Dissertations / Theses on the topic 'Erdős'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Erdős.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Heinlein, Matthias [Verfasser]. "Erdős-Pósa properties / Matthias Heinlein." Ulm : Universität Ulm, 2019. http://d-nb.info/1177147033/34.
Full textBedich, Joseph Matthew. "An Introduction to the Happy Ending Problem and the Erdős–Szekeres Conjecture." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu152405396768852.
Full textRupert, Malcolm. "Extending Erdős-Kac and Selberg-Sathe to Beurling primes with controlled integer counting functions." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44300.
Full textBoggess, Michael H. "Four Years with Russell, Gödel, and Erdős: An Undergraduate's Reflection on His Mathematical Education." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/cmc_theses/1669.
Full textMcLaughlin, Bryce. "An Incidence Approach to the Distinct Distances Problem." Scholarship @ Claremont, 2018. https://scholarship.claremont.edu/hmc_theses/118.
Full textNan, Yehong. "Empirical Study of Two Hypothesis Test Methods for Community Structure in Networks." Thesis, North Dakota State University, 2019. https://hdl.handle.net/10365/31640.
Full textRaouj, Abdelaziz. "Sur la densité de certains ensembles de multiples : résolution d'une conjecture d'Erdös." Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0120_RAOUJ.pdf.
Full textStef, André. "L'ensemble exceptionnel dans la conjecture d'Erdös concernant la proximité des diviseurs." Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0130_STEF.pdf.
Full textCorre, Pierre-Antoine. "Processus de branchements et graphe d'Erdős-Rényi." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066409/document.
Full textThis thesis is composed by three chapters and its main theme is branching processes.The first chapter is devoted to the study of the Yule tree and the binary search tree. We obtain oscillation results on the expectation, the variance and the distribution of the height of these trees and confirm a Drmota's conjecture. Moreover, the Yule tree can be seen as a particular instance of lattice branching random walk, our results thus allow a better understanding of these processes.In the second chapter, we study the number of particles killed at 0 for a Brownian motion with supercritical drift conditioned to extinction. We finally highlight a new phase transition in terms of the drift for the tail of the distributions of these variables.The main object of the last chapter is the Erdős–Rényi graph in the critical case: $G(n,1/n)$. By using coupling and scaling, we show that, when $n$ grows, the scaling process is asymptotically a coalescence-fragmentation process which acts on real graphs. The coalescent part is of multiplicative type and the fragmentations happen according a certain Poisson point process
Gauy, Marcelo Matheus. "Erdos-Ko-Rado em famílias aleatórias." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-26082014-095951/.
Full textWe studied the problem of maximal intersecting families in a random subset of the family of subsets with exactly k elements from a given set. We obtained a nearly complete description of the evolution of the size of such families. Similar versions of this problem have been studied by Balogh, Bohman and Mubayi in 2009, and by Hamm and Kahn, and Balogh, Das, Delcourt, Liu and Sharifzadeh concurrently with this work.
VASCONCELOS, José Eder Salvador de. "A Propriedade Erdös-Pósa para matróides." Universidade Federal de Campina Grande, 2009. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1217.
Full textMade available in DSpace on 2018-07-23T15:16:49Z (GMT). No. of bitstreams: 1 JOSÉ EDER SALVADOR DE VASCONCELOS - DISSERTAÇÃO PPGMAT 2009..pdf: 634118 bytes, checksum: e65e70c702364b197a36f09e8d1ef296 (MD5) Previous issue date: 2009-11
Capes
O número de cocircuitos disjuntos em uma matróide é delimitado pelo seu posto. Existem, no entanto, matróides de posto arbitrariamente grande que não contêm dois cocircuitos disjuntos. Considere, por exemplo,M(Kn) eUn,2n. Além disso, a matróide bicircularB(Kn) pode ter posto arbitrariamente grande, mas não tem 3 cocircuitos disjuntos. Nós apresentaremos uma prova, obtida por Jim Geelen e Kasper Kabell em (5), para o seguinte fato: para cadak en, existe uma constantec tal que, seM é uma matróide com posto no mínimoc, entãoM temk cocircuitos disjuntos ou contém uma das seguintes matróides como menorUn,2n,M(Kn) ouB(Kn).
The number of disjoint cocircuits in a matroid is bounded by its rank. There are, however, matroids of rank arbitrarily large that do not contain two disjoint cocircuits. Consider, for example,M(kn) andUn,2n. Moreover, the bicircular matroidB(kn) may have arbitrarily large rank but do not have 3 disjoints cocircuits. We show a proof obtained by Jim Geelen and Kasper Kabell in (5) to the following fact: for everyk andn, there is a constantc such that ifM is a matroid with rank at leastc, thenM hask disjoint cocircuits orM contains one of the following matroids as a minorUn,2n, M(kn) orB(kn).
Santos, Sidneia Silveira. "Apresentações do Teorema de Erdos-Mordell." Instituto de Matemática. Departamento de Matemática, 2015. http://repositorio.ufba.br/ri/handle/ri/23023.
