Dissertations / Theses on the topic 'Espace de Sobolev à poids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 46 dissertations / theses for your research on the topic 'Espace de Sobolev à poids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Raudin, Yves. "Espaces de Sobolev avec poids et problèmes elliptiques non homogènes dans le demi-espace." Phd thesis, Université de Pau et des Pays de l'Adour, 2007. http://tel.archives-ouvertes.fr/tel-00260327.
Full textGALA, Sadek. "Opérateurs de multiplication ponctuelle entre espace de Sobolev." Phd thesis, Université d'Evry-Val d'Essonne, 2005. http://tel.archives-ouvertes.fr/tel-00009577.
Full textBonzom, Florian. "Problèmes elliptiques en domaines non bornés: une approche dans des espaces de Sobolev avec poids." Phd thesis, Université de Pau et des Pays de l'Adour, 2008. http://tel.archives-ouvertes.fr/tel-00345851.
Full textMascré, David. "Inégalités de Hardy-Littlewood-Sobolev et inégalités à poids sur les espaces métriques mesurés." Cergy-Pontoise, 2005. http://www.theses.fr/2005CERG0228.
Full textVaudène, Renée. "Espaces de Sobolev généralisés de type orlicz ou à poids : densité, immersion continue, interpolation de Lagrange." Perpignan, 1985. http://www.theses.fr/1985PERP0005.
Full textBonzom, Florian Fabien Jean-Marc Amrouche Cherif. "Problèmes elliptiques en domaines non bornés une approche dans les espaces de Sobolev avec poids /." Pau : université de Pau et des Pays de l'Adour, 2008. http://tel.archives-ouvertes.fr/docs/00/34/58/51/PDF/these_bonzom.pdf.
Full textBonzom, Florian Fabien Jean-Marc. "Problèmes elliptiques en domaines non bornés : une approche dans les espaces de Sobolev avec poids." Pau, 2008. http://tel.archives-ouvertes.fr/docs/00/34/58/51/PDF/these_bonzom.pdf.
Full textThe aim of this PhD thesis is the resolution of elliptic problems in several unbounded domains. First, we study the Laplace operator in an exterior domain with nonhomogeneous and mixed boundary conditions and next in an exterior domain in the half-space with Dirichlet, Neumann and mixed boundary conditions. Then, we consider the Stokes problem in three different unbounded geometries: an exterior domain in the half-space, a perturbed half-space and an aperture domain. We give, for these problems, existence and uniqueness fundamental results in Lp's theory (with p strictly greater than 1 and strictly less than the infinity) in the functional framework of weighted Sobolev spaces. Moreover, we are also interested in strong solutions (particularly with regularity results) and in very weak solutions
Melouah, Kamel. "Espaces de Sobolev à poids et leurs applications à des problèmes elliptiques linéaires et non linéaires dans des domaines non bornés." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376162504.
Full textMelouah, Kamel. "Espaces de sobolev a poids et leurs applications a des problemes elliptiques lineaires et non lineaires dans des domaines non bornes." Orléans, 1988. http://www.theses.fr/1988ORLE2011.
Full textKneib, Jean-Marie. "Études mathématiques et numériques d'équations de Schmoluchowski." Paris 11, 1989. http://www.theses.fr/1989PA112250.
Full textThe aim of this work is to study mathematically and numerically (with particle methods) some Fokker-Planck equations. Two cases will be treated : the markovien case (the model does not have memory effects) and a non-markovien case (the model has memory effects). In the first section (Markovien Schmoluchowski equations) we show that the convexion-diffusion problem is well posed and we apply a particle method with variable weights. The second section (model with time memory) studies an integro-differential equation which can be treated as a symetrisable hyperbolic system. We prove that the problem is well posed and that we can come back to the cases treated in part one. In the one dimensional space case, the particle method uses two systems of particles which move along the two characteristics of the hyperbolic problem. This algorithm is convergent. If the space dimension is greater than one, the numerical algorithm is a splitting one. In each step of the split, we use the particle method described in the scalar case. This algorithm is convergent. Numerical studies are done
Razafison, Ulrich Jerry. "Théorie L(p) avec poids pour les équations d'Oseen dans les domaines non bornés." Phd thesis, Mathématiques appliquées, 2004. http://www.theses.fr/2004PAUU3012.
