Journal articles on the topic 'Equations de Schrödinger-Maxwell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Equations de Schrödinger-Maxwell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhdanov, Renat, and Maxim Lutfullin. "On separable Schrödinger–Maxwell equations." Journal of Mathematical Physics 39, no. 12 (December 1998): 6454–58. http://dx.doi.org/10.1063/1.532659.
Full textBenci, Vieri, and Donato Fortunato. "Solitons in Schrödinger-Maxwell equations." Journal of Fixed Point Theory and Applications 15, no. 1 (March 2014): 101–32. http://dx.doi.org/10.1007/s11784-014-0184-1.
Full textAhmed, I., and E. Li. "Simulation of Plasmonics Nanodevices with Coupled Maxwell and Schrödinger Equations using the FDTD Method." Advanced Electromagnetics 1, no. 1 (September 2, 2012): 76. http://dx.doi.org/10.7716/aem.v1i1.40.
Full textD'Aprile, Teresa, and Dimitri Mugnai. "Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 134, no. 5 (October 2004): 893–906. http://dx.doi.org/10.1017/s030821050000353x.
Full textBoccardo, Lucio, and Luigi Orsina. "A semilinear system of Schrödinger–Maxwell equations." Nonlinear Analysis 194 (May 2020): 111453. http://dx.doi.org/10.1016/j.na.2019.02.007.
Full textUmurzhakhova, Zh B., M. D. Koshanova, Zh Pashen, and K. R. Yesmakhanova. "QUASICLASSICAL LIMIT OF THE SCHRÖDINGER-MAXWELL- BLOCH EQUATIONS." PHYSICO-MATHEMATICAL SERIES 2, no. 336 (April 15, 2021): 179–84. http://dx.doi.org/10.32014/2021.2518-1726.39.
Full textBenci, Vieri, and Donato Fortunato. "An eigenvalue problem for the Schrödinger-Maxwell equations." Topological Methods in Nonlinear Analysis 11, no. 2 (June 1, 1998): 283. http://dx.doi.org/10.12775/tmna.1998.019.
Full textXu, Jiafa, Zhongli Wei, Donal O'Regan, and Yujun Cui. "INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER-MAXWELL EQUATIONS." Journal of Applied Analysis & Computation 9, no. 3 (2019): 1165–82. http://dx.doi.org/10.11948/2156-907x.20190022.
Full textHuang, Wen-nian, and X. H. Tang. "Semiclassical solutions for the nonlinear Schrödinger–Maxwell equations." Journal of Mathematical Analysis and Applications 415, no. 2 (July 2014): 791–802. http://dx.doi.org/10.1016/j.jmaa.2014.02.015.
Full textKim, Jae-Myoung, and Jung-Hyun Bae. "Infinitely many solutions of fractional Schrödinger–Maxwell equations." Journal of Mathematical Physics 62, no. 3 (March 1, 2021): 031508. http://dx.doi.org/10.1063/5.0028800.
Full textBoccardo, Lucio, and Luigi Orsina. "Regularizing effect for a system of Schrödinger–Maxwell equations." Advances in Calculus of Variations 11, no. 1 (January 1, 2018): 75–87. http://dx.doi.org/10.1515/acv-2016-0006.
Full textChen, Shang-Jie, and Chun-Lei Tang. "High energy solutions for the superlinear Schrödinger–Maxwell equations." Nonlinear Analysis: Theory, Methods & Applications 71, no. 10 (November 2009): 4927–34. http://dx.doi.org/10.1016/j.na.2009.03.050.
Full textRomanov, V. G. "Phaseless Inverse Problems for Schrödinger, Helmholtz, and Maxwell Equations." Computational Mathematics and Mathematical Physics 60, no. 6 (June 2020): 1045–62. http://dx.doi.org/10.1134/s0965542520060093.