Full textApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-16T14:47:15Z (GMT) No. of bitstreams: 1 DissertaçãoSideneia.pdf: 2505985 bytes, checksum: 58af908982530da682fb1e186eae51c4 (MD5)
Made available in DSpace on 2017-06-16T14:47:15Z (GMT). No. of bitstreams: 1 DissertaçãoSideneia.pdf: 2505985 bytes, checksum: 58af908982530da682fb1e186eae51c4 (MD5)
O teorema de Erdos-Mordell além de ser muito interessante, apresenta muitas demonstrações diferentes, boa parte delas envolvendo conte udos estudados na Educação Básica. Se tais demonstrações forem abordadas nestas séries, além de despertar a curiosidade dos alunos, daria ao professor a possibilidade de utilizando um material concreto, tornar suas aulas mais dinâmicas, envolvendo os alunos e ao mesmo tempo despertando um maior interesse da parte deles.Tendo como objetivo, mostrar ao professor algumas possibilidades de apresentar aos alunos da Educação Básica o teorema de Erdos-Mordell, este trabalho trás algumas propostas pedagógicas envolvendo este teorema, utilizando o material concreto, afim de, como dito anteriormente, dinamizar as aulas, aguçando a curiosidade e despertando o interesse do aluno.
Vesely, Anna. "Grafi aleatori - il modello di Erdos-Rényi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10144/.
Full textOliveira, Filipe Augusto Alves de. "Teorema de Erdös-Ginzburg-Ziv com Peso." Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/4929.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work we present generalizations to a famous result of the Additive Number Theory which is the Erdös-Ginzburg-Ziv theorem. Our first goal is to find the lowest value for o the length of a sequence of integers for which we can always find a subsequence of n terms which, together with weight in {1, −1}, assume a value equal to a multiple of n. We also consider one generalizations to Erdös-Ginzburg-Ziv theorem where the sequences are o formed by elements in a finite abelian group and for which we can, under some conditions, atribute any weight on the sums of elements of the sequence.
Neste trabalho apresentaremos generalizações para um famoso resultado da Teoria Aditiva dos Números que é o Teorema de Erdös-Ginzburg-Ziv. Nosso primeiro objetivo é encontrar o menor valor para o comprimento de uma sequência de inteiros em que sempre podemos encontrar uma subsequência de n termos que, somados com pesos em {1, −1}, assumam e um valor igual a um múltiplo de n. Posteriormente, consideraremos uma generalização para o Teorema de Erdös-Ginzburg-Ziv em que as sequências são formadas de elementos em um grupo abeliano finito qualquer e que podemos, sob algumas condições, colocar pesos quaisquer sobre as somas dos elementos da sequência.
Cruz, Diogo Filipe Pessoa da. "A conjetura de Erdös-Straus e generalizações." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/13324.
Full textNesta dissertação serão apresentados os principais resultados relacionados com a conjetura de Erd}os-Straus, entre os quais o teorema de Mordell. Associada à conjetura está uma equação diofantina, que iguala uma fração de numerador n = 4 e denominador m inteiro maior que 1, à soma de três frações unitárias. Será também analisado o número de soluções desta equação e vamos também verificar computacionalmente a validade da conjetura para m _ 109. Finalmente, iremos ver generalizações da conjetura para qualquer n e para quando, para além de somas, podemos também ter subtrações de frações unitárias. Ambas as generalizações foram propostas por André Schinzel.
This dissertation will present the main results related to the Erd}os- Straus conjecture, including the Mordell's theorem. Associated to the conjecture is a diophantine equation, that say that a fraction with numerator n = 4 and denominator m integer greater than 1 is equal to the sum of three unit fractions. It will be also analyzed the number of solutions of this equation and we also computationally verify the validity of the conjecture for m 109. Finally, we will see generalizations of the conjecture for any n and when, in addition to sums, we also have subtractions of unit fractions. Both generalizations were proposed by Andr é Schinzel.
This dissertation will present the main results related to the Erd}os- Straus conjecture, including the Mordell's theorem. Associated to the conjecture is a diophantine equation, that say that a fraction with numerator n = 4 and denominator m integer greater than 1 is equal to the sum of three unit fractions. It will be also analyzed the number of solutions of this equation and we also computationally verify the validity of the conjecture for m _ 109. Finally, we will see generalizations of the conjecture for any n and when, in addition to sums, we also have subtractions of unit fractions. Both generalizations were proposed by André Schinzel.
Hamilton, Jeremy. "An Exploration of the Erdös-Mordell Inequality." Youngstown State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1287605197.
Full textSaidak, F. "Non-Abelian generalizations of the Erdös-Kac theorem." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63451.pdf.
Full textSilva, Everton Juliano da. "Uma demonstração analítica do teorema de Erdös-Kac." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24032015-132813/.
Full textIn number theory, the Erdös-Kac theorem, also known as the fundamental theorem of probabilistic number theory, states that if w(n) is the number of distinct prime factors of n, then the sequence of distribution functions N, defined by FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converges uniformly on R to the standard normal distribution. In this work we developed all theorems needed to an analytic demonstration, which will allow us to find an order of error of the above convergence.