Full textThis thesis is devoted to the study of the Oseen equations in unbounded domains. The Oseen model is a linearized version of the Navier-Stokes equations describing the flow of a viscous and incompressible fluid past a bounded body. To describe the behavior at infinity of solutions and to take into account the paraboloidal region, the so-called wake, which appears behind the body during the flow, we choose to set the problem in a functional framework which uses anisotropic weights. In a first step, we prove density results and Hardy inequalities. In a second step, we prove existence, uniqueness and regularity of solutions. The results are first established in the whole space, then in an exterior domain
Meslameni, Mohamed. "Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3002/document.
Full textIn this work, we study the linearized Navier-Stokes equations in an exterior domain or in the whole space at the steady state, that is, the Stokes equations and the Oseen equations. We give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated. We consider not only the Dirichlet boundary conditions but also the Non Standard boundary conditions, on some components of the velocity field, vorticity and also on the pressure. Since the domain is not bounded, the classical Sobolev spaces are not adequate. Therefore, a specific functional framework is necessary which also has to take into account the behaviour of the functions at infinity. Our approach rests on the use of weighted Sobolev spaces
Bienaimé, Pierre-Yves. "Existence locale et effet régularisant précisés pour des équations de type Schrödinger." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=2a707556-7e43-4293-a4ef-d92c9427fd70.
Full textIn this paper, we consider the Cauchy problem in the usual Sobolev spaces for some nonlinear equations of the form [Formule non transposable] : that is, equations which are of Schrödinger type. We study the local existence and the smoothing effect of the solutions, following C. E. Kenig, G. Ponce and L. Vega, and extend some of their results. The nonlinearity F is a smooth function which vanishes to the 3rd order at 0 and the operator L has the form [Formule non transposable] : It extends the Laplace operator but is not elliptic in general. We prove the local existence, the uniqueness and the smoothing effect given any [Formule non transposable] : The proof follows the same plan as that of C. E. Kenig, G. Ponce and L. Vega, Inventiones Matematicae, 1998. We improve the estimates by using the paradifferential calculus of J. -M. Bony
Obeid-El, Hamidi Amira. "Sur une équation elliptique non linéaire dégénérée." Phd thesis, Université de Pau et des Pays de l'Adour, 2002. http://tel.archives-ouvertes.fr/tel-00002263.
Full textAriche, Sadjiya. "Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure." Thesis, Valenciennes, 2015. http://www.theses.fr/2015VALE0015/document.
Full textIn this thesis, we study the regularity of elliptic problems (Laplace, Helmholtz) or parabolic problems (heat equation) with measure data in different geometric frames. Thus, we consider for the second members, Dirac masses at a point, on a line, on a half-line, or on a bounded segment, and also on a regular curve. As the solutions of these problems are singular on the fracture (modeled by Dirac mass in the second member), we study their regularity in weighted Sobolev spaces. In the case of a straight fracture, using Fourier or Mellin technique reduces the problem in dimension three to a Helmholtz problem in dimension two. For the latter, we prove uniform estimates, which are then used to apply the inverse transform and to obtain the expected regularity result. Similarly, the Laplace transformation transforms the heat equation into the same Helmholtz equation in 2D. In the case of a smooth curve fracture, thanks to the results of [D'angelo:2012], using a localization argument and a dyadic recovery we get an improved smoothness of the solution always in weighted Sobolev spaces
Kaliche, Keltoum. "Méthode des éléments finis inversés pour des domaines non bornés." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV014.
Full textInverted finite element method (IFEM) is a non runcature method which was introduced for solving partial differential equations in unbounded domains. The objective of this thesis is to analyze, to adapt and to implement IFEM for solving several problems arising in physics, especially when the domain is the whole space R3. We first give a presentation in which we detail the principles and the main features of the method. Then, we adapt IFEM for solving some div-curl systems and vector potential problems in the whole space. In a second part, we successfully develop an IFEM based approach for computing the stray-field energy in micromagnetism. In the last part, we are interested in the study of the polarizable continuum model arising in quantum chemistry. The manuscript contains a large number of numerical results obtained with some 3D codes, especially when the domain is the whole space R3. It also contains some theoretical results in relation with weighted Sobolev spaces. We give in particular a constructive proof of some div-curl inequalities in unbounded domains
Salloum, Zaynab. "Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0017/document.