Full textNakamitsu, Kuniaki, and Masayoshi Tsutsumi. "The Cauchy problem for the coupled Maxwell–Schrödinger equations." Journal of Mathematical Physics 27, no. 1 (January 1986): 211–16. http://dx.doi.org/10.1063/1.527363.
Full textHuang, Wen-nian, and X. H. Tang. "Ground-State Solutions for Asymptotically Cubic Schrödinger–Maxwell Equations." Mediterranean Journal of Mathematics 13, no. 5 (February 25, 2016): 3469–81. http://dx.doi.org/10.1007/s00009-016-0697-5.
Full textCandela, Anna Maria, and Addolorata Salvatore. "Multiple Solitary Waves for Non-Homogeneous Schrödinger–Maxwell Equations." Mediterranean Journal of Mathematics 3, no. 3-4 (November 2006): 483–93. http://dx.doi.org/10.1007/s00009-006-0092-8.
Full textAzzollini, A., and A. Pomponio. "Ground state solutions for the nonlinear Schrödinger–Maxwell equations." Journal of Mathematical Analysis and Applications 345, no. 1 (September 2008): 90–108. http://dx.doi.org/10.1016/j.jmaa.2008.03.057.
Full textWada, Takeshi. "Smoothing effects for Schrödinger equations with electro-magnetic potentials and applications to the Maxwell–Schrödinger equations." Journal of Functional Analysis 263, no. 1 (July 2012): 1–24. http://dx.doi.org/10.1016/j.jfa.2012.04.010.
Full textChen, Shang-Jie, and Chun-Lei Tang. "Multiple solutions for nonhomogeneous Schrödinger–Maxwell and Klein– Gordon–Maxwell equations on R 3." Nonlinear Differential Equations and Applications NoDEA 17, no. 5 (March 31, 2010): 559–74. http://dx.doi.org/10.1007/s00030-010-0068-z.
Full textXie, Guoda, Zhixiang Huang, Ming Fang, and Wei E. I. Sha. "Simulating Maxwell–Schrödinger Equations by High-Order Symplectic FDTD Algorithm." IEEE Journal on Multiscale and Multiphysics Computational Techniques 4 (2019): 143–51. http://dx.doi.org/10.1109/jmmct.2019.2920101.
Full textRUIZ, DAVID. "SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE." Mathematical Models and Methods in Applied Sciences 15, no. 01 (January 2005): 141–64. http://dx.doi.org/10.1142/s0218202505003939.
Full textKOUZAEV, GUENNADI A. "HERTZ VECTORS AND THE ELECTROMAGNETIC-QUANTUM EQUATIONS." Modern Physics Letters B 24, no. 20 (August 10, 2010): 2117–29. http://dx.doi.org/10.1142/s0217984910024523.
Full textSun, Juntao. "Infinitely many solutions for a class of sublinear Schrödinger–Maxwell equations." Journal of Mathematical Analysis and Applications 390, no. 2 (June 2012): 514–22. http://dx.doi.org/10.1016/j.jmaa.2012.01.057.
Full textHuang, Wen-nian, and X. H. Tang. "SEMICLASSICAL SOLUTIONS FOR THE NONLINEAR SCHRÖDINGER-MAXWELL EQUATIONS WITH CRITICAL NONLINEARITY." Taiwanese Journal of Mathematics 18, no. 4 (August 2014): 1203–17. http://dx.doi.org/10.11650/tjm.18.2014.3993.
Full textLeopold, Nikolai, and Peter Pickl. "Derivation of the Maxwell--Schrödinger Equations from the Pauli--Fierz Hamiltonian." SIAM Journal on Mathematical Analysis 52, no. 5 (January 2020): 4900–4936. http://dx.doi.org/10.1137/19m1307639.
Full textShimomura, Akihiro. "Modified Wave Operators for Maxwell-Schrödinger Equations in Three Space Dimensions." Annales Henri Poincaré 4, no. 4 (August 2003): 661–83. http://dx.doi.org/10.1007/s00023-003-0143-7.
Full textNakamura, Makoto, and Takeshi Wada. "Global Existence and Uniqueness of Solutions to the Maxwell-Schrödinger Equations." Communications in Mathematical Physics 276, no. 2 (September 25, 2007): 315–39. http://dx.doi.org/10.1007/s00220-007-0337-9.
Full textDai, Wei, Zhao Liu, and Guolin Qin. "Classification of Nonnegative Solutions to Static Schrödinger--Hartree--Maxwell Type Equations." SIAM Journal on Mathematical Analysis 53, no. 2 (January 2021): 1379–410. http://dx.doi.org/10.1137/20m1341908.
Full textBOUCHERES, T., T. COLIN, B. NKONGA, B. TEXIER, and A. BOURGEADE. "STUDY OF A MATHEMATICAL MODEL FOR STIMULATED RAMAN SCATTERING." Mathematical Models and Methods in Applied Sciences 14, no. 02 (February 2004): 217–52. http://dx.doi.org/10.1142/s0218202504003222.
Full textLESCARRET, VINCENT. "INTERMEDIATE MODEL FOR SPATIAL EVOLUTION IN NONLINEAR OPTICS." Mathematical Models and Methods in Applied Sciences 20, no. 08 (August 2010): 1209–49. http://dx.doi.org/10.1142/s0218202510004581.
Full textLi, Qingdong, Han Su, and Zhongli Wei. "Existence of infinitely many large solutions for the nonlinear Schrödinger–Maxwell equations." Nonlinear Analysis: Theory, Methods & Applications 72, no. 11 (June 2010): 4264–70. http://dx.doi.org/10.1016/j.na.2010.02.002.
Full textChen, Peng, and Cai Tian. "Infinitely many solutions for Schrödinger–Maxwell equations with indefinite sign subquadratic potentials." Applied Mathematics and Computation 226 (January 2014): 492–502. http://dx.doi.org/10.1016/j.amc.2013.10.069.
Full textHuang, Wen-nian, and X. H. Tang. "The Existence of Infinitely Many Solutions for the Nonlinear Schrödinger–Maxwell Equations." Results in Mathematics 65, no. 1-2 (October 25, 2013): 223–34. http://dx.doi.org/10.1007/s00025-013-0342-6.
Full textKozlov, V. V. "Linear System of Differential Equations with a Quadratic Invariant as the Schrödinger Equation." Doklady Mathematics 103, no. 1 (January 2021): 39–43. http://dx.doi.org/10.1134/s1064562421010075.
Full textAzzollini, A., P. d'Avenia, and A. Pomponio. "On the Schrödinger–Maxwell equations under the effect of a general nonlinear term." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 27, no. 2 (March 2010): 779–91. http://dx.doi.org/10.1016/j.anihpc.2009.11.012.
Full textLiu, Zhisu, Shangjiang Guo, and Ziheng Zhang. "EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER-MAXWELL EQUATIONS." Taiwanese Journal of Mathematics 17, no. 3 (May 2013): 857–72. http://dx.doi.org/10.11650/tjm.17.2013.2202.
Full textBECHOUCHE, PHILIPPE, NORBERT J. MAUSER, and SIGMUND SELBERG. "ON THE ASYMPTOTIC ANALYSIS OF THE DIRAC–MAXWELL SYSTEM IN THE NONRELATIVISTIC LIMIT." Journal of Hyperbolic Differential Equations 02, no. 01 (March 2005): 129–82. http://dx.doi.org/10.1142/s0219891605000415.
Full textLi, Zhi-Qiang, Shou-Fu Tian, Wei-Qi Peng, and Jin-Jie Yang. "Inverse Scattering Transform and Soliton Classification of Higher-Order Nonlinear Schrödinger-Maxwell-Bloch Equations." Theoretical and Mathematical Physics 203, no. 3 (June 2020): 709–25. http://dx.doi.org/10.1134/s004057792006001x.
