To see the other types of publications on this topic, follow the link: ER-targeting sequence.

Journal articles on the topic 'ER-targeting sequence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'ER-targeting sequence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nordholm, Johan, Jeanne Petitou, Henrik Östbye, Diogo V. da Silva, Dan Dou, Hao Wang, and Robert Daniels. "Translational regulation of viral secretory proteins by the 5′ coding regions and a viral RNA-binding protein." Journal of Cell Biology 216, no. 8 (July 10, 2017): 2283–93. http://dx.doi.org/10.1083/jcb.201702102.

Full text
Abstract:
A primary function of 5′ regions in many secretory protein mRNAs is to encode an endoplasmic reticulum (ER) targeting sequence. In this study, we show how the regions coding for the ER-targeting sequences of the influenza glycoproteins NA and HA also function as translational regulatory elements that are controlled by the viral RNA-binding protein (RBP) NS1. The translational increase depends on the nucleotide composition and 5′ positioning of the ER-targeting sequence coding regions and is facilitated by the RNA-binding domain of NS1, which can associate with ER membranes. Inserting the ER-targeting sequence coding region of NA into different 5′ UTRs confirmed that NS1 can promote the translation of secretory protein mRNAs based on the nucleotides within this region rather than the resulting amino acids. By analyzing human protein mRNA sequences, we found evidence that this mechanism of using 5′ coding regions and particular RBPs to achieve gene-specific regulation may extend to human-secreted proteins.
APA, Harvard, Vancouver, ISO, and other styles
2

Neuhof, Andrea, Melissa M. Rolls, Berit Jungnickel, Kai-Uwe Kalies, and Tom A. Rapoport. "Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction." Molecular Biology of the Cell 9, no. 1 (January 1998): 103–15. http://dx.doi.org/10.1091/mbc.9.1.103.

Full text
Abstract:
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes.
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, David J., Michael D. Schwartz, Billy T. Dye, and Paul Ahlquist. "Engineered Retargeting of Viral RNA Replication Complexes to an Alternative Intracellular Membrane." Journal of Virology 77, no. 22 (November 15, 2003): 12193–202. http://dx.doi.org/10.1128/jvi.77.22.12193-12202.2003.

Full text
Abstract:
ABSTRACT Positive-strand RNA virus replication complexes are universally associated with intracellular membranes, although different viruses use membranes derived from diverse and sometimes multiple organelles. We investigated whether unique intracellular membranes are required for viral RNA replication complex formation and function in yeast by retargeting protein A, the Flock House virus (FHV) RNA-dependent RNA polymerase. Protein A, the only viral protein required for FHV RNA replication, targets and anchors replication complexes to outer mitochondrial membranes in part via an N-proximal sequence that contains a transmembrane domain. We replaced the FHV protein A mitochondrial outer membrane-targeting sequence with the N-terminal endoplasmic reticulum (ER)-targeting sequence from the yeast NADP cytochrome P450 oxidoreductase or inverted C-terminal ER-targeting sequences from the hepatitis C virus NS5B polymerase or the yeast t-SNARE Ufe1p. Confocal immunofluorescence microscopy confirmed that protein A chimeras retargeted to the ER. FHV subgenomic and genomic RNA accumulation in yeast expressing ER-targeted protein A increased 2- to 13-fold over that in yeast expressing wild-type protein A, despite similar protein A levels. Density gradient flotation assays demonstrated that ER-targeted protein A remained membrane associated, and in vitro RNA-dependent RNA polymerase assays demonstrated an eightfold increase in the in vitro RNA synthesis activity of the ER-targeted FHV RNA replication complexes. Electron microscopy showed a change in the intracellular membrane alterations from a clustered mitochondrial distribution with wild-type protein A to the formation of perinuclear layers with ER-targeted protein A. We conclude that specific intracellular membranes are not required for FHV RNA replication complex formation and function.
APA, Harvard, Vancouver, ISO, and other styles
4

Miyazaki, Emi, Yuichiro Kida, Katsuyoshi Mihara, and Masao Sakaguchi. "Switching the Sorting Mode of Membrane Proteins from Cotranslational Endoplasmic Reticulum Targeting to Posttranslational Mitochondrial Import." Molecular Biology of the Cell 16, no. 4 (April 2005): 1788–99. http://dx.doi.org/10.1091/mbc.e04-08-0707.

Full text
Abstract:
Hydrophobic membrane proteins are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, mediated by hydrophobic signal sequence. Mitochondrial membrane proteins escape this mechanism despite their hydrophobic character. We examined sorting of membrane proteins into the mitochondria, by using mitochondrial ATP-binding cassette (ABC) transporter isoform (ABC-me). In the absence of 135-residue N-terminal hydrophilic segment (N135), the membrane domain was integrated into the ER membrane in COS7 cells. Other sequences that were sufficient to import soluble protein into mitochondria could not import the membrane domain. N135 imports other membrane proteins into mitochondria. N135 prevents cotranslational targeting of the membrane domain to ER and in turn achieves posttranslational import into mitochondria. In a cell-free system, N135 suppresses targeting to the ER membranes, although it does not affect recognition of hydrophobic segments by signal recognition particle. We conclude that the N135 segment blocks the ER targeting of membrane proteins even in the absence of mitochondria and switches the sorting mode from cotranslational ER integration to posttranslational mitochondrial import.
APA, Harvard, Vancouver, ISO, and other styles
5

Pantazaka, Evangelia, and Colin W. Taylor. "Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain." Biochemical Journal 425, no. 1 (December 14, 2009): 61–74. http://dx.doi.org/10.1042/bj20091051.

Full text
Abstract:
Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation. Localization of IP3R1 in the ER requires translation of between 26 and 34 residues beyond the end of the first transmembrane domain (TMD1), a region that includes TMD2 (second transmembrane domain). Replacement of these post-TMD1 residues with unrelated sequences of similar length (24–36 residues) partially mimicked the native residues. We conclude that for IP3R approx. 30 residues after TMD1 must be translated to allow a signal sequence within TMD1 to be extruded from the ribosome and mediate co-translational targeting to the ER. Hydrophobic residues within TMD1 and TMD2 then ensure stable association with the ER membrane.
APA, Harvard, Vancouver, ISO, and other styles
6

Fehrmann, Frauke, Martin Jung, Richard Zimmermann, and Hans-Georg Kräusslich. "Transport of the Intracisternal A-Type Particle Gag Polyprotein to the Endoplasmic Reticulum Is Mediated by the Signal Recognition Particle." Journal of Virology 77, no. 11 (June 1, 2003): 6293–304. http://dx.doi.org/10.1128/jvi.77.11.6293-6304.2003.

Full text
Abstract:
ABSTRACT Intracisternal A-type particles (IAP) are defective endogenous retroviruses that accumulate in the endoplasmic reticulum (ER) of rodent cells. The enveloped particles are produced by assembly and budding of IAP Gag polyproteins at the ER membrane. In this study, we analyzed the specific ER transport of the Gag polyprotein of the IAP element MIA14. To this end, we performed in vitro translation of Gag in the presence of microsomal membranes or synthetic proteoliposomes followed by membrane sedimentation or flotation. ER binding of IAP Gag occurred mostly cotranslationally, and Gag polyproteins interacted specifically with proteoliposomes containing only signal recognition particle (SRP) receptor and the Sec61p complex, which form the minimal ER translocation apparatus. The direct participation of SRP in ER targeting of IAP Gag was demonstrated in cross-linking and immunoprecipitation experiments. The IAP polyprotein was not translocated into the ER; it was found to be tightly associated with the cytoplasmic side of the ER membrane but did not behave as an integral membrane protein. Substituting the functional signal peptide of preprolactin for the hydrophobic sequence at the N terminus of IAP Gag also did not result in translocation of the chimeric protein into the ER lumen, and grafting the IAP hydrophobic sequence onto preprolactin failed to yield luminal transport as well. These results suggest that the N-terminal hydrophobic region of the IAP Gag polyprotein functions as a transport signal which mediates SRP-dependent ER targeting, but polyprotein translocation or integration into the membrane is prevented by the signal sequence itself and by additional regions of Gag.
APA, Harvard, Vancouver, ISO, and other styles
7

Ostermeyer, Anne G., Lynne T. Ramcharan, Youchun Zeng, Douglas M. Lublin, and Deborah A. Brown. "Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets." Journal of Cell Biology 164, no. 1 (January 5, 2004): 69–78. http://dx.doi.org/10.1083/jcb.200303037.

