Journal articles on the topic 'Equivalent sound pressure level'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Equivalent sound pressure level.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Haughton, Peter M., Guy R. Lightfoot, and John C. Stevens. "Peak-to-peak equivalent sound pressure level." International Journal of Audiology 42, no. 8 (2003): 494–95. http://dx.doi.org/10.3109/14992020309081520.
Full textCorthals, Paul. "Sound Pressure Level of Running Speech: Percentile Level Statistics and Equivalent Continuous Sound Level." Folia Phoniatrica et Logopaedica 56, no. 3 (2004): 170–81. http://dx.doi.org/10.1159/000076939.
Full textShiraishi, Kimio, and Yukihiko Kanda. "Measurements of the equivalent continuous sound pressure level and equivalent A-weighted continuous sound pressure level during conversational Japanese speech." AUDIOLOGY JAPAN 53, no. 3 (2010): 199–207. http://dx.doi.org/10.4295/audiology.53.199.
Full textTandon, N. "Calculating equivalent continuous sound pressure levels, LAeq." Applied Acoustics 24, no. 3 (1988): 243–44. http://dx.doi.org/10.1016/0003-682x(88)90029-1.
Full textRadziszewski, Leszek, Michał Kekez, Andrzej Bąkowski, and Alžbeta Sapietova. "Modeling of acoustic pressure variability at thoroughfare." MATEC Web of Conferences 254 (2019): 02013. http://dx.doi.org/10.1051/matecconf/201925402013.
Full textVencovsky, Vaclav, Frantisek Rund, and David Slegl. "Reference Equivalent Threshold Sound Pressure Levels for Nonaudiometric Headphones." Journal of the Audio Engineering Society 66, no. 3 (2018): 167–71. http://dx.doi.org/10.17743/jaes.2018.0009.
Full textArlinger, S., and C. Kinnefors. "Reference Equivalent Threshold Sound Pressure Levels for Insert Earphones." International Journal of Audiology 18, no. 4 (1989): 195–98. http://dx.doi.org/10.3109/14992028909042193.
Full textArlinger, S., and C. Kinnefors. "Reference Equivalent Threshold Sound Pressure Levels for Insert Earphones." Scandinavian Audiology 18, no. 4 (1989): 195–98. http://dx.doi.org/10.3109/01050398909042193.
Full textHo, Cheng-Yu, Pei-Chun Li, and Shuenn-Tsong Young. "Reference equivalent threshold sound pressure levels for Apple EarPods." Journal of the Acoustical Society of America 141, no. 2 (2017): EL115—EL119. http://dx.doi.org/10.1121/1.4976110.
Full textMakarewicz, Rufin. "Moments of probability distribution of equivalent continuous A-weighted sound pressure level(LAeqT)." Journal of the Acoustical Society of Japan (E) 14, no. 1 (1993): 25–28. http://dx.doi.org/10.1250/ast.14.25.
Full textFernández, Jesús Alba, Marcelino Ferri García, Jaime Ramis Soriano, and Juan Antonio Martínez Mora. "Statistical Study of the Instantaneous Values of Traffic Noise Sound Pressure Level." Noise & Vibration Worldwide 33, no. 8 (2002): 16–24. http://dx.doi.org/10.1260/095745602760590203.
Full textOrdoñez, R., and D. Hammershøi. "Temporary Threshold Shifts from Exposures to Equal Equivalent Continuous A-weighted Sound Pressure Level." Acta Acustica united with Acustica 100, no. 3 (2014): 513–26. http://dx.doi.org/10.3813/aaa.918731.
Full textGriefahn, Barbara, Peter Bröde, and Paul Schwarzenau. "The equivalent sound pressure level—A reliable predictor for human responses to impulse noise?" Applied Acoustics 38, no. 1 (1993): 1–13. http://dx.doi.org/10.1016/0003-682x(93)90037-7.
Full textMonazzam, Mohammad Reza, Elham Karimi, Parvin Nassiri, Lobat Taghavi, and Samaneh Karbalaei. "Outdoor Noise Pollution Mapping Case Study: A District of Tehran." Fluctuation and Noise Letters 13, no. 04 (2014): 1450027. http://dx.doi.org/10.1142/s0219477514500278.
Full textFedorko, Gabriel, David Heinz, Vieroslav Molnár, and Tomáš Brenner. "Use of mathematical models and computer software for analysis of traffic noise." Open Engineering 10, no. 1 (2020): 129–39. http://dx.doi.org/10.1515/eng-2020-0021.
Full textSoeta, Yoshiharu, and Ei Onogawa. "Psycho-physiological evaluations of low-level impulsive sounds produced by air conditioners." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 5 (2021): 1186–93. http://dx.doi.org/10.3397/in-2021-1771.
Full textKumar, Anil, Sagar Claire, Jatin Khanna, Nikhil Dhadwal, Nakul Ninama, and Ashok Kumar Bagha. "Experimental study to measure the sound transmission loss and equivalent continuous sound pressure level of composite material for various disturbances." Materials Today: Proceedings 27 (2020): 2782–86. http://dx.doi.org/10.1016/j.matpr.2019.12.199.
