Academic literature on the topic 'Erdős'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Erdős.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Erdős"

1

Torrence, Bruce, and Ron Graham. "The 100th Birthday of Paul Erdős/Remembering Erdős." Math Horizons 20, no. 4 (April 2013): 10–12. http://dx.doi.org/10.4169/mathhorizons.20.4.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zaragoza, Alfredo. "Symmetric products of Erdős space and complete Erdős space." Topology and its Applications 284 (October 2020): 107355. http://dx.doi.org/10.1016/j.topol.2020.107355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Balister, P., B. Bollobás, R. Morris, J. Sahasrabudhe, and M. Tiba. "Erdős covering systems." Acta Mathematica Hungarica 161, no. 2 (June 30, 2020): 540–49. http://dx.doi.org/10.1007/s10474-020-01048-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ault, Shaun V., and Benjamin Shemmer. "Erdős-Szekeres Tableaux." Order 31, no. 3 (October 17, 2013): 391–402. http://dx.doi.org/10.1007/s11083-013-9308-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mubayi, Dhruv. "Variants of the Erdős–Szekeres and Erdős–Hajnal Ramsey problems." European Journal of Combinatorics 62 (May 2017): 197–205. http://dx.doi.org/10.1016/j.ejc.2016.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kapus, Erika. "Menyhért, Anna. 2016: Egy szabad nő, Erdős Renée regényes élete (‘A Free Woman, The Remarkable Life of Renée Erdős’). Budapest: General Press. 231 pp. Illus." Hungarian Cultural Studies 10 (September 6, 2017): 213–16. http://dx.doi.org/10.5195/ahea.2017.304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bara, Zoltán. "Erdős Tibor kilencvenedik születésnapjára." Közgazdasági Szemle 65, no. 4 (April 16, 2018): 341–45. http://dx.doi.org/10.18414/ksz.2018.4.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KANAMORI, AKIHIRO. "ERDŐS AND SET THEORY." Bulletin of Symbolic Logic 20, no. 4 (December 2014): 449–90. http://dx.doi.org/10.1017/bsl.2014.38.

Full text
Abstract:
Paul Erdős (26 March 1913—20 September 1996) was a mathematicianpar excellencewhose results and initiatives have had a large impact and made a strong imprint on the doing of and thinking about mathematics. A mathematician of alacrity, detail, and collaboration, Erdős in his six decades of work moved and thought quickly, entertained increasingly many parameters, and wrote over 1500 articles, the majority with others. Hismodus operandiwas to drive mathematics through cycles of problem, proof, and conjecture, ceaselessly progressing and ever reaching, and hismodus vivendiwas to be itinerant in the world, stimulating and interacting about mathematics at every port and capital.
APA, Harvard, Vancouver, ISO, and other styles
9

Norin, Sergey, and Yelena Yuditsky. "Erdős–Szekeres Without Induction." Discrete & Computational Geometry 55, no. 4 (April 5, 2016): 963–71. http://dx.doi.org/10.1007/s00454-016-9778-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Faudree, Ralph. "A Conjecture of Erdős." American Mathematical Monthly 105, no. 5 (May 1998): 451–53. http://dx.doi.org/10.1080/00029890.1998.12004908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Erdős"

1

Heinlein, Matthias [Verfasser]. "Erdős-Pósa properties / Matthias Heinlein." Ulm : Universität Ulm, 2019. http://d-nb.info/1177147033/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bedich, Joseph Matthew. "An Introduction to the Happy Ending Problem and the Erdős–Szekeres Conjecture." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu152405396768852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rupert, Malcolm. "Extending Erdős-Kac and Selberg-Sathe to Beurling primes with controlled integer counting functions." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44300.

Full text
Abstract:
In this thesis we extend two important theorems in analytic prime number theory to a the setting of Beurling primes, namely The Erdős–Kac theorem and a theorem of Sathe and Selberg. The Erdős–Kac theorem asserts that the number of prime factors that divide an integer n is, in some sense, normally distributed with mean log log n and variance log log n. Sathe proved and Selberg substantially refined a formula for the counting function of products of k primes with some uniformity on k. A set of Beurling primes is any countable multiset of the reals with elements that tend towards infinity. The set of Beurling primes has a corresponding multiset of Beurling integers formed by all finite products of Beurling primes. We assume that the Beurling integer counting function is approximately linear with varying conditions on the error term in order to prove the stated results. An interesting example of a set of Beurling primes is the set of norms of prime ideals of the ring of integers of a number field. Recently, Granville and Soundararajan have developed a particularly simple proof of the Erdős–Kac theorem which we follow in this thesis. For extending the theorem of Selberg and Sathe much more analytic machinery is needed.
APA, Harvard, Vancouver, ISO, and other styles
4

Boggess, Michael H. "Four Years with Russell, Gödel, and Erdős: An Undergraduate's Reflection on His Mathematical Education." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/cmc_theses/1669.

