Academic literature on the topic 'Équations hyperboliques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équations hyperboliques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Équations hyperboliques"
Wamon, François. "Espaces de Sobolev et équations hyperboliques sur des variétés riemanniennes." Annales de la faculté des sciences de Toulouse Mathématiques 10, no. 3 (2001): 547–85. http://dx.doi.org/10.5802/afst.1002.
Full textRobbiano, L. "Fonction de coût et contrôle des solutions des équations hyperboliques." Asymptotic Analysis 10, no. 2 (1995): 95–115. http://dx.doi.org/10.3233/asy-1995-10201.
Full textColombini, Ferruccio, and Tatsuo Nishitani. "Équations faiblement hyperboliques du deuxième ordre et classes de fonctions ultradifférentiables." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 332, no. 1 (January 2001): 25–28. http://dx.doi.org/10.1016/s0764-4442(00)01769-9.
Full textShirikyan, Armen, and Leonid Volevich. "Équations linéaires hyperboliques d’ordre supérieur. Solutions bornées et presque-périodiques en temps." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 8 (April 1997): 879–84. http://dx.doi.org/10.1016/s0764-4442(97)86962-5.
Full textTarama, Shigeo. "Sur les équations hyperboliques à coefficients analytiques par rapport aux variables spaciales." Journal of Mathematics of Kyoto University 27, no. 3 (1987): 553–61. http://dx.doi.org/10.1215/kjm/1250520663.
Full textBoulerhcha, Mohamed, Yves Secretan, Gouri Dhatt, and Dinh N. Nguyen. "Application de la méthode des éléments finis aux équations 2-D hyperboliques. Partie I: équation scalaire de convection." Revue Européenne des Éléments Finis 4, no. 3 (January 1995): 271–306. http://dx.doi.org/10.1080/12506559.1995.10511181.
Full textBah, Souleymane. "Problème de Cauchy sur un conoïde caractéristique pour des équations semi-linéaires hyperboliques." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 12 (June 1998): 1381–84. http://dx.doi.org/10.1016/s0764-4442(98)80396-0.
Full textOuksel, Leila. "Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques." ESAIM: Control, Optimisation and Calculus of Variations 14, no. 2 (March 20, 2008): 318–42. http://dx.doi.org/10.1051/cocv:2007052.
Full textPaicu, Marius, and Geneviève Raugel. "Une perturbation hyperbolique des équations de Navier-Stokes." ESAIM: Proceedings 21 (2007): 65–87. http://dx.doi.org/10.1051/proc:072106.
Full textHajouj, Brahim, and Monique Madaune-Tort. "Perturbations singulières pour une équation hyperbolique dégénérée." Annales de la faculté des sciences de Toulouse Mathématiques 10, no. 2 (2001): 313–45. http://dx.doi.org/10.5802/afst.994.
Full textDissertations / Theses on the topic "Équations hyperboliques"
Hachicha, Imène. "Approximations hyperboliques des équations de Navier-Stokes." Thesis, Evry-Val d'Essonne, 2013. http://www.theses.fr/2013EVRY0015/document.
Full textIn this work, we are interested in two hyperbolic approximations of the 2D and 3D Navier-Stokes equations. The first model we consider comes from Cattaneo's hyperbolic perturbation of the heat equation to obtain a finite speed of propagation equation. Brenier, Natalini and Puel studied the same perturbation as a relaxed version of the 2D Euler equations and proved that the solution to this relaxation converges towards the solution to (NS) with smooth data, provided some smallness assumptions. Later, Paicu and Raugel improved their results, extending the theory to the 3D setting and requiring significantly less regular data. Following [BNP] and [PR], we prove global existence and convergence results with quasi-critical regularity assumptions on the initial data. In the second part, we introduce a new hyperbolic model with finite speed of propagation, obtained by penalizing the incompressibility constraint in Cattaneo's perturbation. We prove that the same global existence and convergence results hold for this model as well as for the first one
Vincent, Perrollaz. "Problèmes de contrôle et équations hyperboliques non-linéaires." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00872271.
Full textPerrollaz, Vincent. "Problèmes de contrôle et équations hyperboliques non-linéaires." Paris 6, 2011. http://www.theses.fr/2011PA066551.
Full textMonthe, Luc Arthur. "Etude des équations aux dérivées partielles hyperboliques application aux équations de Saint-Venant." Rouen, 1997. http://www.theses.fr/1997ROUES074.
Full textGdhami, Asma. "Méthodes isogéométriques pour les équations aux dérivées partielles hyperboliques." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4210/document.
