Dissertations / Theses on the topic 'Equations elliptiques non-Linéaires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Equations elliptiques non-Linéaires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vétois, Jérôme. "Equations elliptiques et anisotropes non linéaires." Cergy-Pontoise, 2008. http://biblioweb.u-cergy.fr/theses/08CERG0375.pdf.
Full textThis thesis is divided into two main parts. In the first part, we study critical elliptic equations and systems linked with conformal geometry. For these equations, we mainly endeavour to obtain the existence of multiplicities of solutions by topological arguments linked with Lusternik-Schnirelmann theory, by compactness and Krasnosel'skii theory, or also by ''gluing'' of singularities. In the second part, we consider a general class of nonlinear equations involving anisotropic operators. We highlight the new difficulties linked with these operators in the study of blow-up phenomena and the crucial role played by the geometry of the ambient space. The elliptic equations are posed in anisotropic media represented by Riemannian manifolds. The anisotropic equations are posed in homogeneous media represented by domains of the Euclidean space
Sirakov, Boyan. "Equations aux dérivées partielles elliptiques non-linéaires." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00192148.
Full text-Théorie générale des EDP complètement non-linéaires et solutions de viscosité d'EDP ;
-Estimations elliptiques et théorie de la régularité pour systèmes d'EDP elliptiques sous forme non divergence ;
-Méthodes variationnelles pour la résolution d'EDP de la physique quantique - équation de Schrodinger et systèmes d'équations de Schrodinger ;
-Estimations à priori et méthodes topologiques pour la résolution d'EDP et de systèmes d'EDP elliptiques ;
-Symétrie et monotonie des solutions positives d'EDP et de systèmes d'EDP dans des domaines non bornés ;
-Problèmes aux limites surdéterminés et problèmes à frontière libre.
Sellami-Omrani, Sonia. "Equations aux dérivées partielles non-linéaires et ondes progressives." Paris 6, 1993. http://www.theses.fr/1993PA066641.
Full textRadulescu, Vicentiu. "Analyse de quelques problèmes aux limites elliptiques non linéaires." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00980823.
Full textDaniel, Jean-Paul. "Quelques résultats d'approximation et de régularité pour des équations elliptiques et paraboliques non-linéaires." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066468/document.
Full textIn this thesis we study some approximation and regularity results for viscosity solutions of fully nonlinear elliptic and parabolic equations. In the first chapter, we consider a broad class of fully nonlinear elliptic and parabolic equations with inhomogeneous Neumann boundary conditions. We provide a deterministic control interpretation through two-person repeated games which represents the solution as the limit of the sequence of the scores associated to the games. The Neumann condition is modeled by a suitable penalization near the boundary. Inspiring by an abstract method of Barles and Souganidis, we prove the convergence of the score to the solution of the equation by establishing monotonicity, stability and consistency. The second chapter presents some regularity results about viscosity solutions of parabolic equations associated to a uniformly elliptic operator. First we obtain a Lebesgue measure estimate on the points having a quadratic Taylor expansion with a controlled cubic term. Under an additional assumption on the regularity of the nonlinearity, we deduce a partial regularity result about the Hölder regularity of these solutions. In the third and fourth chapters, we propose a general approach to determine algebraic rates of convergence of solutions of approximation schemes to the viscosity solution of fully nonlinear elliptic or parabolic equations under the assumption of uniform ellipticity of the operator. We first give the rate associated to the elliptic schemes derived by dynamic programming principles and proposed by Kohn and Serfaty. We then prove a rate of convergence for finite-difference schemes implicit in time associated to fully nonlinear parabolic equations
Luo, Tingjian. "Existence non existence et multiplicité d'ondes stationnaires normalisées pour quelques équations non linéaires elliptiques." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-01061670.
Full textBlanc, Xavier. "Equations aux dérivés partielles elliptiques non linéaires. Applications à la modélisation des solides et aux condensats de Bose-Einstein." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00136839.