Goudout, Elie. "Étude de la fonction ω : petits intervalles et systèmes translatés." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC040.
Full textIn this thesis, we study the interactions between the multiplicative and additive structures of integers. As such, we particularly investigate the function “number of distinct prime factors”, noted ω, on short intervals and shifted systems. This project originates from an important breakthrough of Matomäki & Radziwiłł regarding the study of small intervals, in 2015. As a first step, we show that the Erdős-Kac theorem is valid in almost all short intervals, as long as their length goes to infinity. We then consider the local laws of ω. We prove that, for x> 3 and , almost all intervals of length h contain integers n 6 x satisfying ω(n) = k, when h is large enough. For , the condition on h is optimal. A similar result, albeit non optimal, is obtained for x1/u-friable integers with u 6 (logx)1/6−ε, where ε > 0 is fixed, arbitrarily small. The techniques used in the second chapter naturally invite us to consider the behavior of a wide class of additive functions on shifted systems. In the third chapter, we prove a multidimensional version of a theorem from Halász in 1975, regarding the maximum concentration of the values of one additive function. In the last chapter, we show that ω(n− 1) satisfies an Erdős-Kac theorem whenever ω(n) = k is fixed. This generalizes a theorem of Halberstam
Lima, Carlos Vinicius Gomes Costa. "Sobre b-coloraÃÃo de grafos com cintura pelo menos 6." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9630.
Full textThe coloring problem is among the most studied in the Graph Theory due to its great theoretical and practical importance. Since the problem of coloring the vertices of a graph G either with the smallest amount of colors is NP-hard, various coloring heuristics are examined to obtain a proper colouring with a reasonably small number of colors. Given a graph G, the b heuristic of colouring comes down to decrease the amount of colors in a proper colouring c, so that, if all vertices of a color class fail to see any color in your neighborhood, then we can change the color to any color these vertices nonexistent in your neighborhood. Thus, we obtain a coloring c ′ with a color unless c. Irving and Molove defined the b-coloring of a graph G as a coloring where every color class has a vertex that is adjacent the other color classes. These vertices are called b-vertices. Irving and Molove also defined the b-chromatic number as the largest integer k, such that G admits a b-coloring by k colors. They showed that determine the value of the b-chromatic number of any graph is NP-hard, but polynomial for trees. Irving and Molove also defined the m-degree of a graph, which is the largest integer m(G) such that there are m(G) vertices with degree at least m(G) − 1. Irving and Molove showed that the m-degree is an upper limit to the b-chromatic number and showed that it is m(T) or m(T)−1 to every tree T, where its value is m(T) if, and only if, T has a good set. In this dissertation, we analyze the relationship between the girth, which is the size of the smallest cycle, and the b-chromatic number of a graph G. More specifically, we try to find the smallest integer g ∗ such that if the girth of G is at least g ∗ , then the b-chromatic number equals m(G) or m(G)−1. Show that the value of g ∗ is at most 6 could be an important step in demonstrating the famous conjecture of Erd˝os-Faber-LovÂasz, but the best known upper limit to g ∗ is 9. We characterize the graphs whose girth is at least 6 and not have a good set and show how b-color them optimally. Furthermore, we show how b-color, also optimally, graphs whose girth is at least 7 and not have good set.
O problema de coloraÃÃo està entre os mais estudados dentro da Teoria dos Grafos devido a sua grande importÃncia teorica e prÃtica. Dado que o problema de colorir os vÃrtices de um grafo G qualquer com a menor quantidade de cores à NP-difÃcil, vÃrias heurÃsticas de coloraÃÃo sÃo estudadas a fim de obter uma coloraÃÃo prÃpria com um nÃmero de cores razoavelmente pequeno. Dado um grafo G, a heurÃstica b de coloraÃÃo se resume a diminuir a quantidade de cores utilizadas em uma coloraÃÃo prÃpria c, de modo que, se todos os vÃrtices de uma classe de cor deixam de ver alguma cor em sua vizinhanÃa, entÃo podemos modificar a cor desses vÃrtices para qualquer cor inexistente em sua vizinhanÃa. Dessa forma, obtemos uma coloraÃÃo c′ com uma cor a menos que c. Irving e Molove definiram a b-coloraÃÃo de um grafo G como uma coloraÃÃo onde toda classe de cor possui um vÃrtice que à adjacente as demais classes de cor. Esses vÃrtices sÃo chamados b-vÃrtices. Irving e Molove tambÃm definiram o nÃmero b-cromÃtico como o maior inteiro k tal que G admite uma b-coloraÃÃo por k cores. Eles mostraram que determinar o nÃmero b-cromÃtico de um grafo qualquer à um problema NP-difÃcil, mas polinomial para Ãrvores. Irving e Molove tambÃm definiram o m-grau de um grafo, que à o maior inteiro m(G) tal que existem m(G) vÃrtices com grau pelo menos m(G)−1. Irving e Molove mostraram que o m-grau à um limite superior para nÃmero b-cromÃtico e mostraram que o mesmo à igual a m(T) ou a m(T)−1, para toda Ãrvore T, onde o nÃmero b-cromÃtico à igual a m(T) se, e somente se, T possui um conjunto bom. Nesta dissertaÃÃo, verificamos a relaÃÃo entre a cintura, que à o tamanho do menor ciclo, e o nÃmero b-cromÃtico de um grafo G. Mais especificamente, tentamos encontrar o menor inteiro g∗ tal que, se a cintura de G à pelo menos g∗, entÃo o nÃmero b-cromÃtico à igual a m(G) ou m(G)−1. Mostrar que o valor de g∗ à no mÃximo 6 poderia ser um passo importante para demonstrar a famosa Conjectura de ErdÃs-Faber-Lovasz, mas o melhor limite superior conhecido para g∗ à 9. Caracterizamos os grafos cuja cintura à pelo menos 6 e nÃo possuem um conjunto bom e mostramos como b-colori-los de forma Ãtima. AlÃm disso, mostramos como bicolorir, tambÃm de forma Ãtima, os grafos cuja cintura à pelo menos 7 e nÃo possuem conjunto bom.