Full textIsogeometric Analysis (IGA) is a modern strategy for numerical solution of partial differential equations, originally proposed by Thomas Hughes, Austin Cottrell and Yuri Bazilevs in 2005. This discretization technique is a generalization of classical finite element analysis (FEA), designed to integrate Computer Aided Design (CAD) and FEA, to close the gap between the geometrical description and the analysis of engineering problems. This is achieved by using B-splines or non-uniform rational B-splines (NURBS), for the description of geometries as well as for the representation of unknown solution fields.The purpose of this thesis is to study isogeometric methods in the context of hyperbolic problems usingB-splines as basis functions. We also propose a method that combines IGA with the discontinuous Galerkin(DG)method for solving hyperbolic problems. More precisely, DG methodology is adopted across the patchinterfaces, while the traditional IGA is employed within each patch. The proposed method takes advantageof both IGA and the DG method.Numerical results are presented up to polynomial order p= 4 both for a continuous and discontinuousGalerkin method. These numerical results are compared for a range of problems of increasing complexity,in 1D and 2D
Sun, Chenmin. "Contrôle et stabilisation pour des équations hyperboliques et dispersives." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4047/document.
Full textIn this thesis, we deal with the control and stabilization for certain hyperbolic and dispersive partial differential equations. The first part of this work is devoted to the stabilization of hyperbolic Stokes equation. The propagation of singularity for semi-classical Stokes system is established in Chapter 1. This will be done by adpating the strategy of Ivrii and Melrose-Sjöstrand. However,compared to the Laplace operator, the difficulty is caused by the pressure term which has non-trivial impact to solutions concentrated near the boundary. We apply parametrix construction to resolve the issue in elliptic and hyperbolic regions. We next adapte a fine micro-local decomposition for solutions concentrated near the glancing set. The impact of pressure to the solution is then well controled by geometric considerations. As a consequence of the main theorem in Chapter 1, we prove the stabilization of hyperbolic Stokes equation under geometric control condition in Chapter 2. The second part is devoted to the controllability of Kadomtsev–Petviashvili(KP in short) equations. In Chapter 3, the controllability in L 2 (T) from vertical strip is proved using semi-classical analysis. Additionally, a negative result for the controllability in L^2 (T) from horizontal strip is also showed. In Chapter 4, we prove the exact controllability of linear KP-I equation if the control input is added on a vertical domain. It is an interesting model in which the group velocity may degenerate. More generally, we have obtained the least dispersion needed to insure observability for fractional linear KP I equation. Finally in Chapter 5, we prove exact controllability and stabilization of KP-II equation and fifth order KP-II equation for any size of initial data in Sobolev spaces with additional partial compactness conditions. This extends the exact controllability for small data obtained in Chapter 3.compactness condition. This extends the exact controllability for small data obtained in Chapter 3
Simeoni, Chiara. "Méthodes numériques pour des équations hyperboliques de type Saint-Venant." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00922706.
Full textRivard, Patrice. "Sur la théorie des dérivées hyperboliques." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28307/28307.pdf.
Full textHajouj, Brahim. "Perturbations singulières d'inéquations et d'équations non linéaires hyperboliques." Pau, 1985. http://www.theses.fr/1985PAUU3191.
Full textKlaiany, Charbel. "Théorèmes d'explosion pour les systèmes hyperboliques semi-linéaires." Paris 13, 1987. http://www.theses.fr/1987PA132009.
Full textBooks on the topic "Équations hyperboliques"
Gårding, Lars. Singularities in linear wave propagation. Berlin: Springer-Verlag, 1987.
Find full textBowles, John B., and Robert Vichnevetsky. Fourier Analysis of Numerical Approximations of Hyperbolic Equations (Studies in Applied and Numerical Mathematics). 2nd ed. Society for Industrial Mathematics, 1987.
Find full text(Editor), M. A. Shubin, and C. Constanda (Translator), eds. Partial Differential Equations : Overdetermined Systems Index of Elliptic Operators (Encyclopaedia of Mathematical Sciences , No 8). Springer, 1997.
Find full textBook chapters on the topic "Équations hyperboliques"
Leray, Jean, and Yujiro ohya. "Équations et systÈmes non-linÉaires, hyperboliques non-stricts." In Equazioni differenziali non lineari, 111–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11030-6_5.
Full textLeray, J. "La Theorie De L. Gårding Des Équations Hyperboliques Lineaires." In Equazioni alle derivate parziali a caratteristiche reali, 191–230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10913-3_2.
Full textLeray, Jean. "éQuations Hyperboliques Non-Strictes: Contre-Exemples, du type de Giorgi, aux Theoremes D'Existence et D'Unicité." In Equazioni differenziali non lineari, 25–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11030-6_2.
Full textSegal, I. "Le variété des solutions d'une équation hyperbolique, non linéaire d'ordre 2." In Equazioni differenziali non lineari, 297–357. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11030-6_7.
Full text"3 ÉTUDE LOCALE DES SINGULARITÉS HYPERBOLIQUES." In Des équations différentielles aux systèmes dynamiques II, 59–110. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1215-8-004.
Full text"3 ÉTUDE LOCALE DES SINGULARITÉS HYPERBOLIQUES." In Des équations différentielles aux systèmes dynamiques II, 59–110. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1215-8.c004.
Full text