Full textKekez, Michał. "Application of selected computational intelligence methods to sound level modelling based on traffic intensity in thoroughfare." MATEC Web of Conferences 254 (2019): 02038. http://dx.doi.org/10.1051/matecconf/201925402038.
Full textMakino, Yusuke, and Yasushi Takano. "Effect of sound source movement at low Mach number on radiated noise level." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 3 (2021): 3731–37. http://dx.doi.org/10.3397/in-2021-2503.
Full textBug, Marion U., and Thomas Fedtke. "Equivalent threshold sound pressure levels (ETSPLs) for RadioEar DD65v2 circumaural audiometric headphones." International Journal of Audiology 59, no. 8 (2020): 624–30. http://dx.doi.org/10.1080/14992027.2020.1727034.
Full textClaaßen, Eike, Stephan Töpken, and Steven van de Par. "Loudness- and preference-equivalent levels of fan sounds at different absolute levels." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 4 (2021): 2304–12. http://dx.doi.org/10.3397/in-2021-2100.
Full textPšenka, Martin, Štefan Mihina, Matti Järvi, Marie Šístková, Viera Kažimírová, and Tomas Holota. "Noise Analysis at Different Technological Solutions of Milking Devices." Applied Engineering in Agriculture 34, no. 6 (2018): 921–27. http://dx.doi.org/10.13031/aea.12717.
Full textNavarro, Juan M., Raquel Martínez-España, Andrés Bueno-Crespo, Ramón Martínez, and José M. Cecilia. "Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network." Sensors 20, no. 3 (2020): 903. http://dx.doi.org/10.3390/s20030903.
Full textFurihata, Kenji, and Takesaburo Yanagisawa. "“Hues” sound level meter based on noise-rating scale composed of five-hue scale and equivalent continuous a-weighted sound pressure level and its usefulness." Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 78, no. 10 (1995): 1–9. http://dx.doi.org/10.1002/ecjc.4430781001.
Full textJin, Tao, Qi Huang, Yong Ding, and Li Feng Zhu. "Measurement and Analysis of the Structural Noise of Urban Bridges." Applied Mechanics and Materials 548-549 (April 2014): 1623–26. http://dx.doi.org/10.4028/www.scientific.net/amm.548-549.1623.
Full textKuwano, Sonoko, and Seiichiro Namba. "Application of loudness level to temporally varying sounds." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 6 (2021): 140–51. http://dx.doi.org/10.3397/in-2021-1304.
Full textYoshida, Takumasa. "Estimation of equivalent sound pressure levels of community noise and road traffic noise." Journal of the Acoustical Society of Japan (E) 15, no. 1 (1994): 53–57. http://dx.doi.org/10.1250/ast.15.53.
Full textHasegawa, Hiroshi, Hirotaka Ono, Takumi Ito, Ichiro Yuyama, Masao Kasuga, and Miyoshi Ayama. "Relationship between a visual stimulus with a feeling of depth and its equivalent sound pressure level (ESPL)." Journal of the Acoustical Society of America 123, no. 5 (2008): 3717. http://dx.doi.org/10.1121/1.2935165.
Full textŠístková, Marie, Martin Pšenka, Ivo Celjak, Petr Bartoš, Štefan Mihina, and Ivan Pavlík. "Noise Emissions in Milking Parlours with Various Construction Solutions." Acta Technologica Agriculturae 19, no. 2 (2016): 49–51. http://dx.doi.org/10.1515/ata-2016-0011.
Full textMlynski, Rafal, and Emil Kozlowski. "Selection of Level-Dependent Hearing Protectors for Use in An Indoor Shooting Range." International Journal of Environmental Research and Public Health 16, no. 13 (2019): 2266. http://dx.doi.org/10.3390/ijerph16132266.
Full textMacLean, Gail L., Andrew Stuart, and Robert Stenstrom. "Real Ear Sound Pressure Levels Developed by Three Portable Stereo System Earphones." American Journal of Audiology 1, no. 4 (1992): 52–55. http://dx.doi.org/10.1044/1059-0889.0104.52.
Full textSchlittenlacher, Josef, and Brian C. J. Moore. "Temporal integration of partial loudness of helicopter-like sounds." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 2 (2021): 4767–72. http://dx.doi.org/10.3397/in-2021-2830.
Full textVilniÅ¡kis, Tomas, Tomas JanuÅ¡eviÄ?ius, and Pranas BaltrÄ—nas. "Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation." Noise Control Engineering Journal 68, no. 3 (2020): 199–208. http://dx.doi.org/10.3397/1/376817.
Full textZaman, Taylan, Abdusselam Celebi, Bengusu Mirasoglu, and Akin Savas Toklu. "The evaluation of in-chamber sound levels during hyperbaric oxygen applications: Results of 41 centres." Diving and Hyperbaric Medicine Journal 50, no. 3 (2020): 244–49. http://dx.doi.org/10.28920/dhm50.3.244-249.
Full textBujoreanu, Carmen, Eugen Golgoţiu, Sorinel Gicu Talif, and Gheorghe Manolache. "Experimental Investigation on Functional Parameters of the Engines Exhaust Mufflers." Applied Mechanics and Materials 822 (January 2016): 224–29. http://dx.doi.org/10.4028/www.scientific.net/amm.822.224.
Full textPoulsen, Torben. "Equivalent threshold sound pressure levels (ETSPL) for Interacoustics DD 45 supra-aural audiometric earphones." International Journal of Audiology 49, no. 11 (2010): 850–55. http://dx.doi.org/10.3109/14992027.2010.500625.
Full textNelson, David A. "Frequency resolution at equivalent sound‐pressure levels in normal‐hearing and hearing‐impaired listeners." Journal of the Acoustical Society of America 83, S1 (1988): S75. http://dx.doi.org/10.1121/1.2025509.
Full textFujiwara, Toshiaki, Seishi Meiarashi, Yoshiharu Namikawa, and Masaki Hasebe. "Reduction of equivalent continuous A-weighted sound pressure levels by porous elastic road surfaces." Applied Acoustics 66, no. 7 (2005): 766–78. http://dx.doi.org/10.1016/j.apacoust.2004.12.004.
Full textGibbs, Barry Marshall, and Michel Villot. "Structure-borne sound in buildings: Advances in measurement and prediction methods." Noise Control Engineering Journal 68, no. 1 (2020): 1–20. http://dx.doi.org/10.3397/1/37681.
Full textRenz, Tobias, Philip Leistner, and Andreas Liebl. "Rating Level as a Method to Assess the Impact of Speech Noise on Cognitive Performance and Annoyance in Offices." Acta Acustica united with Acustica 105, no. 6 (2019): 1114–26. http://dx.doi.org/10.3813/aaa.919390.
Full textCarneiro Muniz, Carina Moreno Dias, Sergio Fernando Saraiva da Silva, Rachel Costa Façanha, et al. "Audiological and noise exposure findings among members of a Brazilian folklore music group." Work 68, no. 1 (2021): 235–41. http://dx.doi.org/10.3233/wor-203370.
Full textEcheverri-Londoño, Carlos Alberto, and Alice Elizabeth González Fernández. "Prediction of noise from wind turbines: theoretical and experimental study." Revista Facultad de Ingeniería Universidad de Antioquia, no. 90 (December 14, 2018): 34–41. http://dx.doi.org/10.17533/udea.redin.n90a04.
Full textFeugère, Lionel, Gabriella Gibson, Nicholas C. Manoukis, and Olivier Roux. "Mosquito sound communication: are male swarms loud enough to attract females?" Journal of The Royal Society Interface 18, no. 177 (2021): 20210121. http://dx.doi.org/10.1098/rsif.2021.0121.
Full textKawasaki, M., D. Margoliash, and N. Suga. "Delay-tuned combination-sensitive neurons in the auditory cortex of the vocalizing mustached bat." Journal of Neurophysiology 59, no. 2 (1988): 623–35. http://dx.doi.org/10.1152/jn.1988.59.2.623.
Full textMatook, Sherry, Mary Sullivan, Amy Salisbury, Robin Miller, and Barry Lester. "Variations of NICU Sound by Location and Time of Day." Neonatal Network 29, no. 2 (2010): 87–95. http://dx.doi.org/10.1891/0730-0832.29.2.87.
Full textLaly, Zacharie, Noureddine Atalla, and Sid-Ali Meslioui. "Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach." Journal of Sound and Vibration 427 (August 2018): 134–58. http://dx.doi.org/10.1016/j.jsv.2017.09.011.
Full textRenz, Tobias, Philip Leistner, and Andreas Liebl. "Use of energy-equivalent sound pressure levels and percentile level differences to assess the impact of speech on cognitive performance and annoyance perception." Applied Acoustics 153 (October 2019): 71–77. http://dx.doi.org/10.1016/j.apacoust.2019.04.008.
Full textAndrzej Bąkowski and Leszek Radziszewski. "Analysis of Traffic Noise in Two Cross-Sections at the Road Crossing The City." Communications - Scientific letters of the University of Zilina 23, no. 1 (2020): B13—B21. http://dx.doi.org/10.26552/com.c.2021.1.b13-b21.
Full textFanigliulo, Roberto, Lindoro Del Duca, Laura Fornaciari, Renato Grilli, Roberto Tomasome, and Danieele Pochi. "Efficiency of an ANC system in the tractor cabin under controlled engine workload." Noise Control Engineering Journal 68, no. 5 (2020): 339–57. http://dx.doi.org/10.3397/1/376829.
Full textShashurin, Aleksandr, Konstantiv Fiev, Viktoriia Vasilyeva, and Andrey Voronkov. "DEVELOPMENT OF THE METHODOLOGY FOR MEASURING NOISE LEVELS IN THE UNDERGROUND ROLLING STOCK." VOLUME 39, VOLUME 39 (2021): 183. http://dx.doi.org/10.36336/akustika202139183.
Full text