Lopes, Fabio Marcellus Lima Sá Makiyama. "Limite do fluído para o grafo aleatório de Erdos-Rényi." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05052010-155151/.
Full textIn this work, we apply the Breadth-First Search algorithm to find the size of a connected component of the Erdos-Rényi random graph. A Markov chain is obtained of this procedure. We present some well-known results about the behavior of this Markov chain, and combine some of these results to obtain a proposition about the probability that the component reaches a certain size and a convergence result about the state of the chain at that time. Next, we apply the convergence theorem of Darling (2002) to the sequence of rescaled Markov chains indexed by N, the number of vertices of the graph, to show that the trajectories of these chains converge uniformly in probability to the solution of an ordinary dierential equation. From the latter result follows the well-known weak law of large numbers of the giant component of the Erdos-Renyi random graph, in the supercritical case. Moreover, we obtain the uid limit for an epidemic model which is an extension of that proposed in Kurtz et al. (2008).
Louani, Djamal. "Lois limites du type erdos-renyi indexees par des ensembles." Paris 6, 1990. http://www.theses.fr/1990PA066758.
Full textGardes, Marie-Line. "Étude de processus de recherche de chercheurs, élèves et étudiants, engagés dans la recherche d’un problème non résolu en théorie des nombres." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10231/document.
Full textOur thesis deals with the transposition of mathematician’s reserach activity in mathematical classroom, in the domain of number theory. Our research focuses on the study of a research process for researchers, pupils and students involved in the research of an unsolved problem: the Erdös-Straus conjecture. Our mathematical and epistemological analyses allow us to identify different aspects of the mathematician’s work and the elements for progress in his research. The notion of “gesture” is developed to describe, analyze and contextualize different research processes. This analysis reveals the potentiality of this problem to create a research situation in classroom, where pupils are in a position similar to the mathematician’s one. Didactical analyses are based on the construction of such a situation and its experimentation in laboratory. We study the research process of the students with the methodological tools developed in mathematical and epistemological analyses. This analysis shows several potentiality of this situation: a wealth of procedures implemented, effective work on the dialectical aspects of the mathematical research activity and implementation of experimental approach. The notion of “gesture” is relevant to consider the question of the transposition of mathematician’s work
Lima, Carlos Vinicius Gomes Costa. "Sobre b-coloração de grafos com cintura pelo menos 6." reponame:Repositório Institucional da UFC, 2013. http://www.repositorio.ufc.br/handle/riufc/17634.
Full textSubmitted by guaracy araujo (guaraa3355@gmail.com) on 2016-06-13T18:53:18Z No. of bitstreams: 1 2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5)
Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-13T19:18:47Z (GMT) No. of bitstreams: 1 2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5)
Made available in DSpace on 2016-06-13T19:18:47Z (GMT). No. of bitstreams: 1 2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5) Previous issue date: 2013
O problema de coloração está entre os mais estudados dentro da Teoria dos Grafos devido a sua grande importância teorica e prática. Dado que o problema de colorir os vértices de um grafo G qualquer com a menor quantidade de cores é NP-difícil, várias heurísticas de coloração são estudadas a fim de obter uma coloração própria com um número de cores razoavelmente pequeno. Dado um grafo G, a heurística b de coloração se resume a diminuir a quantidade de cores utilizadas em uma coloração própria c, de modo que, se todos os vértices de uma classe de cor deixam de ver alguma cor em sua vizinhança, então podemos modificar a cor desses vértices para qualquer cor inexistente em sua vizinhança. Dessa forma, obtemos uma coloração c′ com uma cor a menos que c. Irving e Molove definiram a b-coloração de um grafo G como uma coloração onde toda classe de cor possui um vértice que é adjacente as demais classes de cor. Esses vértices são chamados b-vértices. Irving e Molove também definiram o número b-cromático como o maior inteiro k tal que G admite uma b-coloração por k cores. Eles mostraram que determinar o número b-cromático de um grafo qualquer é um problema NP-difícil, mas polinomial para árvores. Irving e Molove também definiram o m-grau de um grafo, que é o maior inteiro m(G) tal que existem m(G) vértices com grau pelo menos m(G)−1. Irving e Molove mostraram que o m-grau é um limite superior para número b-cromático e mostraram que o mesmo é igual a m(T) ou a m(T)−1, para toda árvore T, onde o número b-cromático é igual a m(T) se, e somente se, T possui um conjunto bom. Nesta dissertação, verificamos a relação entre a cintura, que é o tamanho do menor ciclo, e o número b-cromático de um grafo G. Mais especificamente, tentamos encontrar o menor inteiro g∗ tal que, se a cintura de G é pelo menos g∗, então o número b-cromático é igual a m(G) ou m(G)−1. Mostrar que o valor de g∗ é no máximo 6 poderia ser um passo importante para demonstrar a famosa Conjectura de Erdós-Faber-Lovasz, mas o melhor limite superior conhecido para g∗ é 9. Caracterizamos os grafos cuja cintura é pelo menos 6 e não possuem um conjunto bom e mostramos como b-colori-los de forma ótima. Além disso, mostramos como bicolorir, também de forma ótima, os grafos cuja cintura é pelo menos 7 e não possuem conjunto bom.