Full text
Abstract:
Although caveolins normally reside in caveolae, they can accumulate on the surface of cytoplasmic lipid droplets (LDs). Here, we first provided support for our model that overaccumulation of caveolins in the endoplasmic reticulum (ER) diverts the proteins to nascent LDs budding from the ER. Next, we found that a mutant H-Ras, present on the cytoplasmic surface of the ER but lacking a hydrophobic peptide domain, did not accumulate on LDs. We used the fact that wild-type caveolin-1 accumulates in LDs after brefeldin A treatment or when linked to an ER retrieval motif to search for mutants defective in LD targeting. The hydrophobic domain, but no specific sequence therein, was required for LD targeting of caveolin-1. Certain Leu insertions blocked LD targeting, independently of hydrophobic domain length, but dependent on their position in the domain. We propose that proper packing of putative hydrophobic helices may be required for LD targeting of caveolin-1.
APA, Harvard, Vancouver, ISO, and other styles
8

Masaki, R., A. Yamamoto, and Y. Tashiro. "Microsomal aldehyde dehydrogenase is localized to the endoplasmic reticulum via its carboxyl-terminal 35 amino acids." Journal of Cell Biology 126, no. 6 (September 15, 1994): 1407–20. http://dx.doi.org/10.1083/jcb.126.6.1407.

Full text
Abstract:
Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536-19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final destination. When expressed from cDNA in COS-1 cells, wild-type msALDH is localized exclusively in the well-developed ER. The removal of the hydrophobic domain results in the cytosolic localization of truncated proteins, thus suggesting that the portion is responsible for membrane anchoring. The last 35 amino acids of msALDH, including the hydrophobic domain, are sufficient for targeting of E. coli beta-galactosidase to the ER membrane. Further studies using chloramphenicol acetyltransferase fusion proteins suggest that two hydrophilic sequences on either side of the hydrophobic domain play an important role in ER targeting.
APA, Harvard, Vancouver, ISO, and other styles
9

Garoff, H., D. Huylebroeck, A. Robinson, U. Tillman, and P. Liljeström. "The signal sequence of the p62 protein of Semliki Forest virus is involved in initiation but not in completing chain translocation." Journal of Cell Biology 111, no. 3 (September 1, 1990): 867–76. http://dx.doi.org/10.1083/jcb.111.3.867.

Full text
Abstract:
So far it has been demonstrated that the signal sequence of proteins which are made at the ER functions both at the level of protein targeting to the ER and in initiation of chain translocation across the ER membrane. However, its possible role in completing the process of chain transfer (see Singer, S. J., P. A. Maher, and M. P. Yaffe. Proc. Natl. Acad. Sci. USA. 1987. 84:1015-1019) has remained elusive. In this work we show that the p62 protein of Semliki Forest virus contains an uncleaved signal sequence at its NH2-terminus and that this becomes glycosylated early during synthesis and translocation of the p62 polypeptide. As the glycosylation of the signal sequence most likely occurs after its release from the ER membrane our results suggest that this region has no role in completing the transfer process.
APA, Harvard, Vancouver, ISO, and other styles
10

Addya, Sankar, Hindupur K. Anandatheerthavarada, Gopa Biswas, Shripad V. Bhagwat, Jayati Mullick, and Narayan G. Avadhani. "Targeting of NH2-terminal–processed Microsomal Protein to Mitochondria: A Novel Pathway for the Biogenesis of Hepatic Mitochondrial P450MT2." Journal of Cell Biology 139, no. 3 (November 3, 1997): 589–99. http://dx.doi.org/10.1083/jcb.139.3.589.

Full text
Abstract:
Cytochrome P4501A1 is a hepatic, microsomal membrane–bound enzyme that is highly induced by various xenobiotic agents. Two NH2-terminal truncated forms of this P450, termed P450MT2a and MT2b, are also found localized in mitochondria from β-naphthoflavone–induced livers. In this paper, we demonstrate that P4501A1 has a chimeric NH2-terminal signal that facilitates the targeting of the protein to both the ER and mitochondria. The NH2-terminal 30–amino acid stretch of P4501A1 is thought to provide signals for ER membrane insertion and also stop transfer. The present study provides evidence that a sequence motif immediately COOH-terminal (residues 33–44) to the transmembrane domain functions as a mitochondrial targeting signal under both in vivo and in vitro conditions, and that the positively charged residues at positions 34 and 39 are critical for mitochondrial targeting. Results suggest that 25% of P4501A1 nascent chains, which escape ER membrane insertion, are processed by a liver cytosolic endoprotease. We postulate that the NH2-terminal proteolytic cleavage activates a cryptic mitochondrial targeting signal. Immunofluorescence microscopy showed that a portion of transiently expressed P4501A1 is colocalized with the mitochondrial-specific marker protein cytochrome oxidase subunit I. The mitochondrial-associated MT2a and MT2b are localized within the inner membrane compartment, as tested by resistance to limited proteolysis in both intact mitochondria and mitoplasts. Our results therefore describe a novel mechanism whereby proteins with chimeric signal sequence are targeted to the ER as well as to the mitochondria.
APA, Harvard, Vancouver, ISO, and other styles
11

Henderson, Matthew P. A., Yeen Ting Hwang, John M. Dyer, Robert T. Mullen, and David W. Andrews. "The C-terminus of cytochrome b5 confers endoplasmic reticulum specificity by preventing spontaneous insertion into membranes." Biochemical Journal 401, no. 3 (January 12, 2007): 701–9. http://dx.doi.org/10.1042/bj20060990.

Full text
Abstract:
The molecular mechanisms that determine the correct subcellular localization of proteins targeted to membranes by tail-anchor sequences are poorly defined. Previously, we showed that two isoforms of the tung oil tree [Vernicia (Aleurites) fordii] tail-anchored Cb5 (cytochrome b5) target specifically to ER (endoplasmic reticulum) membranes both in vivo and in vitro [Hwang, Pelitire, Henderson, Andrews, Dyer and Mullen (2004) Plant Cell 16, 3002–3019]. In the present study, we examine the targeting of various tung Cb5 fusion proteins and truncation mutants to purified intracellular membranes in vitro in order to assess the importance of the charged CTS (C-terminal sequence) in targeting to specific membranes. Removal of the CTS from tung Cb5 proteins resulted in efficient binding to both ER and mitochondria. Results from organelle competition, liposome-binding and membrane proteolysis experiments demonstrated that removal of the CTS results in spontaneous insertion of tung Cb5 proteins into lipid bilayers. Our results indicate that the CTSs from plant Cb5 proteins provide ER specificity by preventing spontaneous insertion into incorrect subcellular membranes.
APA, Harvard, Vancouver, ISO, and other styles
12

Lorenzen, J. A., C. Y. Dadabay, and E. H. Fischer. "COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus." Journal of Cell Biology 131, no. 3 (November 1, 1995): 631–43. http://dx.doi.org/10.1083/jcb.131.3.631.

Full text
Abstract:
The noncatalytic domain of the human T cell protein tyrosine phosphatase (TCPTP) is alternatively spliced to generate a 45-kD form, p45TC, and a 48-kD form, p48TC (Champion-Arnaud et al., 1991; Mosinger et al., 1992). This manuscript concerns structural motifs in the noncatalytic segment of the enzyme responsible for targeting the two forms to different subcellular compartments. Endogenous and transiently expressed p48TC associates with the ER, as determined by sucrose gradient fractionation and indirect immunofluorescence, respectively. By contrast, p45TC localizes in the nucleus even though upon cell lysis it is not retained and fractionates with markers for soluble enzymes. Using fusion proteins consisting of beta-galactosidase and COOH-terminal fragments of p48TC, two motifs necessary for ER retention within a 70-residue targeting segment have been identified. These include the terminal 19 hydrophobic residues which comprise a potential membrane-spanning segment and residues 346-358 which encompass a cluster of basic amino acids that may represent another type of ER retention motif. The sequence RKRKR, which immediately precedes the splice junction, functions as a nuclear localization signal for p45TC.
APA, Harvard, Vancouver, ISO, and other styles
13

Honda, Akira, Omayma S. Al-Awar, Jesse C. Hay, and Julie G. Donaldson. "Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE." Journal of Cell Biology 168, no. 7 (March 21, 2005): 1039–51. http://dx.doi.org/10.1083/jcb.200409138.

Full text
Abstract:
Arf and Rab family GTPases regulate membrane traffic in cells, yet little is known about how they are targeted to distinct organelles. To identify sequences in Arf-1 necessary for Golgi targeting, we examined the localization of chimeras between Arf-1 and Arf-6. Here, we identify a 16–amino acid sequence in Arf-1 that specifies Golgi targeting and contains a motif (MXXE) that is important for Arf-1 binding to membrin, an ER-Golgi SNARE protein. The MXXE motif is conserved in all Arfs known to localize to the Golgi and enables Arf-1 to localize to the early Golgi. Arf-1 lacking these 16 aa can still localize to the late Golgi where it displays a more rapid Golgi-cytosol cycle than wild-type Arf-1. These studies suggest that membrin recruits Arf-1 to the early Golgi and reveal distinct kinetic cycles for Arf-1 at early and late Golgi determined by different sets of Arf regulators and effectors.
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Xiangyu, and X. F. Steven Zheng. "Endoplasmic Reticulum and Golgi Localization Sequences for Mammalian Target of Rapamycin." Molecular Biology of the Cell 18, no. 3 (March 2007): 1073–82. http://dx.doi.org/10.1091/mbc.e06-05-0406.

Full text
Abstract:
Mammalian target of rapamycin (mTOR) forms two complexes, mTORC1 and mTORC2, that play central roles in cell growth and functions. Only mTORC1 is directly inhibited by the immunosuppressive drug rapamycin. Despite recent progress in identifying new components and functions of the mTOR pathway, relatively little is known about the spatial arrangement of mTOR signaling and the underlying mechanisms. In a previous study, we showed that a large proportion of mTOR is localized to the endoplasmic reticulum (ER) and Golgi in many common cell lines. Here, we report the identification of an internal mTOR sequence that contains two HEAT (HT) repeats, HT18 and HT19, and two intervening interunit spacers (IUSs), IUS17 and IUS18, which is sufficient to target enhanced green fluorescent protein to the Golgi. Surprisingly, deletion of IUS17 from this Golgi localization sequence (GLS) converts it to an ER localization sequence (ELS). Deletion of HT19, a common element of both GLS and ELS from the full-length mTOR, causes delocalization of mTOR and inhibits the ability of mTOR to promote S6 phosphorylation. Moreover, overexpression of GLS and ELS inhibits both mTOR complexes. Together, our results reveal unusual ER- and Golgi-targeting sequences and suggest that anchoring to these organelles is important for the functions of mTOR complexes.
APA, Harvard, Vancouver, ISO, and other styles
15

Fons, Ryen D., Brigitte A. Bogert, and Ramanujan S. Hegde. "Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane." Journal of Cell Biology 160, no. 4 (February 10, 2003): 529–39. http://dx.doi.org/10.1083/jcb.200210095.

Full text
Abstract:
Although the transport of model proteins across the mammalian ER can be reconstituted with purified Sec61p complex, TRAM, and signal recognition particle receptor, some substrates, such as the prion protein (PrP), are inefficiently or improperly translocated using only these components. Here, we purify a factor needed for proper translocation of PrP and identify it as the translocon-associated protein (TRAP) complex. Surprisingly, TRAP also stimulates vectorial transport of many, but not all, other substrates in a manner influenced by their signal sequences. Comparative analyses of several natural signal sequences suggest that a dependence on TRAP for translocation is not due to any single physical parameter, such as hydrophobicity of the signal sequence. Instead, a functional property of the signal, efficiency of its post-targeting role in initiating substrate translocation, correlates inversely with TRAP dependence. Thus, maximal translocation independent of TRAP can only be achieved with a signal sequence, such as the one from prolactin, whose strong interaction with the translocon mediates translocon gating shortly after targeting. These results identify the TRAP complex as a functional component of the translocon and demonstrate that it acts in a substrate-specific manner to facilitate the initiation of protein translocation.
APA, Harvard, Vancouver, ISO, and other styles
16

Haeuptle, M. T., N. Flint, N. M. Gough, and B. Dobberstein. "A tripartite structure of the signals that determine protein insertion into the endoplasmic reticulum membrane." Journal of Cell Biology 108, no. 4 (April 1, 1989): 1227–36. http://dx.doi.org/10.1083/jcb.108.4.1227.

Full text
Abstract:
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Guangzhi, and Hélène Sanfaçon. "Characterization of Membrane Association Domains within the Tomato Ringspot Nepovirus X2 Protein, an Endoplasmic Reticulum-Targeted Polytopic MembraneProtein." Journal of Virology 80, no. 21 (August 23, 2006): 10847–57. http://dx.doi.org/10.1128/jvi.00789-06.

Full text
Abstract:
ABSTRACT Replication of nepoviruses (family Comoviridae) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleoside triphosphate-binding protein (NTB) of Tomato ringspot nepovirus is an integral membrane protein with two ER-targeting sequences and have suggested that it anchors the viral replication complex (VRC) to the membranes. A second highly hydrophobic protein domain (X2) is located immediately upstream of the NTB domain in the RNA1-encoded polyprotein. X2 shares conserved sequence motifs with the comovirus 32-kDa protein, an ER-targeted protein implicated in VRC assembly. In this study, we examined the ability of X2 to associate with intracellular membranes. The X2 protein was fused to the green fluorescent protein and expressed in Nicotiana benthamiana by agroinfiltration. Confocal microscopy and membrane flotation experiments suggested that X2 is targeted to ER membranes. Mutagenesis studies revealed that X2 contains multiple ER-targeting domains, including two C-terminal transmembrane helices and a less-well-defined domain further upstream. To investigate the topology of the protein in the membrane, in vitro glycosylation assays were conducted using X2 derivatives that contained N-glycosylation sites introduced at the N or C termini of the protein. The results led us to propose a topological model for X2 in which the protein traverses the membrane three times, with the N terminus oriented in the lumen and the C terminus exposed to the cytoplasmic face. Taken together, our results indicate that X2 is an ER-targeted polytopic membrane protein and raises the possibility that it acts as a second membrane anchor for the VRC.
APA, Harvard, Vancouver, ISO, and other styles
18

Paharkova-Vatchkova, Vladislava, and Kuk-Wha Lee. "Nuclear export and mitochondrial and endoplasmic reticulum localization of IGF-binding protein 3 regulate its apoptotic properties." Endocrine-Related Cancer 17, no. 2 (June 2010): 293–302. http://dx.doi.org/10.1677/erc-09-0106.

Full text
Abstract:
Tumor suppression by IGF-binding protein 3 (IGFBP3) may occur in an IGF-independent manner, in addition to its role as a regulator of IGF bioavailability. After secretion, IGFBP3 is internalized, rapidly localized to the nucleus, and is later detected in the cytoplasm. We identified a putative nuclear export sequence (NES) in IGFBP3 between amino acids 217 and 228, analogous to the leucine-rich NES sequence of p53 and HIV Rev. Mutation of the NES prevents nucleocytoplasmic shuttling of IGFBP3 and blocks its ability to induce apoptosis. Targeting of IGFBP3 to the mitochondria and endoplasmic reticulum (ER) was confirmed by co-localization with organelle markers using fluorescence confocal microscopy and subcellular fractionation. Mitochondrial targeting was also demonstrated in vivo in IGFBP3-treated prostate cancer xenografts. These results show that IGFBP3 shuttles from the nucleus to the mitochondria and ER, and that nuclear export is essential for its effects on prostate cancer apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
19

Brock, Sean C., Josh M. Heck, Patricia A. McGraw, and James E. Crowe. "The Transmembrane Domain of the Respiratory Syncytial Virus F Protein Is an Orientation-Independent Apical Plasma Membrane Sorting Sequence." Journal of Virology 79, no. 19 (October 1, 2005): 12528–35. http://dx.doi.org/10.1128/jvi.79.19.12528-12535.2005.

Full text
Abstract:
ABSTRACT The processes that facilitate transport of integral membrane proteins though the secretory pathway and subsequently target them to particular cellular membranes are relevant to almost every field of biology. These transport processes involve integration of proteins into the membrane of the endoplasmic reticulum (ER), passage from the ER to the Golgi, and post-Golgi trafficking. The respiratory syncytial virus (RSV) fusion (F) protein is a type I integral membrane protein that is uniformly distributed on the surface of infected nonpolarized cells and localizes to the apical plasma membrane of polarized epithelial cells. We expressed wild-type or altered RSV F proteins to gain a better understanding of secretory transport and plasma membrane targeting of type I membrane proteins in polarized and nonpolarized epithelial cells. Our findings reveal a novel, orientation-independent apical plasma membrane targeting function for the transmembrane domain of the RSV F protein in polarized epithelial cells. This work provides a basis for a more complete understanding of the role of the transmembrane domain and cytoplasmic tail of viral type I integral membrane proteins in secretory transport and plasma membrane targeting in polarized and nonpolarized cells.
APA, Harvard, Vancouver, ISO, and other styles
20

Afshar, Nima, Ben E. Black, and Bryce M. Paschal. "Retrotranslocation of the Chaperone Calreticulin from the Endoplasmic Reticulum Lumen to the Cytosol." Molecular and Cellular Biology 25, no. 20 (October 15, 2005): 8844–53. http://dx.doi.org/10.1128/mcb.25.20.8844-8853.2005.

