Academic literature on the topic 'Espèces réactives de l'oxygène'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Espèces réactives de l'oxygène.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Espèces réactives de l'oxygène"
Bailly, Christophe, Hayat El Maarouf Bouteau, and Françoise Corbineau. "Rôle de la signalisation par les espèces réactives de l'oxygène dans la germination et la levée de dormance des semences." Journal de la Société de Biologie 202, no. 3 (2008): 241–48. http://dx.doi.org/10.1051/jbio:2008025.
Full textFerradini, Christiane. "Espèces activées radicalaires de l'oxygène." Biochimie 68, no. 6 (June 1986): 779–85. http://dx.doi.org/10.1016/s0300-9084(86)80093-1.
Full textMigdal, Camille, and Mireille Serres. "Espèces réactives de l’oxygène et stress oxydant." médecine/sciences 27, no. 4 (April 2011): 405–12. http://dx.doi.org/10.1051/medsci/2011274017.
Full textGardès-Albert, M. "Aspects physico-chimiques des espèces réactives de l’oxygène." Annales Pharmaceutiques Françaises 64, no. 6 (November 2006): 365–72. http://dx.doi.org/10.1016/s0003-4509(06)75331-7.
Full textMassion, Paul, Jean-Charles Preiser, and Jean-Luc Balligand. "Les espèces réactives de l’azote : bénéfiques ou délétères ?" Nutrition Clinique et Métabolisme 16, no. 4 (December 2002): 248–52. http://dx.doi.org/10.1016/s0985-0562(02)00167-x.
Full textParent, Claire, Nicolas Capelli, and James Dat. "Formes réactives de l'oxygène, stress et mort cellulaire chez les plantes." Comptes Rendus Biologies 331, no. 4 (April 2008): 255–61. http://dx.doi.org/10.1016/j.crvi.2008.02.001.
Full textBeaudeux, J. L., J. Peynet, D. Bonnefont-Rousselot, P. Therond, J. Delattre, and A. Legrand. "Sources cellulaires des espèces réactives de l’oxygène et de l’azote." Annales Pharmaceutiques Françaises 64, no. 6 (November 2006): 373–81. http://dx.doi.org/10.1016/s0003-4509(06)75332-9.
Full textRoux, Solène, Nofel Merbahi, and Michel Simon. "Les milieux activés par plasma froid à pression atmosphérique." médecine/sciences 41, no. 1 (January 2025): 40–46. https://doi.org/10.1051/medsci/2024192.
Full textHoarau, E., V. Chandra, P. Rustin, R. Scharfmann, and B. Duvillié. "PO23 Contrôle de la différenciation des cellules bêta pancréatiques par les espèces réactives de l’oxygène." Diabetes & Metabolism 41 (March 2015): A28—A29. http://dx.doi.org/10.1016/s1262-3636(15)30100-2.
Full textMezdour, Hichem, Mourad Hanfer, Ahmed Menad, and Souad Ameddah. "Oxidative stress and its relationship with the emergence of various stomach damages." Batna Journal of Medical Sciences (BJMS) 4, no. 2 (December 31, 2017): 145–48. http://dx.doi.org/10.48087/bjmsra.2017.4204.
Full textDissertations / Theses on the topic "Espèces réactives de l'oxygène"
Brerro-Saby, Christelle. "Espèces réactives de l'oxygène et contrôle sensorimoteur musculaire." Aix-Marseille 2, 2009. http://www.theses.fr/2009AIX20691.
Full textMouret, Jean-François. "Oxydations de l'ADN par des espèces réactives de l'oxygène." Grenoble 1, 1990. http://www.theses.fr/1990GRE10130.
Full textBoufraqech, Myriem. "Implication des espèces réactives de l'oxygène (ROS) dans la radiocarcinogenèse thyroïdienne." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00747797.
Full textSt-Louis, Ronald. "Implication des espèces réactives de l'oxygène dans le contrôle central de l'osmorégulation." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00636859.
Full textDoyen, Denis. "Régulation de l'échangeur Na[+]/[H+] 1 par les espèces réactives de l'oxygène." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ6007.
Full textThe NHE1 Na[+]/H[+] exchanger plays a key role in regulating pH and intracellular volume. Its role is paradoxical during ischemia-reperfusion where its activation causes an overload in sodium and indirectly in calcium which can cause disorders during reperfusion, particularly in excitable tissues such as the heart. This exchanger is regulated by intracellular pH, cell volume and by a multitude of signaling pathways. Several studies and preliminary results have indicated a possible regulation by reactive oxygen species that are produced during ischemia-reperfusion. The objective of this study is to analyze by which mechanisms these reactive oxygen species and in particular the superoxide anion O2.- regulate the activity of NHE1 and to understand which regions and which amino acids of NHE1 are important for this regulation.The activity of NHE1 wild type was measured in the presence of O2.- donors (Menadione) or in inhibition of O2.- production (Diphenyliodonium (DPI) NaDPH oxidase inhibitor). NHE1 activity was quantified by lithium flux as a function of intracellular pH. Menadione thus caused an activation of NHE1 while DPI decreased the activity of NHE1, demonstrating that NHE1 is therefore regulated by O2.-. This activation by Menadione and inhibition by DPI are lost in the Cysless mutant of NHE1 deprived of all its cysteines. Cysteines therefore play a key role in the regulation of NHE1 by O2.-. We then tested the inhibition by DPI on mutants of NHE1 on each of its cysteines, which made it possible to identify more precisely 3 key cysteines in this mechanism.In order to deepen the structural groups of cysteines potentially involved in this regulation, an analysis of possible covalent modifications was carried out including the search for nitrosylation by biotin switch, the search for disulfide bridges by exposure to iodoacetamide, and glutathionylation. This showed the presence of nitrosylation of the cysteines, but no disulphide bridges.At the same time, we observed a very different adhesion and migration profile of cells depending on the type of NHE1 cysteine mutant expressed. We therefore analyzed the expression of adhesion proteins and the binding of NHE1 to the cytoskeleton. By coimmunoprecipitation of NHE1 with the ERM complex (Ezrin/Radixin/Moesin) we showed that the cysteines of this transporter are crucial for its binding to the ERM complex and therefore to cortical actin.This thesis has therefore made it possible to show that the activity of NHE1 is regulated by the superoxide anion O2.- and that this regulation involves certain cysteines of NHE1 that we have identified. We also showed that some of the cysteines of NHE1 are crucial for the interaction with the actin cytoskeleton and play a key role in cell adhesion and migration. All of this work identifies a key connection between the production of reactive oxygen species, the regulation of intracellular pH and motility and adhesion
Sjöberg, Béatrice. "Oxydation des protéines par les espèces réactives de l'oxygène : l'importance de l'environnement protéique." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-01024104.
Full textHoarau, Emmanuelle. "Etude du rôle des espèces réactives de l'oxygène dans le développement du pancréas." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T007.
Full textThe pancreas is an heterogenous gland composed by exocrine tissue, responsible for digestive enzyme secretions, and endocrine tissue, essential for glucose homeostasis. In particular β cells secrete insulin which controls glycemia. Moreover, β cell failure is one of the primary causes of diabetes and this pathology is nowadays considered as the first non infectious worldwide outbreak. There is unfortunately no cure for this disease. Many laboratories are currently improving β cell generation protocols in order to inject those cells into patients. This is the reason why it appears mandatory to be able to identify factors that govern each step of β cell development. The aim of my work was to study the role of the Reactive Oxygen Species (ROS) during pancreatic development. First we found out that the expression of genes coding for antioxidant enzymes was extremely low in embryonic pancreas compared to adult pancreas. This suggested that progenitors could be sensitive to ROS variations. We then showed in vivo using an antioxidant component (NAC) that decreasing ROS level diminishes β cell development. Analysis in vitro allowed us to better describe the role of ROS. Indeed, hydrogen peroxyde favors β cell differentiation by increasing the pro-endocrine marker NGN3 expression in the progenitors. In this process, ROS activate the ERK1/2 signaling pathway. On the contrary, lowering ROS level using both pharmacologic and genetic approaches, decreases β cell differentiation. Our results also point out a role of the mitochondria in this process. Altogether, our data define the effects of ROS on β cell differentiation and open new perspectives to improve protocols of β cell generation
Tulard, Anne. "Implication des espèces réactives de l'oxygène dans la réponse cellulaire à une irradiation." Paris 11, 2004. http://www.theses.fr/2004PA11TO26.
Full textBoufraqech, Myriem. "Implication des espèces réactives de l’oxygène (ROS) dans la radiocarcinogenèse thyroïdienne." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA11T069/document.
Full textRadiotherapy is used alone or in combination with chemotherapy to treat over 50% of cancers. Despite much progress in order to improve the benefit / risk ratio, the radiation causes many side effects. One of the known origins of thyroid cancer is exposure during childhood to ionizing radiation, either accidentally or as a result of external radiation therapy for another disease. The mechanisms by which ionizing radiation causes the appearance of thyroid cancer are numerous and not yet fully known. Ionizing radiations are genotoxic agents that induce DNA damage such as breaks and chromosomal aberrations. Although the mechanisms underlying these effects are not completely understood, it is generally accepted that ionizing radiations induce DNA damage either directly or indirectly by generating reactive oxygen species (ROS). During my PhD, we studied the role of ROS produced during irradiation in the generation of DNA damage in thyroid cells. Our results show that ROS produced after irradiation participate in the formation of RET/PTC1 rearrangements found in 70% of radiation-induced papillary cancers. ROS generated by radiolysis of water have a very short lifetime that limits their diffusion. However, by redox mechanisms, they cause changes at the cellular level, which in turn lead to the activation of ROS generating systems, which include the NADPH oxidases. Our results show that irradiation induces the expression of NADPH oxidase DUOX1 via the secretion of IL-13, several days after exposure to ionizing radiation. Inactivation of DUOX1 by interfering RNAs significantly reduces the DNA damage observed several days after irradiation. These results suggest a role DUOX1 in chronic oxidative stress that contributes to genetic instability
Ramon, Olivier. "Activité du facteur de transcription Sp1 et équilibre glucidique : implication des espèces réactives de l'oxygène." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE18010.
Full textBook chapters on the topic "Espèces réactives de l'oxygène"
SAFIEDDINE, Sarah, and Camille VIATTE. "La chimie réactive de la troposphère." In Satellites pour les sciences de l’atmosphère 2, 149–57. ISTE Group, 2025. https://doi.org/10.51926/iste.9141.ch7.
Full textConference papers on the topic "Espèces réactives de l'oxygène"
Dubuc, A., P. Monsarrat, S. Laurencin-Dalicieux, F. Virard, J. P. Sarrette, N. Merbahi, and S. Cousty. "Application du plasma atmosphérique froid en oncologie : une revue systématique." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603018.
Full text