The coloring problem is among the most studied in the Graph Theory due to its great theoretical and practical importance. Since the problem of coloring the vertices of a graph G either with the smallest amount of colors is NP-hard, various coloring heuristics are examined to obtain a proper colouring with a reasonably small number of colors. Given a graph G, the b heuristic of colouring comes down to decrease the amount of colors in a proper colouring c, so that, if all vertices of a color class fail to see any color in your neighborhood, then we can change the color to any color these vertices nonexistent in your neighborhood. Thus, we obtain a coloring c ′ with a color unless c. Irving and Molove defined the b-coloring of a graph G as a coloring where every color class has a vertex that is adjacent the other color classes. These vertices are called b-vertices. Irving and Molove also defined the b-chromatic number as the largest integer k, such that G admits a b-coloring by k colors. They showed that determine the value of the b-chromatic number of any graph is NP-hard, but polynomial for trees. Irving and Molove also defined the m-degree of a graph, which is the largest integer m(G) such that there are m(G) vertices with degree at least m(G) − 1. Irving and Molove showed that the m-degree is an upper limit to the b-chromatic number and showed that it is m(T) or m(T)−1 to every tree T, where its value is m(T) if, and only if, T has a good set. In this dissertation, we analyze the relationship between the girth, which is the size of the smallest cycle, and the b-chromatic number of a graph G. More specifically, we try to find the smallest integer g ∗ such that if the girth of G is at least g ∗ , then the b-chromatic number equals m(G) or m(G)−1. Show that the value of g ∗ is at most 6 could be an important step in demonstrating the famous conjecture of Erd˝os-Faber-Lov´asz, but the best known upper limit to g ∗ is 9. We characterize the graphs whose girth is at least 6 and not have a good set and show how b-color them optimally. Furthermore, we show how b-color, also optimally, graphs whose girth is at least 7 and not have good set.
Alberici, Diego. "Statistical Mechanics of Monomer-Dimer Models on Complete and Erdös-Rényi Graphs." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4169/.
Full textBedia, Elizbeth Chipa. "Conectividade do grafo aleatório de Erdös-Rényi e uma variante com conexões locais." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7493.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:24:19Z (GMT) No. of bitstreams: 1 DissECB.pdf: 1690258 bytes, checksum: 170a56b764c244b7ea84776c96378020 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:24:24Z (GMT) No. of bitstreams: 1 DissECB.pdf: 1690258 bytes, checksum: 170a56b764c244b7ea84776c96378020 (MD5)
Made available in DSpace on 2016-09-27T19:24:30Z (GMT). No. of bitstreams: 1 DissECB.pdf: 1690258 bytes, checksum: 170a56b764c244b7ea84776c96378020 (MD5) Previous issue date: 2016-03-24
Não recebi financiamento
We say that a graph is connected if there is a path edges between any pair of vertices. Random graph Erd os-R enyi with n vertices is obtained by connecting each pair of vertex with probability pn 2 (0; 1) independently of the others. In this work, we studied in detail the connectivity threshold in the connection probability pn for random graphs Erd os-R enyi when the number of vertices n diverges. For this study, we review some basic probabilistic tools (convergence of random variables and methods of the rst and second moment), which will lead to a better understanding of more complex results. In addition, we apply the above concepts for a model with a simple topology, speci cally studied the asymptotic behavior of the probability of non-existence of isolated vertices, and we discussed the connectivity or not of the graph. Finally we show the convergence in distribution of the number of isolated vertices for a Poisson distribution of the studied model.
