Contents
Academic literature on the topic 'Erosion du manteau lithosphérique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Erosion du manteau lithosphérique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Erosion du manteau lithosphérique"
Peace, Alexander Lewis, Gillian R. Foulger, Christian Schiffer, and Ken J. W. McCaffrey. "Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?" Geoscience Canada 44, no. 3 (October 6, 2017): 91–102. http://dx.doi.org/10.12789/geocanj.2017.44.120.
Full textLaFlamme, Crystal, Christopher R. M. McFarlane, and David Corrigan. "Neoarchean Mantle-derived Magmatism within the Repulse Bay Block, Melville Peninsula, Nunavut: Implications for Archean Crustal Extraction and Cratonization." Geoscience Canada 42, no. 3 (July 29, 2015): 305. http://dx.doi.org/10.12789/geocanj.2015.42.065.
Full textGreenough, John D., and Kevin MacKenzie. "Igneous Rock Associations 18. Transition Metals in Oceanic Island Basalt: Relationships with the Mantle Components." Geoscience Canada 42, no. 3 (July 29, 2015): 351. http://dx.doi.org/10.12789/geocanj.2015.42.071.
Full textGunnell, Yanni, and Yannick Lageat. "Erosion du manteau d'altération et systèmes agraires dans les terres cristallines des régions tropicales. Quelques indices de stabilité du milieu en Inde du Sud." Cahiers d'outre-mer 51, no. 202 (1998): 113–40. http://dx.doi.org/10.3406/caoum.1998.3683.
Full textSchoonmaker, Adam, William S. F. Kidd, and Tristan Ashcroft. "Magmatism and Extension in the Foreland and Near-Trench Region of Collisional and Convergent Tectonic Systems." Geoscience Canada 43, no. 3 (September 30, 2016): 159. http://dx.doi.org/10.12789/geocanj.2016.43.100.
Full textVan Staal, Cees R., Dave M. Chew, Alexandre Zagorevski, Vicki McNicoll, James Hibbard, Tom Skulski, Sébastien Castonguay, Monica P. Escayola, and Paul J. Sylvester. "Evidence of Late Ediacaran Hyperextension of the Laurentian Iapetan Margin in the Birchy Complex, Baie Verte Peninsula, Northwest Newfoundland: Implications for the Opening of Iapetus, Formation of Peri-Laurentian Microcontinents and Taconic – Grampian Orogenesis." Geoscience Canada 40, no. 2 (August 24, 2013): 94. http://dx.doi.org/10.12789/geocanj.2013.40.006.
Full textMurphy, J. Brendan, R. Damian Nance, Logan B. Gabler, Alexandra Martell, and Douglas A. Archibald. "Age, Geochemistry and Origin of the Ardara Appinite Plutons, Northwest Donegal, Ireland." Geoscience Canada, March 29, 2019, 31–48. http://dx.doi.org/10.12789/geocanj.2019.46.144.
Full textDissertations / Theses on the topic "Erosion du manteau lithosphérique"
Le, Roux Véronique. "Interactions magma-roche et déformation en présence de magmas dans les péridotites de Lherz : implications pour l'évolution structurale, chimique et isotopique du manteau lithosphérique." Montpellier 2, 2008. http://www.theses.fr/2008MON20113.
Full textSautter, Violaine. "Le clinopyroxène alumineux : la mémoire chimique du manteau supérieur lithosphérique." Paris 11, 1989. http://www.theses.fr/1989PA112403.
Full textRadu, Ioana Bogdana. "Xenolites éclogitiques cratoniques - Origine et évolution du manteau lithosphérique sous-continental." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES004/document.
Full textThis study is based on the most complete existing collection of cratonic eclogites (> 180 nodules), from the Siberian and South African cratons. Non-metasomatized Type IIA eclogites are typically more magnesian, LREE-enriched, with δ18O values of 3.7-7.5 ‰, positive Sr anomalies and corresponding to a low pressure-temperature (PT) layer. The whole-rock composition is consistent with a basaltic protolith. Type IIB eclogites are morsodic and aluminous, LREE-depleted, with δ18O values of 2.3-3.6‰, corresponding to equilibrium at high-PT. The whole-rock trace element composition is consistent with a pyroxenitic protolith. Coesite, kyanite and corundum-bearing eclogites ypically have jadeite-rich clinopyroxenes witlpositive Eu and Sr anomalies and grossular-rich gamets with corresponding positive Eu and negative Sr anomalies. PT-estimates indicate coe-kycor-bearing eclogites equilibrated in the lowermost part of the cratonic keel and reconstructed whole-rock trace element composition corresponds to a very depleted gabbroic protolith. This is consistent with the subduction of a hydrothermally altered, basaltic to websteritic sequence of an incompatible-element-depleted oceanic crust.Calculated water content of omphacite is a minmum estima te of ~930-1410 ppm by weight H2O and reconstructed estimates for whole-rock watercontent ~310-890 ppm HO) for the Obnazhennaya eclogites are significantly higher than those of the surrounding peridotites. Thus, mantle eclogite may be an important water reservoir at the base of the cratonic root, with major consequences for cratonic keel, longevity mantle rheology and global water cvcle
Escario, Perez Sofia. "Flux hydrothermaux dans le manteau lithosphérique : étude expérimentale du processus de serpentinisation." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTG030/document.
Full textThe hydrothermal alteration of the mantle lithosphere at mid-ocean ridges provides a mechanism for transferring heat and mass between the deep Earth and the overlaying ocean. The mantle lithosphere is constituted by ultramafic rocks, also called Peridotites. They comprise more than 70% of olivine, associated pyroxenes and minor mineral phases. The percolation of seawater into the ultramafic basement produces the alteration of olivine and pyroxenes to serpentine through the so-called serpentinization process and is associated to oxidation and carbonation reactions, the later when CO2 is present. The serpentinization process has special interest on H2 production, CO2 storage, development of life, and the production of economically valuable ore-deposits concentrated at hydrothermal vents. The sustainability and efficiency of the reactions requires penetration and renewal of fluids at the mineral-fluid interface. Oceanic detachment faults and fractures are the highly permeable zones allowing seawater derived fluids to penetrate deeply into the mantle lithosphere. However, the serpentinization process lead to the precipitation of low density minerals that can fill the porous network, clogging flow paths efficiently that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks.This PhD thesis aims at better understanding the feedback effects of chemical reactions on the hydrodynamic rock properties occurred on highly permeable zones during the earliest stages of alteration of the ultramafic basement. It focuses in particular on the changes in texture and chemical reaction paths of ultramafic rocks by assessing the effects of (i) flow rate and (ii) CO2-rich saline fluids. Two suite of reactive percolation experiments were performed at T=170-190°C and P=25MPa. The first suite of experiments consisted in injecting artificial seawater into porous compressed olivine powder cores over a wide range of constant flow rates. X-Ray µ-tomography of high resolution was acquired before and after the experiment run with high flow rates; in order to evaluate the micro-structural changes of the rock occurred during the serpentinization reaction. The second suite of experiments consisted in injecting CO2-rich saline fluids into peridotite cores mechanically fractured.The results allowed us to differentiate: (1) That, a control of flow infiltration rate at the pore-scale can control the local fluid compositions and the development of different reaction paths at the sample-scale. (2) The development of different reaction paths and textural changes in the rock depends on the concentration of CO2 dissolved in solution. (3) The formation of carbonate minerals (MgCO3) can store CO2 in a form of stable mineral at long-term. (4) A control of the concentration of dissolved CO2(g) and the fracture network can enhance/limit the efficiency of CO2-storage in peridotite fractured reservoirs.These new supporting data suggest a complex control of the structure of the ultramafic rocks in serpentinization process and provides new insights for the potential CO2-storage in peridotite fractured reservoirs
Kourim, Fatna. "Architecture lithosphérique et dynamique du manteau sous le Hoggar : le message des xénolites." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20040.