Full text
Abstract:
ABSTRACT Polypeptide folding and quality control in the endoplasmic reticulum (ER) are mediated by protein chaperones, including calreticulin (CRT). ER localization of CRT is specified by two types of targeting signals, an N-terminal hydrophobic signal sequence that directs insertion into the ER and a C-terminal KDEL sequence that is responsible for retention in the ER. CRT has been implicated in a number of cytoplasmic and nuclear processes, suggesting that there may be a pathway for generating cytosolic CRT. Here we show that CRT is fully inserted into the ER, undergoes processing by signal peptidase, and subsequently undergoes retrotranslocation to the cytoplasm. A transcription-based reporter assay revealed an important role for the C-terminal Ca2+ binding domain in CRT retrotranslocation. Neither ubiquitylation nor proteasome activity was necessary for retrotranslocation, which indicates that the pathway is different from that used by unfolded proteins targeted for destruction. Forced expression of cytosolic CRT is sufficient to rescue a cell adhesion defect observed in mouse embryo fibroblasts from crt −/− mice. The ability of CRT to retrotranslocate from the ER lumen to the cytosol explains how CRT can change compartments and modulate cell adhesion, transcription, and translation.
APA, Harvard, Vancouver, ISO, and other styles
21

Navarro, Beatriz, Luisa Rubino, and Marcello Russo. "Expression of the Cymbidium Ringspot Virus 33-Kilodalton Protein in Saccharomyces cerevisiae and Molecular Dissection of the Peroxisomal Targeting Signal." Journal of Virology 78, no. 9 (May 1, 2004): 4744–52. http://dx.doi.org/10.1128/jvi.78.9.4744-4752.2004.

Full text
Abstract:
ABSTRACT Open reading frame 1 in the viral genome of Cymbidium ringspot virus encodes a 33-kDa protein (p33), which was previously shown to localize to the peroxisomal membrane in infected and transgenic plant cells. To determine the sequence requirements for the organelle targeting and membrane insertion, the protein was expressed in the yeast Saccharomyces cerevisiae in native form (33K) or fused to the green fluorescent protein (33KGFP). Cell organelles were identified by immunolabeling of marker proteins. In addition, peroxisomes were identified by simultaneous expression of the red fluorescent protein DsRed containing a peroxisomal targeting signal and mitochondria by using the dye MitoTracker. Fluorescence microscopy showed the 33KGFP fusion protein concentrated in a few large bodies colocalizing with peroxisomes. These bodies were shown by electron microscopy to be composed by aggregates of peroxisomes, a few mitochondria and endoplasmic reticulum (ER) strands. In immunoelectron microscopy, antibodies to p33 labeled the peroxisomal clumps. Biochemical analysis suggested that p33 is anchored to the peroxisomal membrane through a segment of ca. 7 kDa, which corresponds to the sequence comprising two hydrophobic transmembrane domains and a hydrophilic interconnecting loop. Analysis of deletion mutants confirmed these domains as essential components of the p33 peroxisomal targeting signal, together with a cluster of three basic amino acids (KRR). In yeast mutants lacking peroxisomes p33 was detected in the ER. The possible involvement of the ER as an intermediate step for the integration of p33 into the peroxisomal membrane is discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Borgese, Nica, Ilaria Gazzoni, Massimo Barberi, Sara Colombo, and Emanuela Pedrazzini. "Targeting of a Tail-anchored Protein to Endoplasmic Reticulum and Mitochondrial Outer Membrane by Independent but Competing Pathways." Molecular Biology of the Cell 12, no. 8 (August 2001): 2482–96. http://dx.doi.org/10.1091/mbc.12.8.2482.

Full text
Abstract:
Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b 5, a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.
APA, Harvard, Vancouver, ISO, and other styles
23

Goffin, Laurence, Sadanand Vodala, Christine Fraser, Joanne Ryan, Mark Timms, Sarina Meusburger, Bruno Catimel, et al. "The Unfolded Protein Response Transducer Ire1p Contains a Nuclear Localization Sequence Recognized by Multiple β Importins." Molecular Biology of the Cell 17, no. 12 (December 2006): 5309–23. http://dx.doi.org/10.1091/mbc.e06-04-0292.

Full text
Abstract:
The Ire1p transmembrane receptor kinase/endonuclease transduces the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus in Saccharomyces cerevisiae. In this study, we analyzed the capacity of a highly basic sequence in the linker region of Ire1p to function as a nuclear localization sequence (NLS) both in vivo and in vitro. This 18-residue sequence is capable of targeting green fluorescent protein to the nucleus of yeast cells in a process requiring proteins involved in the Ran GTPase cycle that facilitates nuclear import. Mutagenic analysis and importin binding studies demonstrate that the Ire1p linker region contains overlapping potential NLSs: at least one classical NLS (within sequences 642KKKRKR647 and/or 653KKGR656) that is recognized by yeast importin α (Kap60p) and a novel βNLS (646KRGSRGGKKGRK657) that is recognized by several yeast importin β homologues. Kinetic binding data suggest that binding to importin β proteins would predominate in vivo. The UPR, and in particular ER stress-induced HAC1 mRNA splicing, is inhibited by point mutations in the Ire1p NLS that inhibit nuclear localization and also requires functional RanGAP and Ran GEF proteins. The NLS-dependent nuclear localization of Ire1p would thus seem to be central to its role in UPR signaling.
APA, Harvard, Vancouver, ISO, and other styles
24

Horiguchi, Yuka, Makoto Araki, and Kiyoto Motojima. "Identification and characterization of the ER/lipid droplet-targeting sequence in 17β-hydroxysteroid dehydrogenase type 11." Archives of Biochemistry and Biophysics 479, no. 2 (November 2008): 121–30. http://dx.doi.org/10.1016/j.abb.2008.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Yiguo, John M. Lucocq, Masayuki Yamamoto, and John D. Hayes. "The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation." Biochemical Journal 408, no. 2 (November 14, 2007): 161–72. http://dx.doi.org/10.1042/bj20070761.

Full text
Abstract:
Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is negatively controlled by its NTD (N-terminal domain) that lies between amino acids 1 and 124. This domain contains a leucine-rich sequence, called NHB1 (N-terminal homology box 1; residues 11–30), which tethers Nrf1 to the ER (endoplasmic reticulum). Electrophoresis resolved Nrf1 into two major bands of approx. 95 and 120 kDa. The 120-kDa Nrf1 form represents a glycosylated protein that was present exclusively in the ER and was converted into a substantially smaller polypeptide upon digestion with either peptide:N-glycosidase F or endoglycosidase H. By contrast, the 95-kDa Nrf1 form did not appear to be glycosylated and was present primarily in the nucleus. NHB1 and its adjacent residues conform to the classic tripartite signal peptide sequence, comprising n-, h- and c-regions. The h-region (residues 11–22), but neither the n-region (residues 1–10) nor the c-region (residues 23–30), is required to direct Nrf1 to the ER. Targeting Nrf1 to the ER is necessary to generate the 120-kDa glycosylated protein. The n-region and c-region are required for correct membrane orientation of Nrf1, as deletion of residues 2–10 or 23–30 greatly increased its association with the ER and the extent to which it was glycosylated. The NHB1 does not contain a signal peptidase cleavage site, indicating that it serves as an ER anchor sequence. Wild-type Nrf1 is glycosylated through its Asn/Ser/Thr-rich domain, between amino acids 296 and 403, and this modification was not observed in an Nrf1Δ299–400 mutant. Glycosylation of Nrf1 was not necessary to retain it in the ER.
APA, Harvard, Vancouver, ISO, and other styles
26

Lin, Pen-Jen, Candice G. Jongsma, Shuren Liao, and Arthur E. Johnson. "Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration." Journal of Cell Biology 195, no. 1 (September 26, 2011): 41–54. http://dx.doi.org/10.1083/jcb.201103117.

Full text
Abstract:
During cotranslational integration of a eukaryotic multispanning polytopic membrane protein (PMP), its hydrophilic loops are alternately directed to opposite sides of the ER membrane. Exposure of fluorescently labeled nascent PMP to the cytosol or ER lumen was detected by collisional quenching of its fluorescence by iodide ions localized in the cytosol or lumen. PMP loop exposure to the cytosol or lumen was controlled by structural rearrangements in the ribosome, translocon, and associated proteins that occurred soon after a nascent chain transmembrane segment (TMS) entered the ribosomal tunnel. Each successive TMS, although varying in length, sequence, hydrophobicity, and orientation, reversed the structural changes elicited by its predecessor, irrespective of loop size. Fluorescence lifetime data revealed that TMSs occupied a more nonpolar environment than secretory proteins inside the aqueous ribosome tunnel, which suggests that TMS recognition by the ribosome involves hydrophobic interactions. Importantly, the TMS-triggered structural rearrangements that cycle nascent chain exposure between cytosolic and lumenal occur without compromising the permeability barrier of the ER membrane.
APA, Harvard, Vancouver, ISO, and other styles
27

Yuan, Lin, Samuel J. Kenny, Juliet Hemmati, Ke Xu, and Randy Schekman. "TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers." Proceedings of the National Academy of Sciences 115, no. 52 (December 13, 2018): E12255—E12264. http://dx.doi.org/10.1073/pnas.1814810115.

Full text
Abstract:
Large coat protein complex II (COPII)-coated vesicles serve to convey the large cargo procollagen I (PC1) from the endoplasmic reticulum (ER). The link between large cargo in the lumen of the ER and modulation of the COPII machinery remains unresolved. TANGO1 is required for PC secretion and interacts with PC and COPII on opposite sides of the ER membrane, but evidence suggests that TANGO1 is retained in the ER, and not included in normal size (<100 nm) COPII vesicles. Here we show that TANGO1 is exported out of the ER in large COPII-coated PC1 carriers, and retrieved back to the ER by the retrograde coat, COPI, mediated by the C-terminal RDEL retrieval sequence of HSP47. TANGO1 is known to target the COPII initiation factor SEC12 to ER exit sites through an interacting protein, cTAGE5. SEC12 is important for the growth of COPII vesicles, but it is not sorted into small budded vesicles. We found both cTAGE5 and SEC12 were exported with TANGO1 in large COPII carriers. In contrast to its exclusion from small transport vesicles, SEC12 was particularly enriched around ER membranes and large COPII carriers that contained PC1. We constructed a split GFP system to recapitulate the targeting of SEC12 to PC1 via the luminal domain of TANGO1. The minimal targeting system enriched SEC12 around PC1 and generated large PC1 carriers. We conclude that TANGO1, cTAGE5, and SEC12 are copacked with PC1 into COPII carriers to increase the size of COPII, thus ensuring the capture of large cargo.
APA, Harvard, Vancouver, ISO, and other styles
28

Napier, R. M., L. C. Fowke, C. Hawes, M. Lewis, and H. R. Pelham. "Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum." Journal of Cell Science 102, no. 2 (June 1, 1992): 261–71. http://dx.doi.org/10.1242/jcs.102.2.261.

Full text
Abstract:
The epitopes of two monoclonal antibodies raised to a putative auxin receptor have been mapped. Carboxy-peptidase A digestion of the antigen, auxin-binding protein (ABP) purified from maize, completely abolished binding of antibody MAC 256 and impaired binding of MAC 259, suggesting that they both recognise C-terminal epitopes. Published sequences of ABP showed that the C terminus was KDEL, a tetrapeptide used for targeting proteins to the ER in animal cells. We have used this short homology to confirm that the two monoclonals recognise C-terminal KDEL, showing that animal KDEL proteins and synthetic KDEL peptides are recognised and that animal cell ER is stained strongly and specifically. Sucrose density gradient fractionation of maize microsomal membranes showed that plant KDEL proteins, including ABP, fractionated with markers for the endoplasmic reticulum. However, few proteins are stained by anti-KDEL monoclonals in plants. For comparison, a monoclonal antibody raised to a synthetic HDEL peptide was also used and found to stain a set of proteins in all plant species tested. The anti-HDEL and anti-KDEL monoclonals were sequence specific, staining different proteins. On density gradient fractionation HDEL proteins also banded with ER marker activities. However, the intracellular distribution of HDEL and KDEL proteins determined by immunofluorescence was different. Whereas HDEL proteins showed a distribution characteristic of plant ER, and this localisation was confirmed by immunogold labelling of ultrathin sections and electron microscopy, KDEL proteins showed strong fluorescence in discrete parts of the cell cortex. These observations are discussed in terms of the potential these monoclonal antibodies have as markers for ER and of the role ABP plays in plant cell signalling.
APA, Harvard, Vancouver, ISO, and other styles
29

Sinai, Anthony P., and Keith A. Joiner. "The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane." Journal of Cell Biology 154, no. 1 (July 9, 2001): 95–108. http://dx.doi.org/10.1083/jcb.200101073.

Full text
Abstract:
Toxoplasma gondii replicates within a specialized vacuole surrounded by the parasitophorous vacuole membrane (PVM). The PVM forms intimate interactions with host mitochondria and endoplasmic reticulum (ER) in a process termed PVM–organelle association. In this study we identify a likely mediator of this process, the parasite protein ROP2. ROP2, which is localized to the PVM, is secreted from anterior organelles termed rhoptries during parasite invasion into host cells. The NH2-terminal domain of ROP2 (ROP2hc) within the PVM is exposed to the host cell cytosol, and has characteristics of a mitochondrial targeting signal. In in vitro assays, ROP2hc is partially translocated into the mitochondrial outer membrane and behaves like an integral membrane protein. Although ROP2hc does not translocate across the ER membrane, it does exhibit carbonate-resistant binding to this organelle. In vivo, ROP2hc expressed as a soluble fragment in the cytosol of uninfected cells associates with both mitochondria and ER. The 30–amino acid (aa) NH2-terminal sequence of ROP2hc, when fused to green fluorescent protein (GFP), is sufficient for mitochondrial targeting. Deletion of the 30-aa NH2-terminal signal from ROP2hc results in robust localization of the truncated protein to the ER. These results demonstrate a new mechanism for tight association of different membrane-bound organelles within the cell cytoplasm.
APA, Harvard, Vancouver, ISO, and other styles
30

Miller, J. D., S. Tajima, L. Lauffer, and P. Walter. "The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane." Journal of Cell Biology 128, no. 3 (February 1, 1995): 273–82. http://dx.doi.org/10.1083/jcb.128.3.273.

Full text
Abstract:
The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30-kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane.
APA, Harvard, Vancouver, ISO, and other styles
31

Kikkert, Marjolein, Ad Verschoor, Richard Kormelink, Peter Rottier, and Rob Goldbach. "Tomato Spotted Wilt Virus Glycoproteins Exhibit Trafficking and Localization Signals That Are Functional in Mammalian Cells." Journal of Virology 75, no. 2 (January 15, 2001): 1004–12. http://dx.doi.org/10.1128/jvi.75.2.1004-1012.2001.

Full text
Abstract:
ABSTRACT The glycoprotein precursor (G1/G2) gene of tomato spotted wilt virus (TSWV) was expressed in BHK cells using the Semliki Forest virus expression system. The results reveal that in this cell system, the precursor is efficiently cleaved and the resulting G1 and G2 glycoproteins are transported from the endoplasmic reticulum (ER) to the Golgi complex, where they are retained, a process that could be blocked by tunicamycin. Expression of G2 alone resulted in transport to and retention in the Golgi complex, albeit less efficient, suggesting that G2 contains a Golgi retention signal. G1 alone was retained in the ER, irrespective of whether it contained the precursor's signal sequence or its own N-terminal hydrophobic sequence. Coexpression of G1 and G2 from separate gene constructs resulted in rescue of efficient G1 transport, as the proteins coaccumulated in the Golgi complex, indicating that their interaction is essential for proper targeting to this organelle. The results demonstrate that transport and targeting of the plant TSWV glycoproteins in mammalian BHK cells are strikingly similar to those of animal-infecting bunyavirus glycoproteins in mammalian cells. The observations are likely to reflect the dual tropism of TSWV, which replicates both in its plant host and in its animal (thrips) vector.
APA, Harvard, Vancouver, ISO, and other styles
32

Nguyen, M., A. W. Bell, and G. C. Shore. "Protein sorting between mitochondrial membranes specified by position of the stop-transfer domain." Journal of Cell Biology 106, no. 5 (May 1, 1988): 1499–505. http://dx.doi.org/10.1083/jcb.106.5.1499.

Full text
Abstract:
Recently, we fused a matrix-targeting signal to a large fragment of vesicular stomatitis virus G protein, which contains near its COOH-terminus a well-characterized endoplasmic reticulum (ER) stop-transfer sequence; the hybrid G protein was sorted to the inner mitochondrial membrane (Nguyen, M., and G. C. Shore. 1987. J. Biol. Chem. 262:3929-3931). Here, we show that the 19 amino acid G stop-transfer domain functions in an identical fashion when inserted toward the COOH-terminus of an otherwise normal matrix precursor protein, pre-ornithine carbamyl transferase; after import, the mutant protein was found anchored in the inner membrane via the stop-transfer sequence, with its NH2 terminus facing the matrix and its short COOH-terminal tail located in the intermembrane space. However, when the G stop-transfer sequence was placed near the NH2 terminus, the protein was inserted into the outer membrane, in the reverse orientation (NH2 terminus facing out, with a large COOH-terminal fragment located in the intermembrane space). These observations for mitochondrial topogenesis can be explained by a simple extension of existing models for ER sorting.
APA, Harvard, Vancouver, ISO, and other styles
33

Gao, Ying, Hanna Rosén, Ellinor Johnsson, Jero Calafat, Hans Tapper, and Inge Olsson. "Sorting of soluble TNF-receptor for granule storage in hematopoietic cells as a principle for targeting of selected proteins to inflamed sites." Blood 102, no. 2 (July 15, 2003): 682–88. http://dx.doi.org/10.1182/blood-2002-10-3055.

