Academic literature on the topic 'Équations différentielles partielles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équations différentielles partielles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Équations différentielles partielles"
Zella, L., A. Kettab, and G. Chasseriaux. "Modélisation des réseaux de microirrigation." Revue des sciences de l'eau 17, no. 1 (April 12, 2005): 49–68. http://dx.doi.org/10.7202/705522ar.
Full textAppell, Jürgen, and Espedito de Pascale. "Theoremes de Bornage Pour L'Operateur de Nemyckii Dans Les Espaces Ideaux." Canadian Journal of Mathematics 38, no. 6 (December 1, 1986): 1338–55. http://dx.doi.org/10.4153/cjm-1986-068-3.
Full textBuckdahn, Rainer, Marc Quincampoix, and Aurel Rascanu. "Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux dérivées partielles." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 11 (December 1997): 1159–62. http://dx.doi.org/10.1016/s0764-4442(97)83546-x.
Full textVan den Berg, Imme, and Elsa Amaro. "Nearly recombining processes and the calculation of expectations." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 9, 2007 Conference in... (September 5, 2008). http://dx.doi.org/10.46298/arima.1907.
Full textDissertations / Theses on the topic "Équations différentielles partielles"
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Full textThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Perez, Sylvie. "Identification et homogénéisation de paramètres dans des équations aux dérivées partielles." Pau, 1999. http://www.theses.fr/1999PAUU3016.
Full textSow, Ahmadou Bamba. "Approche probabiliste et homogénéisation d'équations aux dérivées partielles." Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11046.
Full textPopier, Alexandre François Roland. "Equations différentielles stochastiques rétrogrades avec condition finale singulière." Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.
Full textRivière, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation." Paris 5, 2005. http://www.theses.fr/2005PA05S028.
Full textThis thesis deals with the forward backward stochastic differential equations, in particular those with a coefficient of progressive diffusion which depends on all unknowns of the problem. We propose an original way to get onto this subject, letting us to reobtain some classical results of existence and uniqueness in the spirit of Pardoux-Tang and Yong's results, and to find a probabilistic representation of a new class of parabolic PDE, in which derivation coefficient of order 2 depends on the gradient of the solution. We also propose an iterative discretization scheme. We prove its convergence and give an evaluation of the error on a particular example
Riviere, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation." Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00011231.
Full textXu, Mingyu. "Contributions à l'étude des équations différentielles stochastiques rétrogrades fléchies et applications aux équations et dérivées partielles." Le Mans, 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1004.pdf.
Full textIn the first chapter, we consider the reflected backward stochastic differential equation (BSDEsin short) with one or two right continuous and left limited (RCLL in short) barriers. Using the Picarditeration method, we obtained the existence and uniqueness of the solution of the reflected BSDEwith two RCLL barriers. Then we use the penalization method to the case of one RCLL barrier. Considering the solutions (Y n,Zn,Kn) of penalized equations as solutions of reflected BSDEs,we prove that the limit (Y,Z,K) is the solution of equation, by properties of Snell envelope andmonotonic limit theorem (Peng S. , 1999). In the case of equation with two RCLL barriers, by theanalogue method, we prove the limit (Y,Z,K) of penalized equation is the solution of problem,by the representation of solutions via Dynkin game. Here we need a generalized monotonic limittheorem, which permit us to pass the limit for penalized equations. In a second work, we have generalized this type of result to the case where barriers are just inL2, by the method of penalization and the theory of g-supersolution. In the second chapter, we consider the reflected BSDEs with one continuous barrier, associatedto (_, f,L), when _ 2 L2(FT ), f(t, !, y, z) is continuous, satisfies monotonic and general increasingconditions on y, and Lipschitz condition on z, and when the barrier (Lt)0_t_T is a progressivelymeasurable continuous process, which verifies certain integrability condition. We have also notable prove the existence and uniqueness of solution in L2, for this reflectedequation with determinist terminal time. The proof of existence is effected by four steps. The firststep consists to prove the result under the boundness condition of _, f(t, 0) et L+. The second step(the most delicate) consists to relax the boundness condition of L+ ; the following two step permitus to obtain the general result, relaxing the boundness condition on _ and f(t, 0). The comparisontheorems play important roles, which help us to pass the limit in the equations. Then we study thecase when the terminal time is a stopping time. The existence and uniqueness of the solution arealso proved. In the third chapter, we have studied the reflected BSDEs with one barrier, whose generator fsatisfies the monotonic and general increasing condition on y, and quadratic and linear condition onz, when the barrier L is uniformly bounded. We prove the existence of a solution by approximation,under these conditions. We also find a necessary and sufficient condition for the case f(t, !, y, z) =|z|2, and construct its solution explicitly. For the case f(t, !, y, z) = |z|p, p 2 (1, 2), we prove asufficient condition. In the forth chapter, we treat the reflected BSDE with two barrier, when f satisfies the mono-tonic, continuous and general increasing conditions on y, and Lipschitz condition on z, like in thesecond chapter. For the barriers, we suppose that L and U are continuous, L < U on [0, T], andMokoboski condition. We prove the existence and uniqueness of the solution for this equation. In the fifth chapter, we study the applications of BSDE. A important application of BSDEconsists to give a probabilistic interpretation (nonlinear Feynman-Kac formula) pour solutions ofsemilinear parabolic partial differential equations. We apply the approximation method and resultsof BSDE in (Pardoux, 1999) for semiliear PDE in Sobolev sense, by the solution of correspondingBSDEs. In following, we use the notion of PDE with obstacle (Bally et al. , 2004). By the sameapproximation in second chapter, we prove the probabilistic interpretation of the solution (u, _) ofPDE by the solution (Y,Z,K) of reflected BSDE. Here, we suppose that the obstacle h is polynomialincreasing. We prove a theorem which permits us to replace the regular test function by the randomtest function under monotonic and general increasing conditions, and by this theorem we obtainthe uniqueness of the solution of PDE from the solution of BSDE or reflected BSDE. Finally, in the last chapter, we study the numerical solutions of BSDEs and present somesimulation results, and we apply this technique to the calculation of American option
Royer, Manuela. "Équations différentielles stochastiques rétrogrades et martingales non linéaires." Rennes 1, 2003. http://www.theses.fr/2003REN1A018.
Full textSellami-Omrani, Sonia. "Equations aux dérivées partielles non-linéaires et ondes progressives." Paris 6, 1993. http://www.theses.fr/1993PA066641.
Full textGarnier, Jimmy. "Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00755296.
Full textBooks on the topic "Équations différentielles partielles"
Kowgier, Henryk. Równania różniczkowe zwyczajne i cząstkowe w ekonomii. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, 2020.
Find full textE, Schiesser W., ed. Ordinary and partial differential equation routines in C, C++, Fortran, Java, Maple, and MATLAB. Boca Raton: Chapman & Hall/CRC, 2004.
Find full text1961-, Dalang Robert C., Khoshnevisan Davar, and Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.
Find full text1961-, Dalang Robert C., Khoshnevisan Davar, and Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.
Find full text1961-, Dalang Robert C., Khoshnevisan Davar, and Rassoul-Agha Firas, eds. A minicourse on stochastic partial differential equations. Berlin: Springer, 2009.
Find full textMolk, Jules. Encyclopédie des sciences mathématiques pures et appliquées... Sceaux: J. Gabay, 1991.
Find full textBert-Wolfgang, Schulze, and Sternin B. I͡U︡, eds. Quantization methods in differential equations. London: Taylor & Francis, 2002.
Find full textA, Gavosto Estela, and Peloso Marco M, eds. Partial differential equations and complex analysis. Boca Raton, FL: CRC Press, 1992.
Find full textFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Find full textLinares, Felipe. Introduction to nonlinear dispersive equations. New York: Springer, 2015.
Find full textBook chapters on the topic "Équations différentielles partielles"
"Équations Aux Dérivées Partielles." In Équations différentielles, 275–343. Les Presses de l’Université de Montréal, 2016. http://dx.doi.org/10.1515/9782760636194-009.
Full text"Équations Aux Dérivées Partielles." In Exercices Corrigés D’Équations Différentielles, 198–243. Les Presses de l’Université de Montréal, 2012. http://dx.doi.org/10.1515/9782760627697-008.
Full text"VII Équations aux dérivées partielles." In Analyse complexe et équations différentielles, 163–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6-008.
Full text"VIII Équations aux dérivées partielles." In Analyse complexe et équations différentielles, 207–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3-009.
Full text"VII Équations aux dérivées partielles." In Analyse complexe et équations différentielles, 163–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1222-6.c008.
Full text"VIII Équations aux dérivées partielles." In Analyse complexe et équations différentielles, 207–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1223-3.c009.
Full text"9. Opérateurs pseudo-différentiels." In Analyse et équations aux dérivées partielles, 209–22. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3140-1.c010.
Full text