Full textThis study aims to characterize the lithospheric mantle of the Hoggar swell (Algeria) and its evolution through time via a multidisciplinary (petrological, geochemical and petrophysical) study of mantle xenoliths sampled by Cenozoic volcanism. The samples were collected in two volcanic districts (Tahalagha and Manzaz) located in the periphery and in the central part of the Hoggar massif, respectively. The Tahalgha sampling also straddles a mega pan-African shear zone (the 4°35 fault) between two major structural domains of the Tuareg Shield basement: the Central Polycyclic Hoggar to the East (LATEA terranes) and the Western Hoggar domain to the West (Iskel block). The studied xenoliths provide information on the evolution of the lithospheric mantle from the Pan-African orogeny – i.e. the period when the Tuareg Shield was structured – to the Cenozoic events responsible for topographic upwelling and volcanism in the Hoggar swell.The Pan-African heritage is found in xenoliths from the peripheral Tahalgha district. These samples are distinguished by low equilibrium temperatures (750-900°C) and LREE-depleted clinopyroxene compositions. They are considered to represent the sub-continental lithosphere after the rejuvenation process that marked the later stages of the Pan-African orogeny. They show well preserved deformation textures (porphyroclastic to equigranular) assigned to these events and characterized by preferential crystallographic orientations (CPOs) of olivine (axial-[010]) consistent with a transpressional regime. The Cenozoic events are marked by partial annealing of these textures, particularly pronounced in the Manzaz samples, as well as in the Tahalgha xenoliths equilibrated at medium to high temperatures (900-1150°C). These samples were affected by different degrees of metasomatism. The Tahalgha xenoliths represent a rather unique case study of mantle metasomatism, where coupled textural, mineralogical and chemical variations occur along local temperature gradients. The Cenozoic events were also responsible for a change in olivine CPOs, resulting from both infiltration of metasomatic fluids and reactivation of Pan-African accidents in a pure-shear regime.Important implications of this study lie in the scale at which the first-order lithosphere modifications ascribed to the Cenozoic event are observed, i.e. either at the scale of the whole Hoggar swell, as shown by the increasing degree of textural annealing and metasomatism from Tahalgha to Manzaz (i.e. from outer to central Hoggar), or at the small scale of magma conduits and their wall rocks, as shown by the local variability registered by the Tahalgha xenoliths. Conversely, our data show little changes at intermediate scales, as might be expected, for instance, among the Tahalgha localities situated on either sides - or at different distances - from the 4°35. As regards the origin of the Hoggar volcanic swell, this result favours the models involving relatively large-scale structures such as a mantle plume or "Edge Driven Convection", rather than a process involving merely the reactivation of pan-African lithospheric faults
Thieme, Manuel. "Résistance visqueuse et frictionnelle du manteau lithosphérique : caractérisation microstructurale de l'olivine polycristalline déformée expérimentalement." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTG061/document.