Full text
Abstract:
Abstract Hematopoietic cells have secretory lysosomes that degranulate at the inflammatory site upon stimulation. We asked whether one could target exogenous proteins with a therapeutic potential to secretory lysosomes in hematopoietic cells. For this purpose, we expressed a soluble tumor necrosis factor (TNF) receptor form (sTNFR1) in hematopoietic cell lines. In order to accomplish targeting to secretory lysosomes, both endoplasmic reticulum (ER) retention and constitutive secretion have to be prevented. ER export was facilitated by addition of a transmembrane (tm) sequence, and constitutive secretion was overcome by incorporating a cytosolic sorting signal (Y) from CD63. This signal directed the resulting sTNFR1-tm-Y to secretory lysosomes. Confirmation of these results was provided by biosynthetic radiolabeling, subcellular fractionation, immunofluorescence microscopy, and immunoelectron microscopy. The tm-Y fragment was cleaved by proteolysis, resulting in generation of the membrane-free sTNFR1 in secretory lysosomes. Our results suggest a potential for using the storage organelles of hematopoietic cells as vehicles for targeting sites of inflammation with therapeutically active agents.
APA, Harvard, Vancouver, ISO, and other styles
34

Zopf, D., H. D. Bernstein, and P. Walter. "GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding." Journal of Cell Biology 120, no. 5 (March 1, 1993): 1113–21. http://dx.doi.org/10.1083/jcb.120.5.1113.

Full text
Abstract:
The 54-kD subunit of the signal recognition particle (SRP54) binds to signal sequences of nascent secretory and transmembrane proteins. SRP54 consists of two separable domains, a 33-kD amino-terminal domain that contains a GTP-binding site (SRP54G) and a 22-kD carboxy-terminal domain (SRP54M) containing binding sites for both the signal sequence and SRP RNA. To examine the function of the two domains in more detail, we have purified SRP54M and used it to assemble a partial SRP that lacks the amino-terminal domain of SRP54 [SRP(-54G)]. This particle recognized signal sequences in two independent assays, albeit less efficiently than intact SRP. Analysis of the signal sequence binding activity of free SRP54 and SRP54M supports the conclusion that SRP54M binds signal sequences with lower affinity than the intact protein. In contrast, when SRP(-54G) was assayed for its ability to promote the translocation of preprolactin across microsomal membranes, it was completely inactive, apparently because it was unable to interact normally with the SRP receptor. These results imply that SRP54G plays an essential role in SRP-mediated targeting of nascent chain-ribosome complexes to the ER membrane and also influences signal sequence recognition, possibly by promoting a tighter association between signal sequences and SRP54M.
APA, Harvard, Vancouver, ISO, and other styles
35

Ostermeyer, Anne G., James M. Paci, Youchun Zeng, Douglas M. Lublin, Sean Munro, and Deborah A. Brown. "Accumulation of Caveolin in the Endoplasmic Reticulum Redirects the Protein to Lipid Storage Droplets." Journal of Cell Biology 152, no. 5 (March 5, 2001): 1071–78. http://dx.doi.org/10.1083/jcb.152.5.1071.

Full text
Abstract:
Caveolin-1 is normally localized in plasma membrane caveolae and the Golgi apparatus in mammalian cells. We found three treatments that redirected the protein to lipid storage droplets, identified by staining with the lipophilic dye Nile red and the marker protein ADRP. Caveolin-1 was targeted to the droplets when linked to the ER-retrieval sequence, KKSL, generating Cav–KKSL. Cav–ΔN2, an internal deletion mutant, also accumulated in the droplets, as well as in a Golgi-like structure. Third, incubation of cells with brefeldin A caused caveolin-1 to accumulate in the droplets. This localization persisted after drug washout, showing that caveolin-1 was transported out of the droplets slowly or not at all. Some overexpressed caveolin-2 was also present in lipid droplets. Experimental reduction of cellular cholesteryl ester by 80% did not prevent targeting of Cav–KKSL to the droplets. Cav–KKSL expression did not grossly alter cellular triacylglyceride or cholesteryl levels, although droplet morphology was affected in some cells. These data suggest that accumulation of caveolin-1 to unusually high levels in the ER causes targeting to lipid droplets, and that mechanisms must exist to ensure the rapid exit of newly synthesized caveolin-1 from the ER to avoid this fate.
APA, Harvard, Vancouver, ISO, and other styles
36

Weiss, Richard, Johann Dürnberger, Sven Mostböck, Sandra Scheiblhofer, Arnulf Hartl, Michael Breitenbach, Peter Strasser, et al. "Improvement of the immune response against plasmid DNA encoding OspC of Borrelia by an ER-targeting leader sequence." Vaccine 18, no. 9-10 (December 1999): 815–24. http://dx.doi.org/10.1016/s0264-410x(99)00338-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lütcke, H., S. Prehn, A. J. Ashford, M. Remus, R. Frank, and B. Dobberstein. "Assembly of the 68- and 72-kD proteins of signal recognition particle with 7S RNA." Journal of Cell Biology 121, no. 5 (June 1, 1993): 977–85. http://dx.doi.org/10.1083/jcb.121.5.977.

Full text
Abstract:
Signal recognition particle (SRP), the cytoplasmic ribonucleoprotein particle that mediates the targeting of proteins to the ER, consists of a 7S RNA and six different proteins. The 68- (SRP68) and 72- (SRP72) kD proteins of SRP are bound to the 7S RNA of SRP as a heterodimeric complex (SRP68/72). Here we describe the primary structure of SRP72 and the assembly of SRP68, SRP72 and 7S RNA into a ribonucleoprotein particle. The amino acid sequence deduced from the cDNA of SRP72 reveals a basic protein of 671 amino acids which shares no sequence similarity with any protein in the sequence data libraries. Assembly of SRP72 into a ribonucleoprotein particle required the presence of 7S RNA and SRP68. In contrast, SRP68 alone specifically bound to 7S RNA. SRP68 contacts the 7S RNA via its NH2-terminal half while COOH-terminal portions of SRP68 and SRP72 are in contact with each other in SRP. SRP68 thus serves as a link between 7S RNA and SRP72. As a large NH2-terminal domain of SRP72 is exposed on SRP it may be a site of contact to other molecules involved in the SRP cycle between the ribosome and the ER membrane.
APA, Harvard, Vancouver, ISO, and other styles
38

Soullam, B., and H. J. Worman. "The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal." Journal of Cell Biology 120, no. 5 (March 1, 1993): 1093–100. http://dx.doi.org/10.1083/jcb.120.5.1093.

Full text
Abstract:
The lamin B receptor (LBR) is a polytopic protein of the inner nuclear membrane. It is synthesized without a cleavable amino-terminal signal sequence and composed of a nucleoplasmic amino-terminal domain of 204 amino acids followed by a hydrophobic domain with eight putative transmembrane segments. To identify a nuclear envelope targeting signal, we have examined the cellular localization by immunofluorescence microscopy of chicken LBR, its amino-terminal domain and chimeric proteins transiently expressed in transfected COS-7. Full-length LBR was targeted to the nuclear envelope. The amino-terminal domain, without any transmembrane segments, was transported to the nucleus but excluded from the nucleolus. When the amino-terminal domain of LBR was fused to the amino-terminal side of a transmembrane segment of a type II integral membrane protein of the ER/plasma membrane, the chimeric protein was targeted to the nuclear envelope, likely the inner nuclear membrane. When the amino-terminal domain was deleted from LBR and replaced by alpha-globin, the chimeric protein was retained in the ER. These findings demonstrate that the amino-terminal domain of LBR is targeted to the nucleus after synthesis in the cytoplasm and that this polypeptide can function as a nuclear envelope targeting signal when located at the amino terminus of a type II integral membrane protein synthesized on the ER.
APA, Harvard, Vancouver, ISO, and other styles
39

Cocquerel, Laurence, Sandrine Duvet, Jean-Christophe Meunier, André Pillez, René Cacan, Czeslaw Wychowski, and Jean Dubuisson. "The Transmembrane Domain of Hepatitis C Virus Glycoprotein E1 Is a Signal for Static Retention in the Endoplasmic Reticulum." Journal of Virology 73, no. 4 (April 1, 1999): 2641–49. http://dx.doi.org/10.1128/jvi.73.4.2641-2649.1999.