Full textLa base de travail des chapitres 1, 2 et 3 est le modèle de Thomas-Fermi-von Weizsäcker (TFW), ou certaines de ses extensions. Dans ce modèle, un système moléculaire est décrit par N noyaux, qui sont des particules classiques ponctuelles, et N électrons, qui sont des particules quantiques définies par leur densité collective. L'énergie TFW, qui dépend des positions des noyaux et de la densité électronique, est minimisée par rapport à cette dernière. Ce modèle est défini au départ pour un nombre fini de noyaux et d'électrons, et sa définition pour une infinité de particules est un problème non trivial. Ce problème, dit de limite thermodynamique, consiste à faire tendre conjointement le nombre de noyaux et d'électrons vers l'infini, en imposant une certaine géométrie (typiquement la périodicité) aux noyaux, et à obtenir la convergence de la densité d'électrons, ainsi que de l'énergie moyenne du système. Ce problème a été résolu dans le cas périodique par I. Catto, C. Le Bris et P.-L. Lions.
Le chapitre 1 aborde le problème de la justification de la périodicité supposée dans l'ouvrage de Catto, Le Bris et Lions. Dans la section 1.3, on considère l'énergie TFW d'un cristal comme une fonction du réseau périodique définissant la position des noyaux, et on étudie l'existence d'un minimiseur. Un préliminaire à ce travail, présenté dans la section 1.2, est l'étude des cas dégénérés de réseaux périodiques, à savoir le cas où les noyaux sont répartis périodiquement sur un plan d'une part, et celui où les noyaux sont répartis périodiquement sur une droite d'autre part.
Les sections 1.4 et 1.5 abordent le problème sans supposer la périodicité : on minimise l'énergie TFW par rapport à la densité électronque et par rapport à la position des noyaux, à N fixé, et on démontre alors que quand N tend vers l'infini, la configuration minimisante devient périodique. Ce problème est traité théoriquement pour le cas 1D (section 1.4), puis une étude numérique est faite sur le cas 2D (section 1.5), indiquant que le résultat est aussi vrai dans ce cas.
Bien que la périodicité soit une bonne approximation pour les cristaux simples, il arrive souvent (dans le cas des polycristaux, des solides amorphes ou de solides cristallins présentant des dislocations par exemple) que cette hypothèse ne soit pas valable. C'est pourquoi on étudie dans le chapitre 2 les problèmes de définition du modèle TFW, pour des solides dont les positions de noyaux ne sont pas périodiques. Un cas déterministe est présenté dans la section 2.1.1, où l'on construit le cadre fonctionnel nécessaire à la définition du modèle, puis on résout le problème de limite thermodynamique associé. La section 2.1.2 présente un cas où les positions des noyaux sont stochastiques. Là aussi, on commence par construire un cadre stochastique (stationnaire ergodique) nécessaire, puis on résout le problème de limite thermodynamique correspondant.
Outre ces problèmes de limite thermodynamique, qui font le lien entre un modèle moléculaire et le modèle de théorie des solides correspondant, on étudie dans la section 2.2 des modèles (dits "orbital-free'') plus élaborés utilisés dans certains codes de chimie, sans chercher à les justifier par limite thermodynamique. Cette étude montre que le problème variationnel est mal posé, et que le "minimum'' calculé est un minimum local vraisemblablement dépendant de la discrétisation utilisée et du point de départ de l'algorithme de minimisation.
Le modèle TFW est un modèle microscopique. Il est cependant naturel, après l'avoir défini pour des solides (cristallins ou non), d'étudier le lien de ce modèle avec des modèles d'élasticité non linéaire. Ce problème est évoqué dans le chapitre 3, où on considère l'énergie d'un système atomique déformé par un diffémorphisme u, et on passe à la limite quand la distance inter-atomique tend vers 0. On obtient ainsi une énergie hyperélastique qui a la forme de celles utilisées en mécanique. La section 3.1 présente ce travail dans un cadre déterministe, la section 3.2 le même type de résultat dans le cas où les positions des noyaux sont stochastiques.
La section 3.3 présente une étude similaire, mais dans le cas d'un joint collé, c'est-à-dire d'une interface d'épaisseur nulle au niveau macroscopique (mais infinie au niveau microscopique). Ce cas est particulier car il doit autoriser un saut de la déformation à travers l'interface, ce qui lui impose une régularité moindre que précédemment.
Dans le même esprit, la section 3.4 présente l'analyse du couplage entre un modèle de mécanique des milieux continus et le modèle discret correspondant. L'idée est ici d'étudier la déformation d'un solide qui est régulière dans une partie du solide, mais présente des singularités. Là où la déformation est régulière, on utilise un modèle d'élasticité standard, et là où la déformation est singulière, on revient au modèle discret mettant en jeu les atomes et leurs interactions. Comme à notre connaissance aucune étude théorique n'existait sur ce type de théorie, nous avons étudié un cas très simple de dimension 1, et obtenu des résultats qui laissent penser que le modèle est "bon'' dans le cas convexe (i.e si le potentiel d'interaction des atomes est convexe), mais beaucoup plus douteux dans le cas contraire.