Full textIn this PHD thesis, we study three problems for viscoelastic flows of Oldroyd type. First, we study steady flows of slightly compressible in a bounded domain with non-zero velocities on the boundary ; the pressure and the extra-stress tensor are prescribed on the part of the boundary corresponding to entering velocity. This causes a weak singularity in the solution at the junction of incoming and outgoing flows. We also study the problem of steady flows of slightly compressible fluids with zero boundary conditions in a domain with an isolated corner point. Using a method of fixed point (first and second problems) and a Helmoltz decomposition (second problem), we show some results of existence and uniqueness of solutions. In the last part, we study the case of a non-steady flow : we show some results of local and of global existence, with sufficiently small initial data, for compressible flows. The zero-Mach number limit is also established
Salloum, Zaynab. "Étude mathématique d'écoulements de fluides viscoélastiques dans des domaines singuliers." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00461675.
Full textPozzi, Élodie. "Propriétés spectrales et universalité d’opérateurs de composition pondérés." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10186.
Full textIn this thesis, we study classes of weighted composition operators on several functional spaces in the background of the invariant subspace problem. This important open problem asks the question of the existence for every operator, defined on a complex and separable infinite dimensional Hilbert space, of a non trivial closed subspace invariant under the operator. The first part is dedicated to the establishment of the spectrum and the characterization of cyclic vectors of a special weighted composition operator defined on L^2([0,1]^d) : the Bishop type operator, introduced as possible counter-example of the invariant subspace problem. The second, third and fourth part approach the problem from the point of view of universal operators. More precisely, universal operators have the universal property in the sense of the complete description of all the invariant subspaces of a universal operator could solve the invariant subspace problem. A sufficient condition for an operator to be universal (Caradus’theorem) is given in terms of spectral properties. To this aim, we establish ad-hoc spectral properties of a class of weighted composition operators on L^2([0,1]) and Sobolev spaces of order n, of composition operator in the Hardy space of the unit disc and of the upper half-plane, which lead us to deduce universality results. We also obtain a generalization of the universality criteria mentioned above. In the last part, we give a characterization of invertible composition operators and a partial characterization of composition operators on the Hardy space of the annulus
Al, Taki Bilal. "Sur quelques modèles hétérogènes en mécanique des fluides." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM057/document.
Full textThis thesis is devoted to the mathematical analysis of heterogeneous models raised by fluid mechanics. In particular, it is devoted to the theoretical study of partial differential equations used to describe the three main models that we present below.Initially, we are interested to study the motion of a compressible newtonienfluids in a basin with degenerate topography. The mathematical model studied derives from incompressible Navier-Stokes equations. We are interested to prove that the Cauchy problem associated is well posed. Well-posedness means that there exists a solution, that it is unique. In the meantime, we prove that the solution of the viscous model converges to the one of the inviscid limit model when the viscosity coe cient tends to zero.The second part in my thesis is devoted to study a model that arises from dispersive Navier-Stokes equations (that includes dispersive corrections to the classical compressible Navier-Stokes equations). Our model is derived from the last model assuming that the Mach number is very low. The obtained system is a Ghost eect system, which is so named because it can be derived from Kinetic theory. The main goal of this part is to extend a result concerning the local existence of strong solution to a global-in time existence of weak solutions. The main ingredient in this work is a new functional inequality of Log-Sobolev type.The last part of my thesis is a part of a research theme intends to analyze the understanding of phenomena encountered in geophysics which involves granular media. The mathematical model is of Bingham incompressible type with viscosity and placticity depending on the pressure. We provide a global existence of weak solutions of the Cauchy problem associated
Marcati, Carlo. "Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS349.
Full textIn this thesis, we study elliptic eigenvalue problems with singular potentials, motivated by several models in physics and quantum chemistry, and we propose a discontinuous Galerkin hp finite element method for their solution. In these models, singular potentials occur naturally (associated with the interaction between nuclei and electrons). Our analysis starts from elliptic regularity in non homogeneous weighted Sobolev spaces. We show that elliptic operators with singular potential are isomorphisms in those spaces and that we can derive weighted analytic type estimates on the solutions to the linear eigenvalue problems. The isotropically graded hp method provides therefore approximations that converge with exponential rate to the solution of those eigenproblems. We then consider a wide class of nonlinear eigenvalue problems, and prove the convergence of numerical solutions obtained with the symmetric interior penalty discontinuous Galerkin method. Furthermore, when the non linearity is polynomial, we show that we can obtain the same analytic type estimates as in the linear case, thus the numerical approximation converges exponentially. We also analyze under what conditions the eigenvalue converges at an increased rate compared to the eigenfunctions. For both the linear and nonlinear case, we perform numerical tests whose objective is both to validate the theoretical results, but also evaluate the role of sources of errors not considered previously in the analysis, and to help in the design of hp/dG graded methods for more complex problems
Vigneron, Francois. "Localisation et décroissance des champs de la mécanique des fluides et des plasmas. Espaces fonctionnels associés à une famille de champs de vecteurs." Phd thesis, Ecole Polytechnique X, 2006. http://tel.archives-ouvertes.fr/tel-00136144.
Full textLa seconde partie est consacrée à l'étude des espaces de Sobolev associés à une famille de champs de vecteurs, de type sous-elliptique. Les principaux résultats sont la description des régularités fractionnaires avec la distance de Carnot, la démonstration d'inégalités de Hardy et, dans le cas du groupe de Heisenberg, la théorie des traces sur une hypersurface caractéristique générique.
Dhifaoui, Anis. "Équations de Stokes en domaine extérieur avec des conditions aux limites de type Navier." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD009.
Full textIn this manuscript, we study the three-dimensional stationary Stokes equations set in a exterior domain. The problem describes the flow of a viscous and incompressible fluid past a bounded obstacle. The distinctif feature here relies on the fact that the obstacle is assumed to a rough boundary. As a result, the fluid may slip on the boundary of the obstacle and, to take into account this property, we use the Navier boundary conditions. On the one hand, They model the impermeability of the obstacle, and on the other hand, the fact that the tangential component of the fluid velocity on the obstacle is proportional to the stress tensor. This problem has been well studied when set in a bounded domain. The standard Sobolev spaces provides, in this case, an adequate functional framework for a complete study. Since in our case, the domain is unbounded, these spaces are not adapted since it is necessary to describe the behaviour of the solutions to infinity. Therefore, we choose to set the problem in weighted Sobolev spaces where the weights describe the behaviour at infinity of the function (growth or decay).In this work, we first start by performing the mathematical analysis in the Hilbert setting. The key point here is to establish variant weighted Korn’s inequalities in order to get the coercivity of the bilinear form associated to the variational formulation. Next, we proved the existence, uniqueness of strong and very weak solutions. Finally, we study the extension of some of thses results to a weightedL^p-theory
Lhiba, Hamdouni Anissa. "Interpolation des espaces fonctionnels dans le cadre du calcul de Weyl Hörmander." Paris 6, 2008. http://www.theses.fr/2008PA066474.
Full textIn this thesis, we introduce Besov spaces Bs,ap,q (ℝⁿ) whose properties generalize the classical Besov spaces. For this, we consider resolution of ℝⁿ x ℝⁿ connected with an appropriate symbol belonging to a certain class S(m,g,g₀) instead of the classical dyadic resolution of ℝⁿ connected with the laplacian symbol. We also establish results of injection of the spaces Bs,ap,q (ℝⁿ) in the Sobolev spaces with weight Lp(m), p> 1, introduced by Beals. On the other hand, we characterize the Besov spaces Bs,ap,q (ℝⁿ) by the real interpolation of the weighted Sobolev spaces. Finally we consider a general Hörmander metric and use the confinement concept introduced by J. -M. Bony and J. -Y. Chemin to study the real interpolated of H (m, g) spaces. Therefore, we define a new family of Besov spaces Λα2,q (m, g)
Melkemi, Khaled. "Orthogonalité des B-splines de Chebyshev cardinales dans un espace de Sobolev pondéré." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00004843.
Full textNguyen, Hoai-Minh. "Nouvelle estimée du degré topologique et caractérisation des espaces de Sobolev." Paris 6, 2007. http://www.theses.fr/2007PA066114.
Full textThis thesis is divided into two part. In the first part, a new estimate for the topological degree is established. An optimal constant in this estimate is also shown. In the second part, some characterizations of Sobolev spaces are presented. By the motivation of these characterizations, some inequalities related to norms of Sobolev spaces are established
Dhuez, Rémi. "ECHANTILLONNAGE POUR LES ESPACESDE FONCTIONS ANALYTIQUES À POIDS." Phd thesis, Université de Provence - Aix-Marseille I, 2005. http://tel.archives-ouvertes.fr/tel-00011164.
Full text$$A_h(\DD)=\{f \text{ holomorphes sur } \DD : \|f\|_h=\sup_{z\in\DD}|f(z)|e^{-h(|z|)}<+\infty\},$$
où le poids $h$ est de classe $C^2$ et $h(r)\to+\infty$ quand $r\to1-$.
Le premier chapitre est consacré au cas des poids à croissance lente. Nous montrons que la stabilité de Möbius de l'échantillonnage n'est pas vérifiée dans $A_h(\DD)$.
Les deux chapitres suivants sont consacrés au cas des poids à croissance rapide. Nous caractérisons les suites d'échantillonnage pour $A_h(\DD)$ en terme de densité.
Tami, Abdelkader. "Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4362/document.
Full textIn this work, we study the family of problems Δ 2uω = fω with boundary conditionuω = Δ uω = 0. There, the second member is assumed to depend smoothly on ω in L2(ω), where ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, is a family of truncated sectors of the plane. If ω < π it is known from Blum et Rannacher (1980) that the solution uω decomposes as uω = u1,ω + u2,ω + u3,ω, (1) where u1,ω, u2,ω are singular and u3,ω is regular. Indeed, near the origin, u1,ω(resp. u2,ω, u3,ω) is of regularity H1+πω−ǫ (resp. H2+πω−ǫ, H4) for every Q > 0, while the solution uπ is, in the neighborhood of the origin again, of regularity H4. One clearly sees a resolution of the singularity near the angle π whose descriptionis the main objective of this work. The obtained result is that there exists a decomposition (1) of uω which is uniform with respect to ω, when ω → π, with the best possible topologies for each term, and which term by term convergestowards the Taylor expansion of uπ near 0
Zein, Ihsan. "Inégalités de Hardy-Littlewood-Sobolev dans certaines régions coniques de l'espace euclidien et du groupe de Heisenberg." Paris 6, 2006. http://www.theses.fr/2006PA066554.
Full textBerdan, Nada El. "Régularité de problèmes à données dans les espaces pondérés par la distance au bord via l'inégalité uniforme de Hopf et le principe de dualité." Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2303/document.
Full textWe discuss the existence and non existence of the so called Hopf uniform Inequality (variant of a maximum principle) for the linear equation Lv = f with measurable coefficients and under the homogeneous Dirichlet Boundary condition. Then we apply such inequality to prove the W1;p 0 -regularity of a semi linear problem Lu = F(u), singular at u = 0, with the coefficients of the main operator of L in the space of vanishing mean oscillation. Moreover, when those coefficients are Lipschitz, we show that the gradient of the solution is at most in the space of bounded mean oscillation : bmor. In the last part of this thesis, we are concerned with the linear easticity system (Stationnary equation of the waves elasticity). But, here the second terms varies with respect to the distance function until the boundary.Using the duality method, we study the regularity of the solution of the elasticity system for the data belonging to various weighted spaces
Guillot, Dominique. "Comportement au bord dans les espaces de Dirichlet avec poids harmoniques et espaces de de Branges-Rovnyak." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27329/27329.pdf.
Full textDemazeux, Romain. "Centres de Daugavet et opérateurs de composition à poids." Phd thesis, Université d'Artois, 2011. http://tel.archives-ouvertes.fr/tel-00684688.
Full textAbbas, Lamia. "Inégalités de Landau-Kolmogorov dans des espaces de Sobolev." Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00776349.
Full textAujol, Jean-François Aubert Gilles. "Contribution à l'analyse de textures en traitement d'images par méthodes variationnelles et équations aux dérivées partielles." [S. l.] : [s.n.], 2004. http://www-sop.inria.fr/dias/Theses/phd-160.pdf.
Full textHan, Bang-Xian. "Analyse dans les espaces métriques mesurés." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090014/document.
Full textThis thesis concerns in some topics on calculus in metric measure spaces, in connection with optimal transport theory and curvature-dimension conditions. We study the continuity equations on metric measure spaces, in the viewpoint of continuous functionals on Sobolev spaces, and in the viewpoint of the duality with respect to absolutely continuous curves in the Wasserstein space. We study the Sobolev spaces of warped products of a real line and a metric measure space. We prove the 'Pythagoras theorem' for both cartesian products and warped products, and prove Sobolev-to-Lipschitz property for warped products under a certain curvature-dimension condition. We also prove the identification of p-weak gradients under curvature-dimension condition, without the doubling condition or local Poincaré inequality. At last, using the non-smooth Bakry-Emery theory on metric measure spaces, we obtain a Bochner inequality and propose a definition of N-Ricci tensor
Estecahandy, Elodie. "Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique." Phd thesis, Université de Pau et des Pays de l'Adour, 2013. http://tel.archives-ouvertes.fr/tel-00880628.
Full textBoattin, Boisdon Madeleine. "Approximation en coordonnées barycentriques généralisées." Toulouse 3, 1988. http://www.theses.fr/1988TOU30005.
Full textAbdelkaled, Houda. "Caractère bien posé probabiliste pour une équation non linéaire faiblement dispersive." Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1075.
Full textWe propose in this thesis to study the propagation of non-linear wavesin the high frequency regime by methods from probability theoryand the theory of partial differential equations. We consider the cubic fractional wave equation, posed on a bounded domain of Euclidean space, with conditionsat the edge periodic. We will show to begin with, on which spaces this problem iswell-posed in Hadamard’s sense using fixed point methods. Then, we're going to proof high frequency instability results that shows thelimit of standard methods. Finally, we will consider building probabilistic measures on the space of the initial data such as in the context of the instability results, a well-posedness form persists, almost surely
Ben, Khalifa Ourida. "Solutions régulières globales d’équations d’évolution de type pseudo-différentiel singulier." Paris 6, 2009. http://www.theses.fr/2009PA066246.
Full textThis thesis is devoted to the study of partial differential equations, which generalize in a certain sense the linear wave equation. We are interested to find second order differential operators defined on Rt+ × Rxn of the form P(t,x,∂t,∂x )= ∂t2 - pn (t,∇x) such that the solution of the wave linear equation with regular Cauchy data, is equal to t times the mean of the initial speed on the unit sphere in Rxn. A classical example is the Kirchhoff formula for the wave equation when n=3. We aim to generalize this example. We consider in the first and the second chapter the cases n=5 et n=2 and we determine the operators pn (t,∇x). We prove the existence of a such family of linear operators called meta-pseudo differential operators which will be study in details in the last chapter
Oru, Frédéric. "Rôle des oscillations dans quelques problèmes d'analyse non-linéaire." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0018.
Full textGhannam, Clara. "Calcul variationnel en restauration et décomposition d'image." La Rochelle, 2009. http://www.theses.fr/2009LAROS276.
Full textThis thesis is devoted to the study of image restoration and decomposition using variational calculus methods and partial differential equations. In chapter 1, after recalling some notions and basic results on image analysis, we present the essential questions that we will treat in the thesis. In chapter 2, we show that minimization problems involving sublinear regularizing terms are ill-posed, in general, although numerical experiments in image processing give very good results. We give a new approach to perform minimization via the Chambolle's algorithm. In chapter 3, we propose an extension of the TV: weighted total variation and extended total variation. Furthermore, we provide an algorothm to perform minimization via the Chambolle's algorithm. In chapter 4 we study a model of restoration and decomposition via nonstandard diffusion. We present a class of nonstandard increasing strictly convex regularization terms, which allows both, existence and uniqueness results. Before closing this chapter effective algorithms, based on projection method, are proposed in the case of scalar and vectorial images. Finally, in the part conclusion and perspectives, we present a restoration model with local constraints. This model was studied by Caselles et al. To remedy the fact that the removed noise by the classical methods contains geometrical information
Dahoumane, Fabien. "Étude de l'approximation hydrostatique de Stokes & d'une équation dégénérée." Phd thesis, Université de Pau et des Pays de l'Adour, 2009. http://tel.archives-ouvertes.fr/tel-00444885.
Full textDeclerck, Gunnar. "Phénoménologie et psychologie du tangible : éléments pour une théorie de la valeur cognitive et pratique de la résistance." Compiègne, 2010. http://www.theses.fr/2010COMP1865.
Full textMan, even though hem ay sometimes dream of being a pure spirit free from all materialconstraints, actually exists as a body in a world which is itself essentially constructed as a spatialized system of bodies ; and in this constructed world features such as resistance, impenetrability, inertia, weight and forces are not accidents or exceptions but the rule. The reflexions presented in this work aim at elucidating on a phenomenological level the relation that man entertains with the tangible aspects of his environment, and the function that this relation plays in the construction of the differents sectors of his existence. The first of the sectors is perception : the opening on an ambient world that is pregnant with organisation and meaning. On the one hand, we shall take into account and conceptualize the way in which the tangibility of the world (the testing experience that the individual can have of resistance of his environment in the frame of a direct bodily relation with that environment, but more generally the understanding that the individual possesses of the very possibility of such a relation) participates in setting up the rationality by which man renders his world intelligible. On the other hand, we shall identify the structures of « subjectivity » (to speak the language of psychology, the structures of cognition) which make possible the specific way in which man constructs his experience and understanding of tangible resistance – whether this resistance is perceived in the context of an actual bodily engagement, or whether it is envisaged « indirectly » in the guise of a « simple » possibility. We shall show here, on the basis of phenomenological analyses as well as elements coming from empirical psychology (experimental psychology as well as neuropsychology), that the relation that ma has with the resistance of his ambient world depends on an opening towards the possible; and that the organisation of the ambient world in the form of a space which can contain material structures, or structures capable of opposing a resistance to the body, depends on a rationality which consists of making phenomena intelligible by interpreting them with reference to those capacities for action and for passion which the body confers on us, to the power that the body provides us with and the constraints to which it submits us. Thus, even though the realm of material things – tangible objects, bodies – functions as an archetype of « presense » and of « being » (indeed, what is more « real » than a body ?), in the last resort it gains its phenomenal character form the fact that it crystallizes for the person who perceives it a stream of virtual possibilities; hence, the here-and-now presence of the « tangible world » is in an essential way indebted to the realm of that which is not actually realized
Aribi, Amine. "Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes." Phd thesis, Université François Rabelais - Tours, 2012. http://tel.archives-ouvertes.fr/tel-00960234.
Full textEl, Safadi Mouhamad. "Application de la décomposition de Littlewood-Paley à la régularité pour des équations cinétiques de type Boltzmann." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00195091.
Full textDans une première partie, nous étudions le cas particulier des molécules Maxwelliennes. Sous cette hypothèse, la structure de l'opérateur de Boltzmann et de sa tranformée de Fourier s'expriment de manière simple. Nous montrons ainsi une régularité globale C^\infty.
Ensuite, nous traitons le cas des sections efficaces générales avec "potentiel dur". Nous nous intéressons d'abord à l'équation de Landau. C'est une équation limite de l'équation de Boltzmann prenant en compte les collisions rasantes. Nous prouvons que toute solution faible appartient à l'espace de Schwartz S. Nous démontrons ensuite une régularité identique pour le cas de l'équation de Boltzmann. Notons que notre méthode s'applique directement pour toutes les dimensions, en signalant que les preuves sont souvent plus simples comparées à d'autres preuves plus anciennes.
Enfin, nous terminons avec l'équation de Boltzmann-Dirac. En particulier, nous adaptons le résultat de régularité obtenu dans le travail de Alexandre, Desvillettes, Wennberg et Villani, en utilisant le taux de dissipation d'entropie relatif à l'équation de Boltzmann-Dirac.
Charron, Philippe. "Théorème de Pleijel pour l'oscillateur harmonique quantique." Thèse, 2015. http://hdl.handle.net/1866/13442.
Full textThe aim of this thesis is to explore the geometric properties of eigenfunctions of the isotropic quantum harmonic oscillator. We focus on studying the nodal domains, which are the connected components of the complement of the nodal (i.e. zero) set of an eigenfunction. Assume that the eigenvalues are listed in an increasing order. According to a fundamental theorem due to Courant, an eigenfunction corresponding to the $n$-th eigenvalue has at most $n$ nodal domains. This result has been originally proved for the Dirichlet eigenvalue problem on a bounded Euclidean domain, but it also holds for the eigenfunctions of a quantum harmonic oscillator. Courant's theorem was refined by Pleijel in 1956, who proved a more precise result on the asymptotic behaviour of the number of nodal domains of the Dirichlet eigenfunctions on bounded domains as the eigenvalues tend to infinity. In the thesis we prove a similar result in the case of the isotropic quantum harmonic oscillator. To do so, we use a combination of classical tools from spectral geometry (some of which were used in Pleijel’s original argument) with a number of new ideas, which include applications of techniques from algebraic geometry and the study of unbounded nodal domains.