Academic literature on the topic 'Equivariant multiplicities'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Equivariant multiplicities.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Equivariant multiplicities"

1

Engman, Martin. "The Spectrum and Isometric Embeddings of Surfaces of Revolution." Canadian Mathematical Bulletin 49, no. 2 (2006): 226–36. http://dx.doi.org/10.4153/cmb-2006-023-7.

Full text
Abstract:
AbstractA sharp upper bound on the first S1 invariant eigenvalue of the Laplacian for S1 invariant metrics on S2 is used to find obstructions to the existence of S1 equivariant isometric embeddings of such metrics in (ℝ3, can). As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in (ℝ3, can). This leads to generalizations of some classical results in the theory of surfaces.
APA, Harvard, Vancouver, ISO, and other styles
2

Abe, Takuro, Hiroaki Terao, and Atsushi Wakamiko. "Equivariant multiplicities of Coxeter arrangements and invariant bases." Advances in Mathematics 230, no. 4-6 (2012): 2364–77. http://dx.doi.org/10.1016/j.aim.2012.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paradan, Paul-Émile, and Michèle Vergne. "The multiplicities of the equivariant index of twisted Dirac operators." Comptes Rendus Mathematique 352, no. 9 (2014): 673–77. http://dx.doi.org/10.1016/j.crma.2014.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Concini, C., C. Procesi, and M. Vergne. "Box splines and the equivariant index theorem." Journal of the Institute of Mathematics of Jussieu 12, no. 3 (2012): 503–44. http://dx.doi.org/10.1017/s1474748012000734.

Full text
Abstract:
AbstractIn this article, we begin by recalling the inversion formula for the convolution with the box spline. The equivariant cohomology and the equivariant $K$-theory with respect to a compact torus $G$ of various spaces associated to a linear action of $G$ in a vector space $M$ can both be described using some vector spaces of distributions, on the dual of the group $G$ or on the dual of its Lie algebra $\mathfrak{g}$. The morphism from $K$-theory to cohomology is analyzed, and multiplication by the Todd class is shown to correspond to the operator (deconvolution) inverting the semi-discrete
APA, Harvard, Vancouver, ISO, and other styles
5

Kaptanoglu, Semra Öztürk. "Betti numbers of fixed point sets and multiplicities of indecomposable summands." Journal of the Australian Mathematical Society 74, no. 2 (2003): 165–72. http://dx.doi.org/10.1017/s1446788700003220.

Full text
Abstract:
AbstractLet G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated kG-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point set XCn and the multiplicities of indecomposable summands of M considered as a kCn-module are related via a localization theorem in equivariant cohomology, where Cn is a cyclic subgroup of G of order n. Explicit formulas are given for n = 2 and n = 4.
APA, Harvard, Vancouver, ISO, and other styles
6

Muthiah, Dinakar. "Weyl group action on weight zero Mirković-Vilonen basis and equivariant multiplicities." Advances in Mathematics 385 (July 2021): 107793. http://dx.doi.org/10.1016/j.aim.2021.107793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Вернь, Мишель, and Michele Vergne. "Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators." Известия Российской академии наук. Серия математическая 80, no. 5 (2016): 157–92. http://dx.doi.org/10.4213/im8464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vergne, M. "Formal equivariant $ \hat A$ class, splines and multiplicities of the index of transversally elliptic operators." Izvestiya: Mathematics 80, no. 5 (2016): 958–93. http://dx.doi.org/10.1070/im8464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Terpereau, Ronan, and Alfonso Zamora. "Stability conditions and related filtrations for (G,h)-constellations." International Journal of Mathematics 28, no. 14 (2017): 1750098. http://dx.doi.org/10.1142/s0129167x17500987.

Full text
Abstract:
Given an infinite reductive algebraic group [Formula: see text], we consider [Formula: see text]-equivariant coherent sheaves with prescribed multiplicities, called [Formula: see text]-constellations, for which two stability notions arise. The first one is analogous to the [Formula: see text]-stability defined for quiver representations by King [Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser.[Formula: see text]2) 45(180) (1994) 515–530] and for [Formula: see text]-constellations by Craw and Ishii [Flops of [Formula: see text]-Hilb and equivalences of deriv
APA, Harvard, Vancouver, ISO, and other styles
10

Kionke, Steffen, та Michael Schrödl-Baumann. "Equivariant Benjamini–Schramm convergence of simplicial complexes and ℓ2-multiplicities". Journal of Topology and Analysis, 3 грудня 2020, 1–21. http://dx.doi.org/10.1142/s1793525321500126.

Full text
Abstract:
We define a variant of Benjamini–Schramm convergence for finite simplicial complexes with the action of a fixed finite group [Formula: see text] which leads to the notion of unimodular random rooted simplicial [Formula: see text]-complexes. For every unimodular random rooted simplicial [Formula: see text]-complex we define a corresponding [Formula: see text]-homology and the [Formula: see text]-multiplicity of an irreducible representation of [Formula: see text] in the homology. The [Formula: see text]-multiplicities generalize the [Formula: see text]-Betti numbers and we show that they are co
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Equivariant multiplicities"

1

Casbi, Elie. "Categorifications of cluster algebras and representations of quiver Hecke algebras." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7032.

Full text
Abstract:
Cette thèse porte sur l’étude de diverses conséquences des résultats de catégorifications monoïdales d'algèbres amassées par les algèbres de Hecke carquois, établis dans les travaux de Kang-Kashiwara-Kim-Oh [69]. Nous nous intéresserons en particulier à trois aspects de cette théorie: en premier lieu celui de la combinatoire, puis de la géométrie polytopale, et enfin celui de la théorie des représentations géométrique. Nous étudierons tout d'abord certaines relations combinatoires entre objets de nature a priori différentes: d'une part, les g-vecteurs au sens de Fomin-Zelevinsky, et d'autre pa
APA, Harvard, Vancouver, ISO, and other styles
2

Nyenhuis, Michael. "Equivariant Chow groups and multiplicities." Thesis, 1993. http://hdl.handle.net/2429/2240.

Full text
Abstract:
We propose a definition of equivariant Chow groups for schemes with a torus action and develop the intersection theory related to it. The equivariant intersection theories that have been considered in the past have been the Chow groups and the K-theory of the quotient scheme, as well as the equivariant K-groups of the original scheme. The equivariant Chow groups are related to all of these. At first glance, we would expect a strong relationship with the equivariant K-groups. As it turns out, the equivariant Chow groups are more closely related to the Chow groups of the quotient scheme. We cho
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!