Full text
Abstract:
Senior Thesis at CMC is often described institutionally as the capstone of one’s undergraduate education. As such, I wanted my own to accurately capture and reflect how I’ve grown as a student and mathematician these past four years. What follows is my attempt to distill lessons I learned in mathematics outside the curriculum, written for incoming undergraduates and anyone with just a little bit of mathematical curiosity. In it, I attempt to dispel some common preconceptions about mathematics, namely that it’s uninteresting, formulaic, acultural, or completely objective, in favor of a dynamic historical and cultural perspective, with particular attention paid to the early twentieth century search to secure the foundations of mathematics and a detailed look at contemporary Hungarian mathematics. After doing so, I conclude that the scope of mathematics is not what one might expect but that it’s still absolutely worth doing and appreciating.
APA, Harvard, Vancouver, ISO, and other styles
5

McLaughlin, Bryce. "An Incidence Approach to the Distinct Distances Problem." Scholarship @ Claremont, 2018. https://scholarship.claremont.edu/hmc_theses/118.

Full text
Abstract:
In 1946, Erdös posed the distinct distances problem, which asks for the minimum number of distinct distances that any set of n points in the real plane must realize. Erdös showed that any point set must realize at least &Omega(n1/2) distances, but could only provide a construction which offered &Omega(n/&radic(log(n)))$ distances. He conjectured that the actual minimum number of distances was &Omega(n1-&epsilon) for any &epsilon > 0, but that sublinear constructions were possible. This lower bound has been improved over the years, but Erdös' conjecture seemed to hold until in 2010 Larry Guth and Nets Hawk Katz used an incidence theory approach to show any point set must realize at least &Omega(n/log(n)) distances. In this thesis we will explore how incidence theory played a roll in this process and expand upon recent work by Adam Sheffer and Cosmin Pohoata, using geometric incidences to achieve bounds on the bipartite variant of this problem. A consequence of our extensions on their work is that the theoretical upper bound on the original distinct distances problem of &Omega(n/&radic(log(n))) holds for any point set which is structured such that half of the n points lies on an algebraic curve of arbitrary degree.
APA, Harvard, Vancouver, ISO, and other styles
6

Nan, Yehong. "Empirical Study of Two Hypothesis Test Methods for Community Structure in Networks." Thesis, North Dakota State University, 2019. https://hdl.handle.net/10365/31640.

Full text
Abstract:
Many real-world network data can be formulated as graphs, where a binary relation exists between nodes. One of the fundamental problems in network data analysis is community detection, clustering the nodes into different groups. Statistically, this problem can be formulated as hypothesis testing: under the null hypothesis, there is no community structure, while under the alternative hypothesis, community structure exists. One is of the method is to use the largest eigenvalues of the scaled adjacency matrix proposed by Bickel and Sarkar (2016), which works for dense graph. Another one is the subgraph counting method proposed by Gao and Lafferty (2017a), valid for sparse network. In this paper, firstly, we empirically study the BS or GL methods to see whether either of them works for moderately sparse network; secondly, we propose a subsampling method to reduce the computation of the BS method and run simulations to evaluate the performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Raouj, Abdelaziz. "Sur la densité de certains ensembles de multiples : résolution d'une conjecture d'Erdös." Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0120_RAOUJ.pdf.

Full text
Abstract:
Erdös a conjecturé que, lorsque l'entier n parcourt une suite convenable de densité unité presque chaque entier M possède un diviseur proche d'un diviseur de N. Nous résolvons cette conjecture sous une forme quantitative et plus générale, en évaluant asymptotiquement la densité de certains ensembles de multiples définis a partir de l'ensemble des diviseurs de N. Les démonstrations reposent sur la technique de Maier et Tenenbaum, et sur des calculs de moyennes pondérées, étayées par des raisonnements combinatoires. Certaines propriétés de nature probabiliste sont établies par des méthodes d'analyse harmonique.
APA, Harvard, Vancouver, ISO, and other styles
8

Stef, André. "L'ensemble exceptionnel dans la conjecture d'Erdös concernant la proximité des diviseurs." Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0130_STEF.pdf.

