To see the other types of publications on this topic, follow the link: Erdős.

Journal articles on the topic 'Erdős'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Erdős.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Torrence, Bruce, and Ron Graham. "The 100th Birthday of Paul Erdős/Remembering Erdős." Math Horizons 20, no. 4 (April 2013): 10–12. http://dx.doi.org/10.4169/mathhorizons.20.4.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zaragoza, Alfredo. "Symmetric products of Erdős space and complete Erdős space." Topology and its Applications 284 (October 2020): 107355. http://dx.doi.org/10.1016/j.topol.2020.107355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Balister, P., B. Bollobás, R. Morris, J. Sahasrabudhe, and M. Tiba. "Erdős covering systems." Acta Mathematica Hungarica 161, no. 2 (June 30, 2020): 540–49. http://dx.doi.org/10.1007/s10474-020-01048-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ault, Shaun V., and Benjamin Shemmer. "Erdős-Szekeres Tableaux." Order 31, no. 3 (October 17, 2013): 391–402. http://dx.doi.org/10.1007/s11083-013-9308-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mubayi, Dhruv. "Variants of the Erdős–Szekeres and Erdős–Hajnal Ramsey problems." European Journal of Combinatorics 62 (May 2017): 197–205. http://dx.doi.org/10.1016/j.ejc.2016.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kapus, Erika. "Menyhért, Anna. 2016: Egy szabad nő, Erdős Renée regényes élete (‘A Free Woman, The Remarkable Life of Renée Erdős’). Budapest: General Press. 231 pp. Illus." Hungarian Cultural Studies 10 (September 6, 2017): 213–16. http://dx.doi.org/10.5195/ahea.2017.304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bara, Zoltán. "Erdős Tibor kilencvenedik születésnapjára." Közgazdasági Szemle 65, no. 4 (April 16, 2018): 341–45. http://dx.doi.org/10.18414/ksz.2018.4.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KANAMORI, AKIHIRO. "ERDŐS AND SET THEORY." Bulletin of Symbolic Logic 20, no. 4 (December 2014): 449–90. http://dx.doi.org/10.1017/bsl.2014.38.

Full text
Abstract:
Paul Erdős (26 March 1913—20 September 1996) was a mathematicianpar excellencewhose results and initiatives have had a large impact and made a strong imprint on the doing of and thinking about mathematics. A mathematician of alacrity, detail, and collaboration, Erdős in his six decades of work moved and thought quickly, entertained increasingly many parameters, and wrote over 1500 articles, the majority with others. Hismodus operandiwas to drive mathematics through cycles of problem, proof, and conjecture, ceaselessly progressing and ever reaching, and hismodus vivendiwas to be itinerant in the world, stimulating and interacting about mathematics at every port and capital.
APA, Harvard, Vancouver, ISO, and other styles
9

Norin, Sergey, and Yelena Yuditsky. "Erdős–Szekeres Without Induction." Discrete & Computational Geometry 55, no. 4 (April 5, 2016): 963–71. http://dx.doi.org/10.1007/s00454-016-9778-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Faudree, Ralph. "A Conjecture of Erdős." American Mathematical Monthly 105, no. 5 (May 1998): 451–53. http://dx.doi.org/10.1080/00029890.1998.12004908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Alexanderson, G. L. "Paul Erdős, 1913–1996." Mathematics Magazine 69, no. 5 (December 1996): 395–96. http://dx.doi.org/10.1080/0025570x.1996.11996487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dijkstra, Jan J., and Dave Visser. "On generalized Erdős spaces." Topology and its Applications 155, no. 4 (January 2008): 233–51. http://dx.doi.org/10.1016/j.topol.2007.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ruzsa, Imre Z. "Erdős and the Integers." Journal of Number Theory 79, no. 1 (November 1999): 115–63. http://dx.doi.org/10.1006/jnth.1999.2395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dijkstra, Jan J., and Jan van Mill. "Characterizing Complete Erdős Space." Canadian Journal of Mathematics 61, no. 1 (February 1, 2009): 124–40. http://dx.doi.org/10.4153/cjm-2009-006-6.