Full textChen, Yongpin P., Wei E. I. Sha, Lijun Jiang, Min Meng, Yu Mao Wu, and Weng Cho Chew. "A unified Hamiltonian solution to Maxwell–Schrödinger equations for modeling electromagnetic field–particle interaction." Computer Physics Communications 215 (June 2017): 63–70. http://dx.doi.org/10.1016/j.cpc.2017.02.006.
Full textLiu, Leilei, Weiguo Zhang, and Jian Xu. "On a Riemann–Hilbert problem for the NLS-MB equations." Modern Physics Letters B 35, no. 25 (August 3, 2021): 2150420. http://dx.doi.org/10.1142/s0217984921504200.
Full textBersons, I. "Soliton Model of the Photon / Fotona Solitona Modelis." Latvian Journal of Physics and Technical Sciences 50, no. 2 (April 1, 2013): 60–67. http://dx.doi.org/10.2478/lpts-2013-0013.
Full textKikuchi, Hiroaki. "On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations." Nonlinear Analysis: Theory, Methods & Applications 67, no. 5 (September 2007): 1445–56. http://dx.doi.org/10.1016/j.na.2006.07.029.
Full textAvetisyan, Yu A., and E. D. Trifonov. "Maxwell-Schrödinger equations for a dilute gas Bose-Einstein condensate coupled to an electromagnetic field." Journal of Experimental and Theoretical Physics 106, no. 3 (March 2008): 426–34. http://dx.doi.org/10.1134/s1063776108030023.
Full textANDREEV, PAVEL A. "NONINTEGRAL FORM OF THE GROSS–PITAEVSKII EQUATION FOR POLARIZED MOLECULES." Modern Physics Letters B 27, no. 13 (May 10, 2013): 1350096. http://dx.doi.org/10.1142/s0217984913500966.
Full textSI, LIUGANG, XINYOU LÜ, PEIJUN SONG, and JIBING LIU. "ULTRASLOW SOLITONS VIA FOUR-WAVE MIXING IN A CRYSTAL OF MOLECULAR MAGNETS." Modern Physics Letters B 23, no. 07 (March 20, 2009): 989–1004. http://dx.doi.org/10.1142/s0217984909019181.
Full textWu, Xiao-Yu, Bo Tian, Hui-Ling Zhen, Wen-Rong Sun, and Ya Sun. "Solitons for the (2+1)-dimensional nonlinear Schrödinger-Maxwell-Bloch equations in an erbium-doped fibre." Journal of Modern Optics 63, no. 6 (October 5, 2015): 590–97. http://dx.doi.org/10.1080/09500340.2015.1086031.
Full textWang, Lei, Xiao Li, Feng-Hua Qi, and Lu-Lu Zhang. "Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations." Annals of Physics 359 (August 2015): 97–114. http://dx.doi.org/10.1016/j.aop.2015.04.025.
Full textSong, Jiang-Yan, Chi-Ping Zhang, and Yu Xiao. "Determinant representation of Darboux transformation for the (2+1)-dimensional nonlocal nonlinear Schrödinger-Maxwell-Bloch equations." Optik 228 (February 2021): 166150. http://dx.doi.org/10.1016/j.ijleo.2020.166150.
Full textTsutsumi, Yoshio. "Global existence and asymptotic behavior of solutions for the Maxwell-Schrödinger equations in three space dimensions." Communications in Mathematical Physics 151, no. 3 (February 1993): 543–76. http://dx.doi.org/10.1007/bf02097027.
Full textPorsezian, K., and K. Nakkeeran. "Singularity structure analysis and the complete integrability of the higher order nonlinear Schrödinger-Maxwell-Bloch equations." Chaos, Solitons & Fractals 7, no. 3 (March 1996): 377–82. http://dx.doi.org/10.1016/0960-0779(95)00069-0.
Full text