Full textConvection in Earth’s mantle is the major driving force behind the movement of tectonic plates. While the lower parts of the upper mantle deform in a ductile way, the plates themselves are rheologically more rigid than the asthenosphere beneath. To understand how convection yields tectonic plates, it is vital to quantify the viscous and frictional strength of the lithospheric mantle. Yet to date, the rheology of the uppermost mantle just below the Mohorovicic discontinuity is still poorly understood. Furthermore, the early stages of visco-plastic deformation at intermediate temperatures (600 – 1000 °C) relevant of the lithospheric mantle are not well documented or quantified. In the past, most deformation experiments were performed at high temperatures (> 1200 °C). To provide accurate mechanical values for the lithospheric mantle, we need mechanical data but also a characterization of the associated microstructure to understand the deformation mechanisms at play during permanent deformation of olivine-rich rocks. In this thesis, I have performed deformation experiments in axial compression using a Paterson press (at Géosciences Montpellier, University of Montpellier, France) at high pressure and temperature (300 MPa, 1000 -12000 °C) and in torsion using a low to high velocity rotary shear frictional testing machine (Rock Mechanics Laboratory, Durham University, UK) at room pressure and temperatures. The recovered samples were characterized using scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. After an introduction chapter where the state-of-the-art is detailed, and a chapter focusing on experimental and analytical methods used during scientific projects, the thesis is organized as three subsequent chapters, each of them corresponding to three scientific articles: one is published (1) Stress evolution and associated microstructure during transient creep of olivine at 1000-1200 °C (Phys. Earth Planet. Int., doi: 10.1016/j.pepi.2018.03.002.); and the two others are in preparation, (2) Disclination density in polycrystalline olivine experimentally deformed at 1000 °C and 1200 °C; and (3) Shear deformation of nano- and micro-crystalline olivine at seismic slip rates. Chapter III has shown that the observed mechanical hardening can not come from a simple increase in dislocation density (e.g., entanglement) and that other mechanisms must be at play to compensate for the limitations of dislocation slip. For the first time, in chapter IV the densities of geometrically necessary dislocations (GND, translational defects) and disclinations (rotational defects) are quantified on a series of rocks deformed at different temperatures, finite strains and stress levels. No correlation has been identified between disclination density and stress, strain or GND. The role of the disclinations will therefore be limited to migration at grain boundaries, which may be sufficient to unblock dislocations in the polycrystalline olivine aggregate. In chapter V, torsion experiments confirmed the negligible effect of grain size (olivine from 0.07 to 70 μm) on the drastic decrease of the coefficient of friction, but the characterization of the samples did permit to shed light on the main mechanism of deformation. Thanks to an experimental approach and up-to-date material characterization, this thesis permitted better characterization of the brittle-ductile transition of a fine-grained dunite-type rock subjected to permanent deformation at uppermost mantle temperatures
Mameri, Calcagno de Oliveira Lucan. "Localisation de la déformation intraplaque due à l'anisotropie visqueuse de l'olivine dans le manteau lithosphérique." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTG008.
Full textThe generation of earth-like plates implies efficient strain localization in the lithosphere for long times-spans. In this thesis, I quantified the contribution of viscous anisotropy due to crystal preferred orientations (CPO) of olivine in the lithospheric mantle on strain localization and deformation at the plate- scale. First, I performed numerical experiments using viscoplastic self- consistent polycrystal plasticity models to evaluate the magnitude and controlling parameters of olivine-induced viscous anisotropy at the rock- scale and compared their predictions to experimental data to validate the model results. Then a parameterization based on these models has been developed and implemented in a 3D geodynamical code to study structural reactivation associated with fossil shear zones and the possible role of viscous anisotropy on the development of linear seismicity in intraplate settings.The results show that activation of secondary mechanism at the rock scale greatly contributes to reducing the extent of viscous anisotropy in mantle rocks. The imposed boundary conditions are an important parameter regulating the CPO-induced viscous anisotropy at both rock- and plate scale. The presence of olivine CPO in the lithospheric mantle lead to strong directional dependence of the strain localization in fossil mantle shear zones, which, If well oriented to be reactivated, it induces strain localization in the entire lithosphere
Pezzali, Irene. "Composition et évolution du manteau lithosphérique nord-africain : évidences pétrologiques et géochimiques à partir des enclaves de manteau échantillonnées par le volcanisme cénozoïque intraplaque du Moyen Atlas (Maroc)." Thesis, Brest, 2013. http://www.theses.fr/2013BRES0065/document.