Full text
Abstract:
Abstract. The space now known as complete Erdős space was introduced by Paul Erdős in 1940 as the closed subspace of the Hilbert space ℓ2 consisting of all vectors such that every coordinate is in the convergent sequence ﹛0﹜ ∪ ﹛1/n : n ∈ℕ﹜. In a solution to a problem posed by Lex G. Oversteegen we present simple and useful topological characterizations of . As an application we determine the class of factors of . In another application we determine precisely which of the spaces that can be constructed in the Banach spaces ℓp according to the ‘Erdős method’ are homeomorphic to . A novel application states that if I is a Polishable Fσ-ideal on ω, then I with the Polish topology is homeomorphic to either ℤ, the Cantor set 2ω, ℤ × 2ω, or . This last result answers a question that was asked by Stevo Todorčević.
APA, Harvard, Vancouver, ISO, and other styles
15

Bollobás, Béla. "Paul Erdős (1913–96)." Nature 383, no. 6601 (October 1996): 584. http://dx.doi.org/10.1038/383584a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Babai, Laszlo. "Paul Erdős (1913–1996)." ACM SIGACT News 27, no. 4 (December 1996): 62–65. http://dx.doi.org/10.1145/242581.242586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liebenau, Anita, Marcin Pilipczuk, Paul Seymour, and Sophie Spirkl. "Caterpillars in Erdős–Hajnal." Journal of Combinatorial Theory, Series B 136 (May 2019): 33–43. http://dx.doi.org/10.1016/j.jctb.2018.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sapozhenko, Alexander A. "The Cameron–Erdős conjecture." Discrete Mathematics 308, no. 19 (October 2008): 4361–69. http://dx.doi.org/10.1016/j.disc.2007.08.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Forster, Thomas. "Erdős-Rado without choice." Journal of Symbolic Logic 72, no. 3 (September 2007): 897–900. http://dx.doi.org/10.2178/jsl/1191333846.

Full text
Abstract:
AbstractA version of the Erdős-Rado theorem on partitions of the unordered n-tuples from uncountable sets is proved, without using the axiom of choice. The case with exponent 1 is just the Sierpinski-Hartogs' result that .
APA, Harvard, Vancouver, ISO, and other styles
20

Ördög, Rafael, Dániel Bánky, Balázs Szerencsi, Péter Juhász, and Vince Grolmusz. "The Erdős webgraph server." Discrete Applied Mathematics 167 (April 2014): 315–17. http://dx.doi.org/10.1016/j.dam.2013.10.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Spencer, Joel. "From Erdős to algorithms." Discrete Mathematics 136, no. 1-3 (December 1994): 295–307. http://dx.doi.org/10.1016/0012-365x(93)e0117-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lefmann, Hanno, and Vojtěch Rödl. "On Erdős-Rado numbers." Combinatorica 15, no. 1 (March 1995): 85–104. http://dx.doi.org/10.1007/bf01294461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pyber, L. "An erdős—Gallai conjecture." Combinatorica 5, no. 1 (March 1985): 67–79. http://dx.doi.org/10.1007/bf02579444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sós, Vera T. "Paul Erdős, 1913–1996." Aequationes Mathematicae 54, no. 1-2 (August 1997): 205–20. http://dx.doi.org/10.1007/bf02755456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gasarch, William, and Sam Zbarsky. "Applications of the Erdős-Rado Canonical Ramsey Theorem to Erdős-Type Problems." Electronic Notes in Discrete Mathematics 43 (September 2013): 305–10. http://dx.doi.org/10.1016/j.endm.2013.07.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Hao, and Yi Zhao. "Degree versions of the Erdős–Ko–Rado theorem and Erdős hypergraph matching conjecture." Journal of Combinatorial Theory, Series A 150 (August 2017): 233–47. http://dx.doi.org/10.1016/j.jcta.2017.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Elliott, P. D. T. A. "A localized Erdős-Wintner theorem." Pacific Journal of Mathematics 135, no. 2 (December 1, 1988): 287–97. http://dx.doi.org/10.2140/pjm.1988.135.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

DIJKSTRA, JAN J., JAN VAN MILL, and JURIS STEPRĀNS. "Complete Erdős space is unstable." Mathematical Proceedings of the Cambridge Philosophical Society 137, no. 2 (September 2004): 465–73. http://dx.doi.org/10.1017/s0305004104007996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Grekos, G., L. Haddad, C. Helou, and J. Pihko. "On the Erdős–Turán conjecture." Journal of Number Theory 102, no. 2 (October 2003): 339–52. http://dx.doi.org/10.1016/s0022-314x(03)00108-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tang, Min. "On the Erdős–Turán conjecture." Journal of Number Theory 150 (May 2015): 74–80. http://dx.doi.org/10.1016/j.jnt.2014.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bárány, Imre, Edgardo Roldán-Pensado, and Géza Tóth. "Erdős–Szekeres Theorem for Lines." Discrete & Computational Geometry 54, no. 3 (June 9, 2015): 669–85. http://dx.doi.org/10.1007/s00454-015-9705-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Koshelev, V. A. "On Erdős-Szekeres-type problems." Electronic Notes in Discrete Mathematics 34 (August 2009): 447–51. http://dx.doi.org/10.1016/j.endm.2009.07.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hoppen, Carlos, Hanno Lefmann, and Knut Odermann. "A rainbow Erdős-Rothschild problem." Electronic Notes in Discrete Mathematics 49 (November 2015): 473–80. http://dx.doi.org/10.1016/j.endm.2015.06.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Yong-Gao, Jin-Hui Fang, and Norbert Hegyvári. "Erdős–Birch type question inNr." Journal of Number Theory 187 (June 2018): 233–49. http://dx.doi.org/10.1016/j.jnt.2017.10.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hessami Pilehrood, T., and K. Hessami Pilehrood. "On a conjecture of Erdős." Mathematical Notes 83, no. 1-2 (February 2008): 281–84. http://dx.doi.org/10.1134/s0001434608010306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dijkstra, Jan J. "A CRITERION FOR ERDŐS SPACES." Proceedings of the Edinburgh Mathematical Society 48, no. 3 (September 15, 2005): 595–601. http://dx.doi.org/10.1017/s0013091504000823.

Full text
Abstract:
AbstractIn 1940 Paul Erdős introduced the ‘rational Hilbert space’, which consists of all vectors in the real Hilbert space $\ell^2$ that have only rational coordinates. He showed that this space has topological dimension one, yet it is totally disconnected and homeomorphic to its square. In this note we generalize the construction of this peculiar space and we consider all subspaces $\mathcal{E}$ of the Banach spaces $\ell^p$ that are constructed as ‘products’ of zero-dimensional subsets $E_n$ of $\mathbb{R}$. We present an easily applied criterion for deciding whether a general space of this type is one dimensional. As an application we find that if such an $\mathcal{E}$ is closed in $\ell^p$, then it is homeomorphic to complete Erdős space if and only if $\dim\mathcal{E}>0$ and every $E_n$ is zero dimensional.
APA, Harvard, Vancouver, ISO, and other styles
37

Sack, Jörg-Rüdiger, and Jorge Urrutia. "Obituary Paul Erdős (1913–1996)." Computational Geometry 7, no. 4 (March 1997): 205–6. http://dx.doi.org/10.1016/s0925-7721(97)87523-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dijkstra, Jan J., and Jan van Mill. "Negligible sets in Erdős spaces." Topology and its Applications 159, no. 13 (August 2012): 2947–50. http://dx.doi.org/10.1016/j.topol.2012.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dai, Li-Xia, and Hao Pan. "On the Erdős–Fuchs theorem." Acta Arithmetica 189, no. 2 (2019): 147–63. http://dx.doi.org/10.4064/aa170724-11-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lev, Vsevolod F., and Tomasz Schoen. "Cameron-Erdős Modulo a Prime." Finite Fields and Their Applications 8, no. 1 (January 2002): 108–19. http://dx.doi.org/10.1006/ffta.2001.0330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sándor, Csaba. "On a Problem of Erdős." Journal of Number Theory 63, no. 2 (April 1997): 203–10. http://dx.doi.org/10.1006/jnth.1997.2113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fang, Jin-Hui, and Yong-Gao Chen. "On a problem of Erdős." Ramanujan Journal 30, no. 3 (September 26, 2012): 443–46. http://dx.doi.org/10.1007/s11139-012-9407-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Felix, Adam Tyler, and M. Ram Murty. "ON A CONJECTURE OF ERDŐS." Mathematika 58, no. 2 (February 23, 2012): 275–89. http://dx.doi.org/10.1112/s0025579311008205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

De Castro, Rodrigo, and Jerrold W. Grossman. "Famous trails to Paul Erdős." Mathematical Intelligencer 21, no. 3 (September 1999): 51–53. http://dx.doi.org/10.1007/bf03025416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chapman, Scott T., and William W. Smith. "Erdős-Zaks all divisor sets." Periodica Mathematica Hungarica 64, no. 2 (May 24, 2012): 227–46. http://dx.doi.org/10.1007/s10998-012-5026-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chen, Yong-Gao. "On the Erdős–Turán conjecture." Comptes Rendus Mathematique 350, no. 21-22 (November 2012): 933–35. http://dx.doi.org/10.1016/j.crma.2012.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bollobás, Béla. "Paul Erdős at seventy-five." Discrete Mathematics 75, no. 1-3 (May 1989): 3–5. http://dx.doi.org/10.1016/0012-365x(89)90071-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Korevaar, J. "Tauberian Theorem of Erdős Revisited." Combinatorica 21, no. 2 (April 1, 2001): 239–50. http://dx.doi.org/10.1007/s004930100022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dijkstra, Jan J. "Characterizing stable complete Erdős space." Israel Journal of Mathematics 186, no. 1 (November 2011): 477–507. http://dx.doi.org/10.1007/s11856-011-0149-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sun, Yalin, and Lizhen Wu. "Generalization of Erdős-Kac theorem." Frontiers of Mathematics in China 14, no. 6 (December 2019): 1303–16. http://dx.doi.org/10.1007/s11464-019-0808-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography