study reaction-diffusion and reactiondiffusion-convection problems. The theorical part is interested in multi-dimensional travelling waves solutions for reaction-diffuion systems with linearly dependant reaction terms. We develop new approach to study such systems with non Fredholm operators. This approach essentially concists in a reformulation of the equations with an integro-differential operator. It allows us to derive sorne existence results. The numerical part is interested in the influence of natural convection on the ignition of a reaction front. We study numerically study two models based on reaction-diffusionconvection systems. It is shown that natural convection can influence the place where a frontal polymerization starts together with critical conditions of ignition
Ahamadi, Malidi. "Méthode numérique pour le calcul des variétés centrales et des formes normales appliquée à des équations de réaction-diffusion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ52232.pdf.
Full textMaach, Fatna. "Existence pour des systèmes de réaction-diffusion ou quasi linéaires avec loi de balance." Nancy 1, 1994. http://www.theses.fr/1994NAN10121.
Full textBouhours, Juliette. "Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrie." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01070608.
Full textRibot, Magali. "Étude théorique de méthodes numériques our les systèmes de réaction-diffusion : application à des équations paraboliques non linéaires et non locales." Lyon 1, 2003. http://tel.archives-ouvertes.fr/docs/00/04/60/70/PDF/tel-00004563.pdf.
Full textDebussche, Arnaud. "Quelques problèmes concernant le comportement pour les grands temps des équations d'évolution dissipatives." Paris 11, 1989. http://www.theses.fr/1989PA112318.
Full textIn this work, we consider the long time behaviour of dissipative evolution equations. More precisely we study the existence of attracting sets such as attactors and inertial manifolds. In the first part, we describe a general method to construct inertial manifolds for a nonlinear parabolic equation. We obtain an existence theorem under the same type of assumptions as the methods that already exist. Our method is based on the resolution of a hyperbolic partial differentiai equation (the Sacker's equation) such that the graph of its solution is a positively invariant manifold. The second part is devoted to the existence of approximate inertial manifolds. These are substitute to inertial manifolds when their existence is not known. We prove in two cases (the reaction diffusion equation and the Cahn-Hilliard equation) the existence of an infinite family of approximate inertial manifolds with increasing order of approximation. Our method is general and can be applied to other equations. Finally, in the third part, we study a singular perturbation of the Cahn-Hilliard equation in space dimension one obtained by adding a second order derivative intime whose coefficient E is small. We prove the existence of attractors for the perturbed equation. Moreover, the Haussdorf semi distance from these attractors to the attractor of the unperturbed equation converges to zero when E goes to zero
Corvellec, Catherine. "Etude numérique et analytique des caractéristiques propagatives d'une zone de combustion se développant au sein d'un écoulement turbulent prémélangé modélisée par une approche de type "flammelette"." Poitiers, 1998. http://www.theses.fr/1998POIT2337.
Full textKonukoğlu, Ender. "Modeling glioma growth and personalizing growth models in medical images." Nice, 2009. http://www.theses.fr/2009NICE4000.
Full textMathematical models and more specifically reaction-diffusion based models have been widely used in the literature for modeling the growth of brain gliomas and tumors in general. Besides the vast amount of research focused on microscopic and biological experiments, recently models have started integrating medical images in their formulations. By including the geometry of the brain and the tumor, the different tissue structures and the diffusion images, models are able to simulate the macroscopic growth observable in the images. Although generic models have been proposed, methods for adapting these models to individual patient images remain an unexplored area. In this thesis we address the problem of “personalizing mathematical tumor growth models”. We focus on reaction-diffusion models and their applications on modeling the growth of brain gliomas. As a first step, we propose a method for automatic identification of patient-specific model parameters from series of medical images. Observing the discrepancies between the visualization of gliomas in MR images and the reaction-diffusion models, we derive a novel formulation for explaining the evolution of the tumor delineation. This “modified anisotropic Eikonal model” is later used for estimating the model parameters from images. Thorough analysis on synthetic dataset validates the proposed method theoretically and also gives us insights on the nature of the underlying problem. Preliminary results on real cases show promising potentials of the parameter estimation method and the reaction-diffusion models both for quantifying tumor growth and also for predicting future evolution of the pathology. Following the personalization, we focus on the clinical application of such patient-specific models. Specifically, we tackle the problem of limited visualization of glioma infiltration in MR images. The images only show a part of the tumor and mask the low density invasion. This missing information is crucial for radiotherapy and other types of treatment. We propose a formulation for this problem based on the patient-specific models. In the analysis we also show the potential benefits of such the proposed method for radiotherapy planning. The last part of this thesis deals with numerical methods for anisotropic Eikonal equations. This type of equation arises in both of the previous parts of this thesis. Moreover, such equations are also used in different modeling problems, computer vision, geometrical optics and other different fields. We propose a numerical method for solving anisotropic Eikonal equations in a fast and accurate manner. By comparing it with a state-of-the-art method we demonstrate the advantages of our technique
Garnier, Jimmy. "Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00755296.
Full textDebrie, Jean-Luc. "Modèle "distribué" de transistor IGBT pour simulation de circuits en électronique de puissance." Toulouse, INSA, 1996. http://www.theses.fr/1996ISAT0046.
Full textGalanti, Marta. "Processus de diffusion et réaction dans des milieux complexes et encombrés." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2004/document.
Full textThe overall purpose of this thesis is to analyze diffusion processes and diffusion-reaction processes in different types of non-ideal conditions, and to identify to which extent these non-ideal conditions influence the mobility of particles and the rate of the reactions occurring between molecules. In the first part of the thesis we concentrate on the effects of macromolecular crowding on the mobility of the agents, providing therefore a description of various diffusion processes in densely populated media. All the processes are analyzed by modeling the dynamics of the single agents as microscopic stochastic processes that keep track of the macromolecular crowding. The second part of the thesis aims at characterizing the role of the environment’s geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) on the reaction between selected molecules. The Smoluchowski theory for diffusion influenced reactions is thus adapted to domains arbitrarily decorated with obstacles and reactive boundaries, and the stationary diffusion equation is explicitly solved through harmonic-based techniques. The explicit calculation of the reaction rate constant and the derivation of simple approximated formulas are used for investigating nano-technological applications and naturally occurring reactions
Bages, Michaël. "Equations de réaction-diffusion de type KPP : ondes pulsatoires, dynamique non triviale et applications." Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00262323.
Full textCoulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Full textThis thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
Ribot, Magali. "Étude théorique de méthodes numériques pour les systèmes de réaction-diffusion; application à des équations paraboliques non linéaires et non locales." Phd thesis, Université Claude Bernard - Lyon I, 2003. http://tel.archives-ouvertes.fr/tel-00004563.
Full textAyyadi, Asma El. "Couplage des modèles classique-quantique. Simulation de la diode à effet tunnel." Toulouse, INSA, 2002. http://www.theses.fr/2002ISAT0026.
Full textThe principal objective of this work of thesis is to deal with the problem of coupling macroscopic fluid models (namely the Drift-Diffusion model) with quantum models (namely the Schrödinger equation) for those semiconductor devices where quantum effects play an important role only in a (small) portion of the domain. The hybrid classic-quantum models derived here are then coupled self-consistently with Poisson equation on the whole domain. The starting point for deducing the interface conditions is the kinetic-quantum coupling studied by Ben Abdallah ('98). The interface conditions are obtained with a diffusion limiting process. Second order interface conditions incorporating kinetic boundary layer corrections are derived. Two analytical formulae for the extrapolation coefficient appearing in the second order interface conditions, are proposed : the first one is based on the approximation of the albedo operator and the second one is an iteration procedure first introduced by Golse-Klar ('95). Resonant tunnelling diodes are simulated for two test cases of the results of the literature and the model shows good performance. Chapter 3 contains the extension of the results of the previous chapter to the case of Fermi-Dirac statistics and it follows the same structure. In the chapter 4 collisions are included in the quantum model via the Pauli equation. Appropriate interface conditions are deduced. Chapter 5 deals with the time dependant case with Boltzmann statistics
Stoimenov, Stoimen. "Analyse des symétries d'espace-temps dans les systèmes vieillissants." Nancy 1, 2006. http://www.theses.fr/2006NAN10106.
Full textThe slow dynamics observed in ferromagnetic systems rapidly quenched from a disordered initial state into its low-temperature ordered phase is characterized by the breaking of time-translation invariance and by dynamical scaling. Since the dynamical exponent generically has the value z=2 in this situation, the natural candidates for extended dynamical scale-transformation are the elements of the Schrödinger group Sch(d). A reformulation in terms of stochastic field-theory shows that the symmetries of the system, described by a stochastic Langevin equation, can be obtained from the consideration of the deterministic part of that equation, which is a non-linear partial differential equation. It follows that the form of the response functions can be derived from the hypothesis of their covariant transformation under local scale-transformations. The explicit construction of non-linear diffusion equations which are invariant under the Lie algebra schd of the Schrödinger group or else is subalgebra aged which is obtained when time-translations are excluded, requires the introduction of a new dimensionful variable, related to a physical coupling constant g. Constructing new representations of the sch1 and age1 containing g, new non-linear equations with real-valued solutions are obtained, which are Schrödinger- and not only Galilei-invariant. The resulting expression for the response function is derived. Applications to Bose-Einstein condensation and the slow kinetics of strongly interacting particle systems are discussed. A different route uses the embedding of sch1 as an (almost) parabolic subalgebra of the conformal algebra (conf3)C by considering the `mass' not as a constant, but as an additional variable. Invariant equations are classified and are compared to the coarse-grained equations for the time-dependent order-parameter in phase-ordering kinetics. Finally alt1, an other parabolic subalgebra, is studied as abstract Lie algebra. Its representation are discussed, as well as Appel system realization on coherent states
Descombes, Stéphane. "Systèmes semilinéaires diffusifs ou dispersifs : étude théorique : schémas précis d'intégration en temps par décomposition d'opérateurs." Lyon 1, 1998. http://www.theses.fr/1998LYO10109.
Full textEl, Ossmani Mustapha. "Méthodes numériques pour la simulation des écoulements miscibles en milieux poreux hétérogènes." Pau, 2005. http://www.theses.fr/2005PAUU3005.
Full textIn this thesis, we are interested in numerical methods for a model of incompressible and miscible flows having application in hydrogeology and oil engineering. We study and analyze a numerical scheme combining a mixed finite element method (MFE) and a finite volumes method (FV) to discretize the coupled system between an elliptic equation (pressure-velocity) and a convection-diffusion-reaction equation (concentration). The FV scheme considered is "vertex centred" type semiimplicit in time: explicit for the convection and implicit for the diffusion. We use a Godunov scheme to approach the convectif term and a P 1 finite element approximation for the diffusion term. We prove that the FV scheme is La and BV stable and satisfy the discrete maximum principle under a suitable CFL condition. Then, we show the convergence of the approximate solution obtained by the combined scheme MFE-FV towards the solution of the coupled problem. The proof of convergence is done in several steps : first we deduce strong convergence of the approximate solution in L2(Q), using La stability, BV estimates and a compactness argument. In the second step we study the decoupled MFE scheme, by giving a convergence result for the pressure and velocity. In the final step, the process of convergence of the approximate solution of the combined scheme MFE-FV towards the exact solution is obtained by passing in the limit and uniqueness of the solution of the continuous problem. . . Finally, we analyze a residual error estimator for a convection-diffusion-reaction equation discretized by a semi-implicit finite volume. We introduce two kinds of indicators. The first is local in time and space and constitutes an effective tool for the adaptation of the grid to each time step. The second is total in space but local in time and can be used for the adaptation in time. The error etimators with respect to both time and space yield global upper and local lower bounds on the error measured in the energy norm. Numerical results of adaptations of grid are presented and show the effectiveness of the method. The software part of this work concerns two shutters. The first allowed to carry out an IMPES simulator, MFlow, written in C++, for the simulation of the system of miscible flows considered in this thesis. The second shutter relates to the collaboration with a group of researchers for the development of the Homogenizer++ platform realized within the framework of the GDR MoMaS (http://momas. Univ-lyon1. Fr/)
Giletti, Thomas. "Phénomènes de propagation dans des milieux diffusifs excitables : vitesses d'expansion et systèmes avec pertes." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30043.
Full textReaction-diffusion systems arise in the description of phase transitions in various fields of natural sciences. This thesis is concerned with the mathematical analysis of propagation models in some diffusive, unbounded and heterogeneous media, which comes within the scope of an active research subject. The first part deals with the single equation, by looking at the inside structure of fronts, or by exhibiting new dynamics where the profile of propagation may not have a unique speed. In a second part, we take interest in some systems of two equations, where the lack of maximum principles raises many theoretical issues. Those works aim to provide a better understanding of the underlying processes of propagation phenomena. They highlight new features for reaction-diffusion problems, some of them not known before, and hence help to improve the theoretical approach as an alternative to empirical analysis
Bouin, Emeric. "Propagation de fronts structurés en biologie - Modélisation et analyse mathématique." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0960/document.
Full textThis thesis is devoted to the study of propagation phenomena in PDE models arising from biology. We study kinetic equations coming from the modeling of the movement of colonies of bacteria, but also reaction-diffusion equations which are of great interest in ecology to reproduce several features of dynamics and evolution of populations. The first part studies propagation phenomena for kinetic equations. We study existence and stability of travelling wave solutions for models where the dispersal part is given by an hyperbolic operator rather than by a diffusion. A set of admissible velocities comes into the game and we obtain various types of results depending on this set. In the case of a bounded set of velocities, we construct travelling fronts that propagate according to a speed given by a dispersion relation. When the velocity set is unbounded, we prove an accelerating propagation phenomena, for which we give the spreading rate. Then, we adapt to kinetic equations the Hamilton-Jacobi approach to front propagation. We show how to derive an effective Hamiltonian from the original kinetic equation, and prove some convergence results.The second part is devoted to studying models for populations structured by space and phenotypical trait. These models are important to understand interactions between invasion and evolution. We first construct travelling waves that we study qualitatively to show the influence of the genetical variability on the speed and the distribution of phenotypes at the edge of the front. We also perform the Hamilton-Jacobi approach for these non-local reaction-diffusion equations.Two appendices complete this work, one deals with the study of kinetic dispersal in unbounded domains, the other one being numerical aspects of competition models