Dizemos que um grafo e conectado se existe um caminho de arestas entre quaisquer par de vértices. O grafo aleatório de Erd os-R enyi com n vértices e obtido conectando cada par de vértice com probabilidade pn 2 (0; 1), independentemente dos outros. Neste trabalho, estudamos em detalhe o limiar da conectividade na probabilidade de conexão pn para grafos aleat órios Erd os-R enyi quando o n úmero de vértices n diverge. Para este estudo, revisamos algumas ferramentas probabilísticas básicas (convergência de variáveis aleatórias e Métodos do primeiro e segundo momento), que também irão auxiliar ao melhor entendimento de resultados mais complexos. Além disto, aplicamos os conceitos anteriores para um modelo com uma topologia simples, mais especificamente estudamos o comportamento assintótico da probabilidade de não existência de vértices isolados, e discutimos a conectividade ou não do grafo. Por mostramos a convergência em distribuição do número de vértices isolados para uma Distribuição Poisson do modelo estudado.
Krüger, Torben [Verfasser], and László [Akademischer Betreuer] Erdős. "Local spectral universality for random matrices with independent entries / Torben Krüger. Betreuer: Laszlo Erdos." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1105374211/34.
Full textNewman, Michael William. "Independent Sets and Eigenspaces." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1151.
Full textSartoretto, Eduardo Zorzo. "Conectividade para um modelo de grafo aleatório não homogêneo." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04102016-145152/.
Full textThe characterization of networks and the study of systems, both using graphs, is very used by several scientific areas. One of the lines of this study is called random graphs, which in turn assists in creating models for the analysis of real networks. We consider an inhomogeneous random graph model created by Kang, Pachón e Rodríguez (2016), where its construction is made from the realization of the binomial graph G(n; p). For this model, we studied the arguments and methods used to find results on the connectivity threshold, important property related to asymptotic existence of vertices and isolated components. Then we found some positive and negative characteristics about the use of the graph to model complex real networks, using computer simulations and topological measures.
Tiep, Pham H., and Van H. Vu. "Non-abelian Littlewood–Offord inequalities." ACADEMIC PRESS INC ELSEVIER SCIENCE, 2016. http://hdl.handle.net/10150/621530.
Full textSoosten, Per von [Verfasser], Simone [Akademischer Betreuer] Warzel, László [Gutachter] Erdös, Herbert [Gutachter] Spohn, and Simone [Gutachter] Warzel. "Hierarchical Random Matrices and Operators / Per von Soosten ; Gutachter: László Erdös, Herbert Spohn, Simone Warzel ; Betreuer: Simone Warzel." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1161846832/34.
Full textGomes, Olímpio Ribeiro. "Problemas diretos em Teoria Aditiva via método polinomial : generalização do teorema de Cauchy-Davenport e da conjectura de Erdös-Heilbronn." reponame:Repositório Institucional da UnB, 2008. http://repositorio.unb.br/handle/10482/8782.
Full textSubmitted by Jaqueline Ferreira de Souza (jaquefs.braz@gmail.com) on 2011-06-29T19:29:43Z No. of bitstreams: 1 2008_OlimpioRibeiroGomes.pdf: 387344 bytes, checksum: c4d94c8588489c8ec4be6a48ba412e32 (MD5)
Approved for entry into archive by Jaqueline Ferreira de Souza(jaquefs.braz@gmail.com) on 2011-06-29T19:30:35Z (GMT) No. of bitstreams: 1 2008_OlimpioRibeiroGomes.pdf: 387344 bytes, checksum: c4d94c8588489c8ec4be6a48ba412e32 (MD5)
Made available in DSpace on 2011-06-29T19:30:35Z (GMT). No. of bitstreams: 1 2008_OlimpioRibeiroGomes.pdf: 387344 bytes, checksum: c4d94c8588489c8ec4be6a48ba412e32 (MD5)
Sejam subconjuntos finitos e não vazios de um corpo K e seja o polinômio simétrico elementar de grau k em h variáveis. Apresentamos estimativas para o número de elementos dos conjuntos das imagens de todas as h-uplas de pelo polinômio , com e sem a restrição de que os elementos em cada upla sejam dois a dois distintos. Em nosso desenvolvimento somos levados a estudar o conjunto das (0, 1)-matrizes cuja soma dos vetores-linha é igual ao vetor e cuja soma dos vetores-coluna é igual ao vetor . Uma fórmula para o cálculo do número de tais matrizes é apresentada no caso particular em que todas as coordenadas do vetor r são iguais. ______________________________________________________________________________ ABSTRACT
Are finite and non-empty subsets of a field K and is the elementary symmetric polynomial of degree k on m variables. We present estimates for the number of elements of the sets of images of all h-tuples of the polynomial, with and without the restriction that the elements in each tuple are two distinct two. In our development we are led to study the set of (0, 1)-matrices whose sum of row vectors is equal to the vector, the sum of the column vectors is equal to the vector. A formula for calculating the number of such arrays is presented in the particular case where all coordinates of vector r are equal.
Depret-Guillaume, James Serge. "Optimal Point Sets With Few Distinct Triangles." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91425.
Full textMaster of Science
In this thesis we consider the following question: Given a number of triangles, t, where each of these triangles are different, we ask what is the maximum number of points that can be placed in d-dimensional space, such that every triplets of these points form the vertices of only the t allowable triangles. We answer this for every dimension, d when the number of triangles is t = 1, as well as show that when t = 2 triangle are in d = 3-dimensional space. This set of questions rises from considering the work of Erd˝os and Fishburn in higher dimensional space [EF].
Yilma, Zelealem Belaineh. "Results in Extremal Graph and Hypergraph Theory." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/49.
Full textSorakayala, Shashidhar. "Preferences in Musical Rhythms and Implementation of Analytical Results to Generate Rhythms." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/884.
Full textTaha, Samah M. Osman. "Small-world network models and their average path length." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95834.
Full textENGLISH ABSTRACT: Socially-based networks are of particular interest amongst the variety of communication networks arising in reality. They are distinguished by having small average path length and high clustering coefficient, and so are examples of small-world networks. This thesis studies both real examples and theoretical models of small-world networks, with particular attention to average path length. Existing models of small-world networks, due to Watts and Strogatz (1998) and Newman and Watts (1999a), impose boundary conditions on a one dimensional lattice, and rewire links locally and probabilistically in the former or probabilistically adding extra links in the latter. These models are investigated and compared with real-world networks. We consider a model in which randomness is provided by the Erdos-Rényi random network models superposed on a deterministic one dimensional structured network. We reason about this model using tools and results from random graph theory. Given a disordered network C(n, p) formed by adding links randomly with probability p to a one dimensional network C(n). We improve the analytical result regarding the average path length by showing that the onset of smallworld behaviour occurs if pn is bounded away from zero. Furthermore, we show that when pn tends to zero, C(n, p) is no longer small-world. We display that the average path length in this case approaches infinity with the network order. We deduce that at least εn (where ε is a constant bigger than zero) random links should be added to a one dimensional lattice to ensure average path length of order log n.
AFRIKAANSE OPSOMMING: Sosiaal-baseerde netwerke is van besondere belang onder die verskeidenheid kommunikasie netwerke. Hulle word onderskei deur ’n klein gemiddelde skeidingsafstand en hoë samedrommingskoëffisiënt, en is voorbeelde van kleinwêreld netwerke. Hierdie verhandeling bestudeer beide werklike voorbeelde en teoretiese modelle van klein-wêreld netwerke, met besondere aandag op die gemiddelde padlengte. Bestaande modelle van klein-wêreld netwerke, te danke aan Watts en Strogatz (1998) en Newman en Watts (1999a), voeg randvoorwaardes by tot eendimensionele roosters, en herbedraad nedwerkskakels gebaseer op lokale kennis in die eerste geval en voeg willekeurig ekstra netwerkskakels in die tweede. Hierdie modelle word ondersoek en vergelyk met werklike-wêreld netwerke. Ons oorweeg ’n prosedure waarin willekeurigheid verskaf word deur die Erdös- Renyi toevalsnetwerk modelle wat op ’n een-dimensionele deterministiese gestruktureerde netwerk geimposeer word. Ons redeneer oor hierdie modelle deur gebruik te maak van gereedskap en resultate toevalsgrafieke teorie. Gegewe ’n wanordelike netwerk wat gevorm word deur skakels willekeurig met waarskynlikheid p tot ‘n een-dimensionele netwerk C(n) toe te voeg, verbeter ons die analitiese resultaat ten opsigte van die gemiddelde padlengte deur te wys dat die aanvang van klein-wêreld gedrag voorkom wanneer pn weg van nul begrens is. Verder toon ons dat, wanneer pn neig na nul, C(n, p) nie meer klein-wêreld is nie. Ons toon dat die gemiddelde padlengte in hierdie geval na oneindigheid streef saam met die netwerk groote. Ons lei af dat ten minste εn (waar εn n konstante groter as nul is) ewekansige skakels bygevoeg moet word by ’n een-dimensionele rooster om ‘n gemiddelde padlengte van orde log n te verseker.
Ihringer, Ferdinand [Verfasser]. "Finite geometry intersecting algebraic combinatorics : an investigation of intersection problems related to Erdös-Ko-Rado theorems on Galois geometries with help from algebraic combinatorics / Ferdinand Ihringer." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1076005918/34.
Full textCastro, Paulo Alexandre de. "Rede complexa e criticalidade auto-organizada: modelos e aplicações." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-14012008-165356/.
Full textModels and scientific theories arise from the necessity of the human being to better understand how the world works. Driven by this purpose new models and techniques have been created. For instance, one of these theories recently developed is the Self-Organized Criticality, which is shortly introduced in the Chapter 2 of this thesis. In the framework of the Self-Organized Criticality theory, we investigate the standard Bak-Sneppen dynamics as well some variants of it and compare them with optimization algorithms (Chapter 3). We present a historical and conceptual review of complex networks in the Chapter 4. Some important models like: Erdös-Rényi, Watts-Strogatz, configuration model and Barabási-Albert are revised. In the Chapter 5, we analyze the nonlinear Barabási-Albert model. For this model, we got an analytical expression for the connectivity distribution P(k), which is valid for a wide range of the space parameters. We also proposed an exact analytical expression for the clustering coefficient which corroborates very well with our numerical simulations. The nonlinear Barabási-Albert network can be assortative or disassortative and only in the particular case of the linear Barabási-Albert model, the network is no assortative. In the Chapter 6, we used collected data from a CD-ROM released by the magazine Placar and constructed a very peculiar network -- the Brazilian soccer network. First, we analyzed the bipartite network formed by players and clubs. We find out that the probability of a footballer has played M matches decays exponentially with M, whereas the probability of a footballer to score G gols follows a power-law. From the bipartite network, we built the unipartite Brazilian soccer players network. For this network, we determined several important quantities: the average shortest path length, the clustering coefficient and the assortative coefficient. We were also able to analise the time evolution of these quantities -- which represents a very rare opportunity in the study of real networks.
Zhao, Meng John. "Analysis and Evaluation of Social Network Anomaly Detection." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/79849.
Full textPh. D.
Aloui, Karam. "Propriétés arithmétiques et combinatoires de la fonction somme des chiffres." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4083/document.
Full textThe aim of this thesis is the study of some arithmetic and combinatoric properties of the sum of digits function. We start by the study of exponential sums of the form $dissum_{nleq x}expleft(2ipileft(frac{l}{m}S_q(n)+frac{k}{m'}S_q(n+1)+theta nright)right)$ in order to establish a result of equidistribution modulo $1$ in addition to a probabilistic theorem of the kind ErdH{o}s-Kac. Then, we generalize a problem due to Gelfond concerning the distribution in residue classes of the sum of digits function in the case of integers with missing digits. Besides, we give a similar result to that of ErdH{o}s, Mauduit and S'ark"{o}zy on the uniform distribution of integers with missing digits in arithmetic progressions under a constraint on the sum of digits. Finally, a study of the order of magnitude of some arithmetical functions under digital constraints is done as a consequence of the works of Mkaouar and Wannès
Butz, Maximilian Josef [Verfasser], Herbert [Akademischer Betreuer] Spohn, László [Akademischer Betreuer] Erdös, and Simone [Akademischer Betreuer] Warzel. "Kinetic limit for wave propagation in a continuous, weakly random medium : Self-averaging and convergence to a linear Boltzmann equation / Maximilian Josef Butz. Gutachter: László Erdös ; Herbert Spohn ; Simone Warzel. Betreuer: Herbert Spohn." München : Universitätsbibliothek der TU München, 2015. http://d-nb.info/1076625576/34.
Full textDavis, Tiana. "Quantifying Chlorophyll a Content Through Remote Sensing: A Pilot Study of Utah Lake." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1261.pdf.
Full textRaymond, Jean-Florent. "Structural and algorithmic aspects of partial orderings of graphs." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT289.
Full textThe central theme of this thesis is the study of the properties of the classes of graphs defined by forbidden substructures and their applications.The first direction that we follow concerns well-quasi-orders. Using decomposition theorems on graph classes forbidding one substructure, we identify those that are well-quasi-ordered. The orders and substructures that we consider are those related to the notions of contraction and induced minor.Then, still considering classes of graphs defined by forbidden substructures, we obtain bounds on invariants such as degree, treewidth, tree-cut width, and a new invariant generalizing the girth.The third direction is the study of the links between the combinatorial invariants related to problems of packing and covering of graphs. In this direction, we establish new connections between these invariants for some classes of graphs. We also present algorithmic applications of the results
Brunk, Fiona. "Intersection problems in combinatorics." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/765.
Full textLagoutte, Aurélie. "Interactions entre les Cliques et les Stables dans un Graphe." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1012/document.
Full textThis thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem
Liao, Yi-Hsun, and 廖奕勛. "Finding independent sets of Erdős–Rényi random graphs." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/qt5ugy.
Full text元智大學
資訊工程學系
107
The Erdős–Rényi random graph G(n,p) is an n-vertex graph which includes each of the (n¦2) edges with probability p independently of all other edges. The Bron–Kerbosch algorithm finds all maximal independent sets of any undirected graph G=(V,E) in Ο(3^(|V|∕3) )= Ο(〖1.4422〗^(|V|) ) time. Our experiments show that as p increases, the expected number of maximal independent sets of G(n,p) increases sharply and then decreases slowly. Furthermore, as p increases, the expected running time of the Bron–Kerbosch algorithm on G(n,p) increases sharply, decreases sharply and then increases slowly.
Wun, Fu-Cyuan, and 溫福銓. "Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/55678263536694566103.
Full text國立屏東教育大學
應用數學系
99
In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?” This is the “Happy Ending problem” because it led to the marriage of George Szekeres and Esther Klein. In this paper, we show the existence of g(n) and estimate its upper bound and lower bound by using the Erdős-Szekeres Theorem. We also constructing explicit examples for the minimal possible g(n) for a set of g(n) points in the plane in general position must contain a convex n-gon.
Eliáš, Marek. "Erdos-Szekeres type theorems." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-304489.
Full textBalko, Martin. "Ramseyovské výsledky pro uspořádané hypergrafy." Doctoral thesis, 2016. http://www.nusl.cz/ntk/nusl-267853.
Full textDamelin, Steven Benjamin. "Weighted approximation for Erdðs weights." Thesis, 1995. http://hdl.handle.net/10539/22133.
Full textMN (2017)