Full textThe Ph.D. study is aimed at characterising the composition of pyroxenite xenoliths brought to the surface by Cenozoic intraplate volcanism in the Azrou Timahdite district of Middle Atlas (Morocco) to unravel their origin and significance in the frame of the geodynamic evolution of the North Africa lithospheric mantle. The interpretations are based on a petrological approach and on reliable geochemical information at both bulk rock and mineral scale. The data are used to address a largely debated and crucial issue, namely whether pyroxenites do represent ancient magmatic events or section of subducted crust recycled into the lithospheric mantle. The geochemical data revealed that the Middle Atlas pyroxenites formed through different processes: 1 – recycling of older oceanic crust in the lithospheric mantle; 2 – reactions between mantle melt and older mafic layers; 3 – magmatic crystallization from enriched melts at mantle depth. In an overall geodynamic scenario, the origin and age of the pyroxenites interpreted as fragments of recycled oceanic crust and as products of melt-Rock interaction processes are not completely understood. By analogy with Ronda and Beni Bousera these pyroxenites could represent old mafic rocks that have been isolated in the subcontinental lithospheric mantle for very long time spans. The fragments of oceanic material and the crustal components recorded by pyroxenites may be tentatively related to subduction processes occurred during Pan-African times. If so, these pyroxenites maintained for long time their pristine geochemical signatures without marked changes
Baptiste, Virginie. "Stabilité et érosion du manteau lithosphérique subcontinental : Relations entre déformation, hydratation et percolation de fluides et magmas sous le craton du Kaapvaal et le Rift Est-Africain." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20139/document.
Full textThis study provides additional constraints on the relations between deformation, hydration and percolation of fluids and melts in the subcontinental lithospheric mantle beneath a craton and a rift, as well as their implication on its geodynamical behaviour. I have analysed the microstructures, the CPOs, and the hydrogen content of mantle xenoliths from the Kaapvaal craton, and two sets of xenoliths from different localities along the East African Rift (North Tanzanian Divergence and SE Ethiopia). The coarse-granular microstructures and the well-defined CPOs in Kaapvaal peridotites suggest a deformation followed by a long quiescence time. Orthorhombic olivine CPOs predominates, but axial-[100] and axial-[010] are also measured. Cratonic peridotites record multiple metasomatic episodes, leading to a significant compositional heterogeneity, which cannot be imaged by seismic studies. Olivine hydrogen contents are variable, but tend to increase until 150 km depth, reaching up to 50 ppm wt. H2O. The deeper samples are almost dry. Piston-cylinder experiments on hydrogen diffusion between a volatile-rich kimberlitic melt and forsterite suggest that the presence of CO2 in the system could significantly decrease water fugacity and thus forsterite hydration. These experimental results indicate that the hydrogen contents measured in olivine were acquired during a metasomatic event rather than during xenolith extraction by kimberlites. However, this metasomatism was not followed by remobilization of the cratonic root. In the North Tanzanian Divergence, localities within the rift axis and the volcanic transverse belt (Lashaine and Olmani) show significant differences in microstructures and olivine CPO patterns. In Lashaine, coarse-granular microstructures and orthorhombic to axial-[100] CPO patterns in olivine can be explained by transpressional deformation during the formation of the Mozambique belt, or by the occurrence of a remnant of a cratonic domain embedded within the Mozambique belt. Within the rift axis, porphyroclastic to mylonitic microstructures suggest a recent rift-related deformation accompanied by syn-kinematic melt-rock reactions, and followed by variable annealing. The strong heterogeneity in microstructures and olivine CPO suggests that this deformation was acquired during multiple tectonic events probably linked to episodic magma percolation, separated by quiescence episodes. The axial-[100] patterns in olivine and the oblique fast directions reported by SKS studies are coherent with transtensional deformation within the lithospheric mantle beneath the rift. The peridotites from SE Ethiopia are less recrystallized than the rift-axis Tanzanian peridotites, displaying coarse-porphyroclastic microstructures. Microstructures and orthorhombic CPOs in olivine suggest syn- to post-metasomatic deformation. S-waves polarization anisotropies calculated for these samples cannot explain alone the delay times reported by SKS studies in this part of the East-African Rift
Dantas, Céline. "Caractérisation du manteau supérieur patagonien : les enclaves ultramafiques et mafiques dans les laves alcalines." Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00163376.
Full text