Le chapitre 4 présente des travaux sur les condensats de Bose-Einstein. La première section porte sur l'écoulement d'un condensat autour d'un obstacle (physiquement, un laser). Nous établissons l'existence d'une solution sans vortex si la vitesse de translation de l'obstacle est suffisamment faible. Ce résultat avait déjà été établi pour un modèle de dimension 2, et nous l'avons étendu au cas plus réaliste de dimension 3, en étudiant en particulier la zone du bord du condensat où le modèle 2D n'est pas valable (contrairement au coeur du condensat).
La section 4.3 concerne l'étude de condensats en rotation, et en particulier des vortex nucléés par cette rotation. Les résultats présentés portent sur la rotation rapide : si Omega est la vitesse de rotation, le système n'a de minimum d'énergie que si Omega < 1. La rotation rapide correspond à la limite Omega tend vers 1. Dans ce régime, la fonction d'onde peut être approximée avec une bonne précision par une fonction analytique multipliée par une gaussienne. Les vortex sont alors les zéros de cette fonction. Nous établissons une borne supérieure de l'énergie en utilisant une fonction test dont les zéros forment un réseau distordu sur les bords du condensat. Ceci est en accord avec les observations expérimentales et numériques.
Fernández, Sánchez Antonio J. "Existence et multiplicité de solutions pour des problèmes elliptiques avec croissance critique dans le gradient." Thesis, Valenciennes, 2019. http://www.theses.fr/2019VALE0020/document.
Full textIn this thesis, we provide existence, non-existence, uniqueness and multiplicity results for partial differential equations with critical growth in the gradient. The principal techniques employed in our proofs are variational techniques, lower and upper solution theory, a priori estimates and bifurcation theory. The thesis consists of six chapters. In chapter 0, we introduce the topic of the thesis and we present the main results. Chapter 1 deals with a p-Laplacian type equation with critical growth in the gradient. This equation will depend on a real parameter. Depending on the interval where this parameter lives, we obtain the existence and uniqueness of one solution or we prove the existence and multiplicity of solutions. In chapters 2 and 3, we continue our study in the case where the operator is the Laplacian. However, unlike chapter 1, we study the case where the coefficient functions may change sign. We obtain again existence and multiplicity results. In chapter 4, we study non-local problems of fractional Laplacian type with different non-local gradient terms. We prove existence and non-existence results for different equations of this type. Finally, in chapter 5, we present some open problems related to the content of the thesis and some research perspectives
CARAFFA, BERNARD Daniela. "Equations aux dérivées partielles elliptiques du quatrième ordre avec exposants critiques de Sobolev sur les variétés riemanniennes avec et sans bord." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00003179.
Full textLe, Coz Stefan. "Existence, stabilité et instabilité d'ondes stationnaires pour quelques équations de Klein-Gordon et Schrödinger non linéaires." Phd thesis, Université de Franche-Comté, 2007. http://tel.archives-ouvertes.fr/tel-00239293.
Full textL'existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points critiques d'une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que minimiseurs d'une fonctionnelle sur différentes contraintes.
Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes stationnaires sont stables ou instables. Lorsqu'elles sont instables, on met en évidence que dans certaines situations l'instabilité se manifeste par explosion, tandis que dans d'autres les solutions sont globalement bien posées. En plus des différentes caractérisations variationnelles des
ondes stationnaires, les preuves des résultats de stabilité et d'instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la première partie de cette thèse, on prouve un résultat de non-dégénérescence du linéarisé pour un problème limite. Dans la deuxième partie, on localise la deuxième valeur propre du linéarisé par la combinaison d'une méthode perturbative et d'arguments de continuation.
Jbilou, Asma. "Equations hessiennes complexes sur des variétés kählériennes compactes." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00463111.
Full textLopez, Rios Luis Fernando. "Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operator." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4701/document.