Full text
Abstract:
ABSTRACT Hepatitis C virus (HCV) glycoproteins E1 and E2 assemble to form a noncovalent heterodimer which, in the cell, accumulates in the endoplasmic reticulum (ER). Contrary to what is observed for proteins with a KDEL or a KKXX ER-targeting signal, the ER localization of the HCV glycoprotein complex is due to a static retention in this compartment rather than to its retrieval from the cis-Golgi region. A static retention in the ER is also observed when E2 is expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain (TMD) of E2. Although they do not exclude the presence of an intracellular localization signal in E1, these data do suggest that the TMD of E2 is an ER retention signal for HCV glycoprotein complex. In this study chimeric proteins containing the ectodomain of CD4 or CD8 fused to the C-terminal hydrophobic sequence of E1 were shown to be localized in the ER, indicating that the TMD of E1 is also a signal for ER localization. In addition, these chimeric proteins were not processed by Golgi enzymes, indicating that the TMD of E1 is responsible for true retention in the ER, without recycling through the Golgi apparatus. Together, these data suggest that at least two signals (TMDs of E1 and E2) are involved in ER retention of the HCV glycoprotein complex.
APA, Harvard, Vancouver, ISO, and other styles
40

Fu, Tong-Ming, Lawrence M. Mylin, Todd D. Schell, Igor Bacik, Gustav Russ, Jonathan W. Yewdell, Jack R. Bennink, and Satvir S. Tevethia. "An Endoplasmic Reticulum-Targeting Signal Sequence Enhances the Immunogenicity of an Immunorecessive Simian Virus 40 Large T Antigen Cytotoxic T-Lymphocyte Epitope." Journal of Virology 72, no. 2 (February 1, 1998): 1469–81. http://dx.doi.org/10.1128/jvi.72.2.1469-1481.1998.

Full text
Abstract:
ABSTRACT An immunological hierarchy among three H-2Db-restricted cytotoxic T lymphocyte (CTL) determinants in simian virus 40 (SV40) large T antigen (Tag) was described previously: determinants I and II/III are immunodominant, whereas determinant V is immunorecessive. To assess the immunogenicity of each determinant individually and define mechanisms that contribute to the immunorecessive nature of determinant V, we constructed a panel of recombinant vaccinia viruses (rVVs) expressing minigenes encoding these determinants in various polypeptide contexts. We found the following. (i) Immunization of mice with an rVV encoding full-length SV40 Tag resulted in priming for CTL responses to determinants I and II/III but not determinant V. (ii) rVVs encoding peptide I or II/III in the cytosol or targeted to the endoplasmic reticulum (ER) were highly antigenic and immunogenic. (iii) rVVs encoding peptide V minigenes were antigenic and immunogenic if the peptide was targeted to the ER, expressed in the cytosol with short flanking sequences, or expressed from within a self-protein, murine dihydrofolate reductase. (iv) Presentation of the nonflanked peptide V (preceded by a Met codon only) could be enhanced by using a potent inhibitor of the proteasome. (v) H-2Db–epitope V peptide complexes decayed more rapidly than complexes containing epitope I or II/III peptides. In brefeldin A blocking experiments, functional epitope V complexes were detected longer on targets expressing ER-targeted epitope V than on targets expressing forms of epitope V dependent on the transporter associated with antigen processing. Therefore, limited formation of relatively unstable cell surface H-2Db complexes most likely contributes to the immunorecessive nature of epitope V within SV40 Tag. Increasing the delivery of epitope V peptide to the major histocompatibility complex class I presentation pathway by ER targeting dramatically enhanced the immunogenicity of epitope V.
APA, Harvard, Vancouver, ISO, and other styles
41

Wolin, S. L., and P. Walter. "Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate." Journal of Cell Biology 109, no. 6 (December 1, 1989): 2617–22. http://dx.doi.org/10.1083/jcb.109.6.2617.

Full text
Abstract:
Signal recognition particle (SRP) is a ribonucleoprotein that functions in the targeting of ribosomes synthesizing presecretory proteins to the ER. SRP binds to the signal sequence as it emerges from the ribosome, and in wheat germ extracts, arrests further elongation. The translation arrest is released when SRP interacts with its receptor on the ER membrane. We show that the delay of elongation mediated by SRP is not unique to wheat germ translation extracts. Addition of mammalian SRP to reticulocyte lysates resulted in a delay of preprolactin synthesis due to increased ribosome pausing at specific sites on preprolactin mRNA. Addition of canine pancreatic microsomal membranes to reticulocyte lysates resulted in an acceleration of preprolactin synthesis, suggesting that the endogenous SRP present in the reticulocyte lysate also delays synthesis of secretory proteins.
APA, Harvard, Vancouver, ISO, and other styles
42

Ogg, Stephen C., Wolfgang P. Barz, and Peter Walter. "A Functional GTPase Domain, but not its Transmembrane Domain, is Required for Function of the SRP Receptor β-subunit." Journal of Cell Biology 142, no. 2 (July 27, 1998): 341–54. http://dx.doi.org/10.1083/jcb.142.2.341.

Full text
Abstract:
The signal recognition particle and its receptor (SR) target nascent secretory proteins to the ER. SR is a heterodimeric ER membrane protein whose subunits, SRα and SRβ, are both members of the GTPase superfamily. Here we characterize a 27-kD protein in Saccharomyces cerevisiae (encoded by SRP102) as a homologue of mammalian SRβ. This notion is supported (a) by Srp102p's sequence similarity to SRβ; (b) by its disposition as an ER membrane protein; (c) by its interaction with Srp101p, the yeast SRα homologue; and (d) by its role in SRP-dependent protein targeting in vivo. The GTP-binding site in Srp102p is surprisingly insensitive to single amino acid substitutions that inactivate other GTPases. Multiple mutations in the GTP-binding site, however, inactivate Srp102p. Loss of activity parallels a loss of affinity between Srp102p and Srp101p, indicating that the interaction between SR subunits is important for function. Deleting the transmembrane domain of Srp102p, the only known membrane anchor in SR, renders SR soluble in the cytosol, which unexpectedly does not significantly impair SR function. This result suggests that SR functions as a regulatory switch that needs to associate with the ER membrane only transiently through interactions with other components.
APA, Harvard, Vancouver, ISO, and other styles
43

Sevier, Carolyn S., Ora A. Weisz, Mollie Davis, and Carolyn E. Machamer. "Efficient Export of the Vesicular Stomatitis Virus G Protein from the Endoplasmic Reticulum Requires a Signal in the Cytoplasmic Tail That Includes Both Tyrosine-based and Di-acidic Motifs." Molecular Biology of the Cell 11, no. 1 (January 2000): 13–22. http://dx.doi.org/10.1091/mbc.11.1.13.

Full text
Abstract:
The vesicular stomatitis virus (VSV) G protein is a model transmembrane glycoprotein that has been extensively used to study the exocytotic pathway. A signal in the cytoplasmic tail of VSV G (DxE or Asp-x-Glu, where x is any amino acid) was recently proposed to mediate efficient export of the protein from the endoplasmic reticulum (ER). In this study, we show that the DxE motif only partially accounts for efficient ER exit of VSV G. We have identified a six-amino-acid signal, which includes the previously identified Asp and Glu residues, that is required for efficient exit of VSV G from the ER. This six-residue signal also includes the targeting sequence YxxØ (where x is any amino acid and Ø is a bulky, hydrophobic residue) implicated in several different sorting pathways. The only defect in VSV G proteins with mutations in the six-residue signal is slow exit from the ER; folding and oligomerization in the ER are normal, and the mutants eventually reach the plasma membrane. Addition of this six-residue motif to an inefficiently transported reporter protein is sufficient to confer an enhanced ER export rate. The signal we have identified is highly conserved among divergent VSV G proteins, and we suggest this reflects the importance of this motif in the evolution of VSV G as a proficient exocytic protein.
APA, Harvard, Vancouver, ISO, and other styles
44

Gomord, Veronique, Lise-Anne Denmat, Anne-Catherine Fitchette-Laine, Beatrice Satiat-Jeunemaitre, Chris Hawes, and Loic Faye. "The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER." Plant Journal 11, no. 2 (February 1997): 313–25. http://dx.doi.org/10.1046/j.1365-313x.1997.11020313.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cocquerel, Laurence, Jean-Christophe Meunier, André Pillez, Czeslaw Wychowski, and Jean Dubuisson. "A Retention Signal Necessary and Sufficient for Endoplasmic Reticulum Localization Maps to the Transmembrane Domain of Hepatitis C Virus Glycoprotein E2." Journal of Virology 72, no. 3 (March 1, 1998): 2183–91. http://dx.doi.org/10.1128/jvi.72.3.2183-2191.1998.

Full text
Abstract:
ABSTRACT The hepatitis C virus (HCV) genome encodes two envelope glycoproteins (E1 and E2). These glycoproteins interact to form a noncovalent heterodimeric complex which is retained in the endoplasmic reticulum (ER). To identify whether E1 and/or E2 contains an ER-targeting signal potentially involved in ER retention of the E1-E2 complex, these proteins were expressed alone and their intracellular localization was studied. Due to misfolding of E1 in the absence of E2, no conclusion on the localization of its native form could be drawn from the expression of E1 alone. E2 expressed in the absence of E1 was shown to be retained in the ER similarly to E1-E2 complex. Chimeric proteins in which E2 domains were exchanged with corresponding domains of a protein normally transported to the plasma membrane (CD4) were constructed to identify the sequence responsible for its ER retention. The transmembrane domain (TMD) of E2 (C-terminal 29 amino acids) was shown to be sufficient for retention of the ectodomain of CD4 in the ER compartment. Replacement of the E2 TMD by the anchor signal of CD4 or a glycosyl phosphatidylinositol (GPI) moiety led to its expression on the cell surface. In addition, replacement of the E2 TMD by the anchor signal of CD4 or a GPI moiety abolished the formation of E1-E2 complexes. Together, these results suggest that, besides having a role as a membrane anchor, the TMD of E2 is involved in both complex formation and intracellular localization.
APA, Harvard, Vancouver, ISO, and other styles
46

Asseck, Lisa Yasmin, Dietmar Gerald Mehlhorn, Jhon Rivera Monroy, Martiniano Maria Ricardi, Holger Breuninger, Niklas Wallmeroth, Kenneth Wayne Berendzen, et al. "Endoplasmic reticulum membrane receptors of the GET pathway are conserved throughout eukaryotes." Proceedings of the National Academy of Sciences 118, no. 1 (December 21, 2020): e2017636118. http://dx.doi.org/10.1073/pnas.2017636118.

Full text
Abstract:
Type II tail-anchored (TA) membrane proteins are involved in diverse cellular processes, including protein translocation, vesicle trafficking, and apoptosis. They are characterized by a single C-terminal transmembrane domain that mediates posttranslational targeting and insertion into the endoplasmic reticulum (ER) via the Guided-Entry of TA proteins (GET) pathway. The GET system was originally described in mammals and yeast but was recently shown to be partially conserved in other eukaryotes, such as higher plants. A newly synthesized TA protein is shielded from the cytosol by a pretargeting complex and an ATPase that delivers the protein to the ER, where membrane receptors (Get1/WRB and Get2/CAML) facilitate insertion. In the model plantArabidopsis thaliana, most components of the pathway were identified throughin silicosequence comparison, however, a functional homolog of the coreceptor Get2/CAML remained elusive. We performed immunoprecipitation-mass spectrometry analysis to detect in vivo interactors ofAtGET1 and identified a membrane protein of unknown function with low sequence homology but high structural homology to both yeast Get2 and mammalian CAML. The protein localizes to the ER membrane, coexpresses withAtGET1, and binds toArabidopsisGET pathway components. While loss-of-function lines phenocopy the stunted root hair phenotype of otherAtgetlines, its heterologous expression together with the coreceptorAtGET1 rescues growth defects ofΔget1get2yeast. Ectopic expression of the cytosolic, positively charged N terminus is sufficient to block TA protein insertion in vitro. Our results collectively confirm that we have identified a plant-specific GET2 inArabidopsis, and its sequence allows the analysis of cross-kingdom pathway conservation.
APA, Harvard, Vancouver, ISO, and other styles
47

Mandic, Lana, Matthew S. Miller, Corinne Coulter, Brian Munshaw, and Laura Hertel. "Human cytomegalovirus US9 protein contains an N-terminal signal sequence and a C-terminal mitochondrial localization domain, and does not alter cellular sensitivity to apoptosis." Journal of General Virology 90, no. 5 (May 1, 2009): 1172–82. http://dx.doi.org/10.1099/vir.0.008466-0.

Full text
Abstract:
The human cytomegalovirus (CMV) US2–US11 genomic region contains a cluster of genes whose products interfere with antigen presentation by the major histocompatibility complex (MHC) proteins. Although included in this cluster, the US9 gene encodes a glycoprotein that does not affect MHC activity and whose function is still largely uncharacterized. An in silico analysis of the US9 amino-acid sequence uncovered the presence of an N-terminal signal sequence (SS) and a C-terminal transmembrane domain containing the specific hallmarks of known mitochondrial localization sequences (MLS). Expression of full-length US9 and of US9 deletion mutants fused to GFP revealed that the N-terminal SS mediates US9 targeting to the endoplasmic reticulum (ER) and that the C-terminal MLS is both necessary and sufficient to direct US9 to mitochondria in the absence of a functional SS. This dual localization suggested a possible role for US9 in protection from apoptosis triggered by ER-to-mitochondria signalling. Fibroblasts infected with the US2–US11 deletion mutant virus RV798 or with the parental strain AD169varATCC were equally susceptible to death triggered by exposure to tumour necrosis factor (TNF)-α, tunicamycin, thapsigargin, brefeldin A, lonidamine and carbonyl cyanide m-chloro phenyl hydrazone, but were 1.6-fold more sensitive to apoptosis induced by hygromycin B. Expression of US9 in human embryonic kidney 293T cells or in fibroblasts, however, did not protect cells from hygromycin B-mediated death. Together, these results classify US9 as the first CMV-encoded protein to contain an N-terminal SS and a C-terminal MLS, and suggest a completely novel role for this protein during infection.
APA, Harvard, Vancouver, ISO, and other styles
48

Ouzzine, M., L. Barré, P. Netter, J. Magdalou, and S. Fournel-Gigleux. "Role of the carboxyl terminal stop transfer sequence of UGT1A6 membrane protein in ER targeting and translocation of upstream lumenal domain." FEBS Letters 580, no. 8 (March 3, 2006): 1953–58. http://dx.doi.org/10.1016/j.febslet.2006.02.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cavalier-Smith, T. "Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae)." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1429 (January 29, 2003): 109–34. http://dx.doi.org/10.1098/rstb.2002.1194.

Full text
Abstract:
Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote–eukaryote chimaeras or meta–algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non–plant (meta–algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta–algae and numerous secondarily non–photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b . I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi–targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma . These hypothetical ER–derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein–coding genes (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear–pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences – an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four–fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote ‘cells within cells’. They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non–genic function for nuclear non–coding DNA, i.e. most DNA in the biosphere, and dramatic examples of genomic reduction. I briefly argue that chloroplast replacement in dinoflagellates, which happened at least twice, may have been evolutionarily easier than secondary symbiogenesis because parts of the chromalveolate protein–targeting machinery could have helped enslave the foreign plastids.
APA, Harvard, Vancouver, ISO, and other styles
50

Kulig, Kimary, Dipankar Nandi, Igor Bacik, John J. Monaco, and Stanislav Vukmanovic. "Physical and Functional Association of the Major Histocompatibility Complex Class I Heavy Chain α3 Domain with the Transporter Associated with Antigen Processing." Journal of Experimental Medicine 187, no. 6 (March 16, 1998): 865–74. http://dx.doi.org/10.1084/jem.187.6.865.

Full text
Abstract:
CD8+ T lymphocytes recognize antigens as short, MHC class I-associated peptides derived by processing of cytoplasmic proteins. The transporter associated with antigen processing translocates peptides from the cytosol into the ER lumen, where they bind to the nascent class I molecules. To date, the precise location of the class I-TAP interaction site remains unclear. We provide evidence that this site is contained within the heavy chain α3 domain. Substitution of a 15 amino acid portion of the H-2Db α3 domain (aa 219-233) with the analogous MHC class II (H-2IAd) β2 domain region (aa 133-147) results in loss of surface expression which can be partially restored upon incubation at 26°C in the presence of excess peptide and β2-microglobulin. Mutant H-2Db (Db219-233) associates poorly with the TAP complex, and cannot present endogenously-derived antigenic peptides requiring TAP-dependent translocation to the ER. However, this presentation defect can be overcome through use of an ER targeting sequence which bypasses TAP-dependent peptide translocation. Thus, the α3 domain serves as an important site of interaction (directly or indirectly) with the TAP complex and is necessary for TAP-dependent peptide loading and class I surface expression.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography