Books on the topic 'Espacio de Hilbert'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 books for your research on the topic 'Espacio de Hilbert.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Prugovečki, Eduard. Quantum mechanics in Hilbert space. 2nd ed. Mineola, N.Y: Dover Publications, 2007.
Find full textBohm, Arno. Dirac Kets, Gamow Vectors, and Gel'fand triplets: The rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin. Berlin: Springer-Verlag, 1989.
Find full textCotlar, Mischa. Teoremas espectrales, modelos funcionales y dilataciones de operadores en espacios de Hilbert. Buenos Aires: Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Argentino de Matemática, 1991.
Find full textAn introduction to models and decompositions in operator theory. Boston: Birkhäuser, 1997.
Find full textMethods of Hilbert spaces in the theory of nonlinear dynamical systems. Singapore: World Scientific, 1994.
Find full textNielsen, Torben T. Bose algebras: The complex and real wave representations. Berlin: Springer-Verlag, 1991.
Find full textZemanian, A. H. Realizability theory for continuous linear systems. New York: Dover, 1995.
Find full textV, Zhitarashu N., ed. Parabolic boundary value problems. Basel: Birkhäuser Verlag, 1998.
Find full textVicente, José Luis, Matías Rafti, and Alberto Gustavo Albesa. Matemáticas especiales para fisicoquímicos. Editorial de la Universidad Nacional de La Plata, 2018. http://dx.doi.org/10.35537/10915/70953.
Full textNielsen, Torben T. Bose Algebras: The Complex and Real Wave Representations. Springer, 2014.
Find full textEidelman, Samuil D., and Nicolae V. Zhitarashu. Parabolic Boundary Value Problems (Operator Theory: Advances and Applications). Birkhauser, 1999.
Find full text