Full textThis work is devoted to nonlinear PDEs. The aim is to find regular solutions to some elliptic and hypo-elliptic PDEs and study their qualitative properties. The first part deals with the supercritical problem $$ -Delta u = lambda e^u,$$ $lambda > 0$, in an exterior domain under zero Dirichlet condition. A finite-dimensional reduction scheme provides the existence of infinitely many regular solutions whenever $lambda$ is sufficiently small.The second part is focused on the existence of bubbling solutions for the non-local equation $$ (-Delta)^s u =u^p, ,u>0,$$in a bounded, smooth domain under zero Dirichlet condition; where $0 0$ small). To this end, a finite-dimensional reduction scheme in suitable functional spaces is used, where the main part of the reduced function is given in terms of the Green's and Robin's functions of the domain. The existence of solutions depends on the existence of critical points of such a main term together with a non-degeneracy condition.In the third part, a non-local entire problem in the Heisenberg group $H$ is studied. The main interests are rigidity properties for stable solutions of $$(-Delta_H)^s v = f(v) in H,$$ $s in (0,1)$. A Poincaré-type inequality in connection with a degenerate elliptic equation in $R^4_+$ is provided. Through an extension (or ``lifting") procedure, this inequality will be then used to give a criterion under which the level sets of the above solutions are minimal surfaces in $H$, i.e. they have vanishing mean $H$-curvature
Delay, Erwann. "Analyse sur les variétés non-compactes,applications à la géométrie riemannienneet à la relativité générale." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00011945.
Full textessentiellement sur l'étude d'opérateurs elliptiques
non-linéaires sur des variétés Riemanniennes non-compactes.
Ils sont motivés par des questions naturelles provenant de la géométrie Riemannienne ou de la
relativité générale.
Le point central étant la recherche et l'étude de
métriques d'Einstein (Riemanniennes ou Lorentziennes).
Maris, Mihai. "Sur quelques problèmes elliptiques non-linéaires." Paris 11, 2001. http://www.theses.fr/2001PA112247.
Full textIn this thesis we study particular solutions for some nonlinear dispersive partial differential equations which appear in physics, such the nonlinear Schrödinger equation, the Benney-Luke equation or the Benjamin-Ono equation. We are particularly interested in the stationary waves and in the travelling waves of these equations. This gives nonlinear elliptic problems in the whole space. Solitary and travelling waves for the considered equations have been observed in experiments and in numerical simulations. In some cases, these solutions seem to play an important role in the general dynamics of the corresponding evolution equations. In the first chapter we prove the analyticity and we find the optimal algebraic decay rate at infinity of solitary waves to the Benney-Luke equation and to the generalized Benjamin-Ono equation. The second chapter is devoted to the proof of existence of stationary solutions for a nonlinear Schrödinger equation with potential in one dimension which describes the flow of a fluid past an obstacle. .
Bonnafé, Alain. "Développements asymptotiques topologiques pour une classe d'équations elliptiques quasilinéaires. Estimations et développements asymptotiques de p-capacités de condensateurs. Le cas anisotrope du segment." Phd thesis, INSA de Toulouse, 2013. http://tel.archives-ouvertes.fr/tel-00852384.
Full textRedwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.
Full textChen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Full textThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Hossein, Mouhamad. "SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNES." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00384432.
Full textNeji, Ali. "Existence unicité et régularité de solutions de problèmes non linéaires et complètement non linéaires elliptiques singuliers." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1017.
Full textWe studied in this thesis the properties of existence and regularity for various nonlinear partial differential equations of elliptic type. We proved the existence of weak solutions to certain problems involving the p-Laplacian operator using critical point theory and the mountain pass theorem . We have also showed the existence of viscosity solutions for singular equations involving fully nonlinear operators
Olech, Michał. "Systèmes d'évolution non linéaires et leurs applications." Paris 11, 2007. http://www.theses.fr/2007PA112250.
Full textThe first part is devoted to the analysis of two mean-field problems describing particles which interact with themselves either by electrical or gravitational forces. We first investigate steady state solutions for a problem with gravitational forces. We use methods of ordinary differential equations as well as variational methods to obtain the uniqueness and existence of many stationary solutions. Using methods of functional analysis, ordinary differential equations and fixed point theorems, we then prove the existence of global in time solutions of a system of partial differential equations describing the time evolution of a cloud of electrically charged particles. Moreover, we describe the large time behavior of solutions as t tends to infinity. We are especially interested in the two-dimensional case, when the system is considered in the whole space R^2. We show that in the case of small initial conditions the large time behavior of the solutions much differs from that in the higher-dimensional case. The second part involves a nonlinear parabolic reaction-diffusion system which both includes a linear model for intercellular transport in eukarya, and a reversible chemical reaction. We prove a contraction property in L^1 for the semigroup associated with the system. Then, using a Lyapunov functional, we show the convergence of the solutions to suitable steady states as t tends to infinity. In the linear case we prove the existence and uniqueness of stationary solutions in space dimensions 1, 2, 3 and 4. In the last chapter we investigate a numerical finite volume scheme for the nonlinear system modeling fast reversible chemical reactions. For the convergence proof we search for discrete versions of standard a priori estimates, comparison principles and compactness theorems. Moreover, we perform numerical experiments for the concrete example of a real chemical reaction
Vohralík, Martin. "Méthodes numériques pour les équations elliptiques et paraboliques non linéaires : application à des problèmes d'écoulement en milieux poreux et fracturés." Paris 11, 2004. https://tel.archives-ouvertes.fr/tel-00008451.
Full textWe study numerical methods for the simulation of flow and contaminant transport in porous and fractured media. In Chapter 1 we propose a scheme allowing for efficient, robust, conservative, and stable discretizations of nonlinear degenerate parabolic convection–reaction–diffusion equations on unstructured grids in two or three space dimensions. We discretize the generally anisotropic diffusion term by means of the nonconforming finite element method and the other terms by means of the finite volume method and show the existence and uniqueness of a discrete solution and its convergence to a weak solution. We finally propose a version of this scheme for nonmatching grids and apply it to real simulations. In Chapter 2 we present a direct proof of the discrete Poincaré–Friedrichs inequalities and indicate optimal values of the constants in these inequalities. The results are important in the analysis of nonconforming numerical methods. In Chapter 3 we show that the lowest-order Raviart–Thomas mixed finite element method is equivalent to a particular multi-point finite volume scheme. This approach allows significant reduction of the computational time of the mixed finite element method without any loss of its high precision, which is confirmed by numerical experiments. Finally, in Chapter 4 we propose a version of the lowest-order Raviart–Thomas mixed finite element method for flow simulation in fracture networks that perturb rock massifs, prove that it is well posed, and study its relation to the nonconforming finite element method
Comte, Eloïse. "Pollution agricole des ressources en eau : approches couplées hydrogéologique et économique." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS029/document.
Full textThis work is devoted to water ressources pollution control. We especially focus on the impact of agricultural fertilizer on water quality, by combining economical and hydrogeological modeling. We define, on one hand, the spatio-temporal objective, taking into account the trade off between fertilizer use and the cleaning costs. On an other hand, we describe the pollutant transport in the underground (3D in space) by a nonlinear system coupling a parabolic partial differential equation (reaction-advection-dispersion) with an elliptic one in a bounded domain. We prove the global existence of the solution of the optimal control problem. The uniqueness is proved by asymptotic analysis for the effective problem taking into account the low concentration fertilizer. We define the optimal necessary conditions and the adjoint problem associated to the model. Some analytical results are provided and illustrated. We extend these results within the framework of game theory, where several players are involved, and we prove the existence of a Nash equilibrium. Finally, this work is illustrated by numerical results (2D in space), produced by coupling a Mixed Finite Element scheme with a nonlinear conjugate gradient algorithm
Nguyen, The-Cang. "Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4028/document.
Full textThe aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions
Nguyên, Thùy Liên. "Quelques problèmes variationnels issus de la théorie des ondes non-linéaires." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1386/.
Full textThis thesis focuses on the study of special solutions (traveling wave and standing wave type) for nonlinear dispersive partial differential equations in R^N. The considered problems have a variational structure, the solutions are critical points of some functionals. We demonstrate the existence of critical points using minimization methods. One of the main difficulties comes from the lack of compactness. To overcome this, we use some recent improvements of P. -L. Lions concentration-compactness principle. In the first part of the dissertation, we show the existence of the least energy solutions to quasi-linear elliptic equations in R^N. We generalize the results of Brézis and Lieb in the case of the Laplacian, and the results of Jeanjean and Squassina in the case of the p-Laplacian. In the second part, we show the existence of subsonic travelling waves of finite energy for a Gross-Pitaevskii-Schrödinger system which models the motion of a non charged impurity in a Bose-Einstein condensate. The obtained results are valid in three and four dimensional space
Vohralik, Martin. "Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00008451.
Full textRaimondi, Federica. "Problèmes elliptiques singuliers dans des domaines perforés et à deux composants." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR093/document.
Full textThis thesis is mainly devoted to the study of some singular elliptic problems posed in perforated domains. Denoting by Ωɛ* e domain perforated by ɛ-periodic holes of ɛ-size, we prove existence and uniqueness of the solution , for fixed ɛ, as well as homogenization and correctors results for the following singular problem :{█(-div (A (x/ɛ,uɛ)∇uɛ)=fζ(uɛ) dans Ωɛ*@uɛ=0 sur Γɛ0@@(A (x/ɛ,uɛ)∇uɛ)υ+ɛγρ (x/ɛ) h(uɛ)= ɛg (x/ɛ) sur Γɛ1@)┤Where homogeneous Dirichlet and nonlinear Robin conditions are prescribed on the exterior boundary Γɛ0 and on the boundary of the holles Γɛ1, respectively. The quasilinear matrix field A is elliptic, bounded, periodic in the first variable and Carathéodory. The nonlinear singular lower order ter mis the product of a continuous function ζ (singular in zero) and f whose summability depends on the growth of ζ near its singularity. The nonlinear boundary term h is a C1 increasing function, ρ and g are periodic nonnegative functions with prescribed summabilities. To investigate the asymptotic behaviour of the problem, as ɛ -> 0, we apply the Periodic Unfolding Method by D. Cioranescu-A. Damlamian-G. Griso, adapted to perforated domains by D. Cioranescu-A. Damlamian-P. Donato-G. Griso-R. Zaki. Finally, we show existence and uniqueness of a weak solution of the same equation in a two-component domain Ω = Ω1 υ Ω2 υ Γ, being Γ the interface between the connected component Ω1 and the inclusions Ω2. More precisely we consider{█(-div (A(x, u)∇u)+ λu=fζ(u) dans Ω\Γ,@u=0 sur δΩ@(A(x, u1)∇u1)υ1= (A(x, u2)∇u2)υ1 sur Γ,@(A(x, u1)∇u1)υ1= -h(u1-u2) sur Γ@)┤Where ν1 is the unit external vector to Ω1 and λ a nonnegative real number. Here h represents the proportionality coefficient between the continuous heat flux and the jump of the solution and it is assumed to be bounded and nonnegative on Γ
Mtiri, Foued. "Études des solutions de quelques équations aux dérivées partielles non linéaires via l'indice de Morse." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0150/document.
Full textThe main concern of this thesis deals with the study of solutions of several elliptic partial differential equations via the Morse index, including the stable solutions, i.e. when the Morse index is zero. The thesis has two independent parts. In the first part, under suplinear and subcritical assumptions on f, we establish firstly some explicit estimation for the L1 norms of solutions to -Δu = f(u) avec u = 0 on the boundary, via its Morse index. We propose an approach more transparent and easier than the work of Yang [1998], which allow us to treat some nonlinearities very close to the critical growth. These results motivated us to consider the polyharmonic equations (-Δ)ku = f(x; u) with especially k = 2 and 3. With the hypothesis on f similar to Yang [1998] and appropriate boundary conditions, we obtain for the _rst time some explicit estimations of solution via its Morse index, for the polyharmonic equations.In the second part, we consider a Lane-Emden system -Δu = ρ(x)vp; -Δv = ρ(x)u_; u; v > 0; in RN; with 1 < p< θ and a radial positive weight ρ. We prove the non-existence of stable solution in small dimension case. Our results improve the previous works Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], especially we prove some general Liouville type results for stable solutions in small dimension which hold true for any 1 < ρ min(4 3 ; θ)
Karami, Fahd. "Limite singulière de quelques problèmes de Réaction Diffusion: Analyse mathématique et numérique." Phd thesis, Université de Picardie Jules Verne, 2007. http://tel.archives-ouvertes.fr/tel-00180724.
Full textNguyen, Quoc-Hung. "THÉORIE NON LINÉAIRE DU POTENTIEL ET ÉQUATIONS QUASILINÉAIRES AVEC DONNÉES MESURES." Phd thesis, Université François Rabelais - Tours, 2014. http://tel.archives-ouvertes.fr/tel-01063365.
Full text