Full text
Abstract:
P. Erdös conjectura dans les années trente que presque tout entier possède deux diviseurs distincts dont le rapport est compris entre un et deux. Maier et Tenenbaum démontrèrent ce résultat en 1983. Dans un premier temps, nous donnons un encadrement du nombre des entiers inferieurs à x ne vérifiant pas la propriété. La majoration s'obtient en affinant la démonstration de Maier et Tenenbaum. La minoration s'obtient en considérant les entiers ayant peu de facteurs premiers. Nous considérons ensuite, dans un travail commun avec Gérald Tenenbaum, les entiers, dits lexicographiques, pour lesquels l'ordre lexicographique (ou multiplicatif) sur les diviseurs correspond à l'ordre naturel (ou additif). Nous estimons le comportement asymptotique de la fonction de compte de ces entiers. Nous en déduisons notamment une minoration de la fonction de compte des entiers ne vérifiant pas la conjecture d'Erdös et possédant un nombre normal de facteurs premiers.
APA, Harvard, Vancouver, ISO, and other styles
9

Corre, Pierre-Antoine. "Processus de branchements et graphe d'Erdős-Rényi." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066409/document.

Full text
Abstract:
Le fil conducteur de cette thèse, composée de trois parties, est la notion de branchement.Le premier chapitre est consacré à l'arbre de Yule et à l'arbre binaire de recherche. Nous obtenons des résultats d'oscillations asymptotiques de l'espérance, de la variance et de la distribution de la hauteur de ces arbres, confirmant ainsi une conjecture de Drmota. Par ailleurs, l'arbre de Yule pouvant être vu comme une marche aléatoire branchante évoluant sur un réseau, nos résultats permettent de mieux comprendre ce genre de processus.Dans le second chapitre, nous étudions le nombre de particules tuées en 0 d'un mouvement brownien branchant avec dérive surcritique conditionné à s'éteindre. Nous ferons enfin apparaître une nouvelle phase de transition pour la queue de distribution de ces variables.L'objet du dernier chapitre est le graphe d'Erdős–Rényi dans le cas critique : $G(n,1/n)$. En introduisant un couplage et un changement d'échelle, nous montrerons que, lorsque $n$ augmente les composantes de ce graphe évoluent asymptotiquement selon un processus de coalescence-fragmentation qui agit sur des graphes réels. La partie coalescence sera de type multiplicatif et les fragmentations se produiront selon un processus ponctuel de Poisson sur ces objets
This thesis is composed by three chapters and its main theme is branching processes.The first chapter is devoted to the study of the Yule tree and the binary search tree. We obtain oscillation results on the expectation, the variance and the distribution of the height of these trees and confirm a Drmota's conjecture. Moreover, the Yule tree can be seen as a particular instance of lattice branching random walk, our results thus allow a better understanding of these processes.In the second chapter, we study the number of particles killed at 0 for a Brownian motion with supercritical drift conditioned to extinction. We finally highlight a new phase transition in terms of the drift for the tail of the distributions of these variables.The main object of the last chapter is the Erdős–Rényi graph in the critical case: $G(n,1/n)$. By using coupling and scaling, we show that, when $n$ grows, the scaling process is asymptotically a coalescence-fragmentation process which acts on real graphs. The coalescent part is of multiplicative type and the fragmentations happen according a certain Poisson point process
APA, Harvard, Vancouver, ISO, and other styles
10

Gauy, Marcelo Matheus. "Erdos-Ko-Rado em famílias aleatórias." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26082014-095951/.

Full text
Abstract:
Estudamos o problema de famílias intersectantes extremais em um subconjunto aleatório da família dos subconjuntos com exatamente k elementos de um conjunto dado. Obtivemos uma descrição quase completa da evolução do tamanho de tais famílias. Versões semelhantes do problema foram estudadas por Balogh, Bohman e Mubayi em 2009, e por Hamm e Kahn, e Balogh, Das, Delcourt, Liu e Sharifzadeh de maneira concorrente a este trabalho.
We studied the problem of maximal intersecting families in a random subset of the family of subsets with exactly k elements from a given set. We obtained a nearly complete description of the evolution of the size of such families. Similar versions of this problem have been studied by Balogh, Bohman and Mubayi in 2009, and by Hamm and Kahn, and Balogh, Das, Delcourt, Liu and Sharifzadeh concurrently with this work.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Erdős"

1

Lovász, László, Imre Z. Ruzsa, and Vera T. Sós, eds. Erdős Centennial. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39286-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baker, A., B. Bollobas, and A. Hajnal, eds. A Tribute to Paul Erdős. Cambridge: Cambridge University Press, 1990. http://dx.doi.org/10.1017/cbo9780511983917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Graham, Ronald L., Jaroslav Nešetřil, and Steve Butler, eds. The Mathematics of Paul Erdős II. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7254-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Graham, Ronald L., Jaroslav Nešetřil, and Steve Butler, eds. The Mathematics of Paul Erdős I. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7258-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Erdös, Lajos. Erdős Lajos mesei világa és meséi: Népmesék Tyukodról. Budapest: L'Harmattan, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Női irodalmi hagyomány: Erdős Renée, Nemes Nagy Ágnes, Czóbel Minka, Kosztolányiné Harmos Ilona, Lesznai Anna. Budapest]: Napvilág Kiadó, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gábor, Erzsébet. Az erdők fia: Családregény. Szeged: Bába, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Garibaldi, Julia. The Erdös distance problem. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1967-, Iosevich Alex, and Senger Steven 1982-, eds. The Erdös distance problem. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bartha, Dénes, and Tamás Frank. Természet, erdő, gazdálkodás. Eger: Magyar Madártani és Természetvédelmi Egyesület, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Erdős"

1

Spencer, Joel. "Erdős Magic." In LATIN 2002: Theoretical Informatics, 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45995-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soifer, Alexander. "Paul Erdős." In The Mathematical Coloring Book, 227–35. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-74642-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spencer, Joel. "Erdős Magic." In Lecture Notes in Computer Science, 106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11590156_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spencer, Joel. "Erdős Magic." In The Mathematics of Paul Erdős I, 43–46. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7258-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nathanson, Melvyn B. "The Erdős Paradox." In Springer Proceedings in Mathematics & Statistics, 249–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68032-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nathanson, Melvyn B. "The Erdős Paradox." In The Best Writing on Mathematics 2019, edited by Mircea Pitici, 232–40. Princeton: Princeton University Press, 2019. http://dx.doi.org/10.1515/9780691197944-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Totik, Vilmos. "Erdős on Polynomials." In Bolyai Society Mathematical Studies, 683–709. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39286-3_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borwein, Peter. "The Erdős—Szekeres Problem." In Computational Excursions in Analysis and Number Theory, 103–7. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21652-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hajnal, András. "Paul Erdős’ Set Theory." In Algorithms and Combinatorics, 352–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60406-5_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stone, A. H. "Encounters with Paul Erdős." In Algorithms and Combinatorics, 68–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60408-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Erdős"

1

Bowen, Jonathan P., and Robin J. Wilson. "Visualising Virtual Communities: From Erdős to the Arts." In Electronic Visualisation and the Arts (EVA 2012). BCS Learning & Development, 2012. http://dx.doi.org/10.14236/ewic/eva2012.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Song, Nobuaki Obata, and Shuji Takahashi. "Asymptotic spectral analysis of generalized Erdős–Rényi random graphs." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eletreby, Rashad, and Osman Yagan. "Connectivity of inhomogeneous random key graphs intersecting inhomogeneous Erdős-Rényi graphs." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8007064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boix-Adsera, Enric, Matthew Brennan, and Guy Bresler. "The Average-Case Complexity of Counting Cliques in Erdős-Rényi Hypergraphs." In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2019. http://dx.doi.org/10.1109/focs.2019.00078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cullina, Daniel, Negar Kiyavash, Prateek Mittal, and H. Vincent Poor. "Partial Recovery of Erdős-Rényi Graph Alignment via k-Core Alignment." In SIGMETRICS '20: ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3393691.3394211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kadavankandy, Arun, Laura Cottatellucci, and Konstantin Avrachenkov. "Characterization of L1-norm statistic for anomaly detection in Erdős Rényi graphs." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alwasel, Bader, and Stephen D. Wolthusen. "Reconstruction of structural controllability over Erdős-Rényi graphs via power dominating sets." In the 9th Annual Cyber and Information Security Research Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2602087.2602095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Jun. "Modeling interest-based social networks: Superimposing Erdős-Rényi graphs over random intersection graphs." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Yinan, and Youming Qiao. "Linear Algebraic Analogues of the Graph Isomorphism Problem and the Erdős-Rényi Model." In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2017. http://dx.doi.org/10.1109/focs.2017.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grando, Felipe, and Luis C. Lamb. "On the Effectiveness of the Block Two-Level Erdős-Rényi Generative Network Model." In 2018 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2018. http://dx.doi.org/10.1109/iscc.2018.8538645.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Erdős"

1

Jolicoeur, J. Emergency Response Data System (ERDS) implementation. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7175236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Foster, K., E. Arnold, D. Bonner, B. Eme, K. Fischer, J. Gash, J. Nasstrom, et al. Integration of AMS and ERDS Measurement Data into NARAC Dispersion Models FY05 Technology Integration Project Final Report. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/878228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography