Dissertations / Theses on the topic 'Estimateur maximum de vraisemblance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Estimateur maximum de vraisemblance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Detais, Amélie. "Maximum de vraisemblance et moindre carrés pénalisés dans des modèles de durée de vie censurées." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/820/.
Full textLife data analysis is used in various application fields. Different methods have been proposed for modelling such data. In this thesis, we are interested in two distinct modelisation types, the stratified Cox model with randomly missing strata indicators and the right-censored linear regression model. We propose methods for estimating the parameters and establish the asymptotic properties of the obtained estimators in each of these models. First, we consider a generalization of the Cox model, allowing different groups, named strata, of the population to have distinct baseline intensity functions, whereas the regression parameter is shared by all the strata. In this stratified proportional intensity model, we are interested in the parameters estimation when the strata indicator is missing for some of the population individuals. Nonparametric maximum likelihood estimators are proposed for the model parameters and their consistency and asymptotic normality are established. We show the efficiency of the regression parameter and obtain consistent estimators of its variance. The Expectation-Maximization algorithm is proposed and developed for the evaluation of the estimators of the model parameters. Second, we are interested in the regression linear model when the response data is randomly right-censored. We introduce a new estimator of the regression parameter, which minimizes a Kaplan-Meier-weighted penalized least squares criterion. Results of consistency and asymptotic normality are obtained and a simulation study is conducted in order to investigate the small sample properties of this LASSO-type estimator. The bootstrap method is used for the estimation of the asymptotic variance
Henkouche, Meriem. "Estimateurs du maximum de vraisemblance dans des processus autorégressifs non-linéaires." Toulouse 3, 1989. http://www.theses.fr/1989TOU30216.
Full textPieczynski, Wojciech. "Sur diverses applications de la décantation des lois de probabilité dans la théorie générale de l'estimation statistique." Paris 6, 1986. http://www.theses.fr/1986PA066064.
Full textTop, Alioune. "Estimation paramétriques et tests d'hypothèses pour des modèles avec plusieurs ruptures d'un processus de poisson." Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1014/document.
Full textThis work is devoted to the parametric estimation, hypothesis testing and goodnessof-fit test problems for non homogenous Poisson processes. First we consider two models having two jumps located by an unknown parameter.For the first model the sum of jumps is positive. The second is a model of switching intensity, piecewise constant and the sum of jumps is zero. Thus, for each model, we studied the asymptotic properties of the Bayesian estimator (BE) andthe likelihood estimator (MLE). The consistency, the convergence in distribution and the convergence of moments are shown. In particular we show that the BE is asymptotically efficient. For the second model we also consider the problem of asimple hypothesis testing against a one- sided alternative. The asymptotic properties (choice of the threshold and power) of Wald test (WT) and the generalized likelihood ratio test (GRLT) are described.For the proofs we use the method of Ibragimov and Khasminskii. This method is based on the weak convergence of the normalized likelihood ratio in the Skorohod space under some tightness criterion of the corresponding families of measure.By numerical simulations, the limiting variances of estimators allows us to conclude that the BE outperforms the MLE. In the situation where the sum of jumps is zero, we developed a numerical approach to obtain the MLE.Then we consider the problem of construction of goodness-of-test for a model with scale parameter. We show that the Cram´er-von Mises type test is asymptotically parameter-free. It is also consistent
Fallaha, Mouna. "Contribution à l'étude asymptotique des estimateurs du maximum de la pseudo-vraisemblance conditionnelle des paramètres de champs de Markov." Pau, 2001. http://www.theses.fr/2001PAUU3018.
Full textCai, Chunhao. "Analyse statistique de quelques modèles de processus de type fractionnaire." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1030/document.
Full textThis thesis focuses on the statistical analysis of some models of stochastic processes generated by fractional noise in discrete or continuous time.In Chapter 1, we study the problem of parameter estimation by maximum likelihood (MLE) for an autoregressive process of order p (AR (p)) generated by a stationary Gaussian noise, which can have long memory as the fractional Gaussiannoise. We exhibit an explicit formula for the MLE and we analyze its asymptotic properties. Actually in our model the covariance function of the noise is assumed to be known but the asymptotic behavior of the estimator ( rate of convergence, Fisher information) does not depend on it.Chapter 2 is devoted to the determination of the asymptotical optimal input for the estimation of the drift parameter in a partially observed but controlled fractional Ornstein-Uhlenbeck process. We expose a separation principle that allows us toreach this goal. Large sample asymptotical properties of the MLE are deduced using the Ibragimov-Khasminskii program and Laplace transform computations for quadratic functionals of the process.In Chapter 3, we present a new approach to study the properties of mixed fractional Brownian motion (fBm) and related models, based on the filtering theory of Gaussian processes. The results shed light on the semimartingale structure andproperties lead to a number of useful absolute continuity relations. We establish equivalence of the measures, induced by the mixed fBm with stochastic drifts, and derive the corresponding expression for the Radon-Nikodym derivative. For theHurst index H > 3=4 we obtain a representation of the mixed fBm as a diffusion type process in its own filtration and derive a formula for the Radon-Nikodym derivative with respect to the Wiener measure. For H < 1=4, we prove equivalenceto the fractional component and obtain a formula for the corresponding derivative. An area of potential applications is statistical analysis of models, driven by mixed fractional noises. As an example we consider only the basic linear regression setting and show how the MLE can be defined and studied in the large sample asymptotic regime
Rey, Clément. "Étude et modélisation des équations différentielles stochastiques." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1177/document.
Full textThe development of technology and computer science in the last decades, has led the emergence of numerical methods for the approximation of Stochastic Differential Equations (SDE) and for the estimation of their parameters. This thesis treats both of these two aspects. In particular, we study the effectiveness of those methods. The first part will be devoted to SDE's approximation by numerical schemes while the second part will deal with the estimation of the parameters of the Wishart process. First, we focus on approximation schemes for SDE's. We will treat schemes which are defined on a time grid with size $n$. We say that the scheme $ X^n $ converges weakly to the diffusion $ X $, with order $ h in mathbb{N} $, if for every $ T> 0 $, $ vert mathbb{E} [f (X_T) -f (X_T^n)]vert leqslant C_f / h^n $. Until now, except in some particular cases (Euler and Victoir Ninomiya schemes), researches on this topic require that $ C_f$ depends on the supremum norm of $ f $ as well as its derivatives. In other words $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Our goal is to show that, if the scheme converges weakly with order $ h $ for such $C_f$, then, under non degeneracy and regularity assumptions, we can obtain the same result with $ C_f=C Vert f Vert_{infty}$. We are thus able to estimate $mathbb{E} [f (X_T)]$ for a bounded and measurable function $f$. We will say that the scheme converges for the total variation distance, with rate $h$. We will also prove that the density of $X^n_T$ and its derivatives converge toward the ones of $X_T$. The proof of those results relies on a variant of the Malliavin calculus based on the noise of the random variable involved in the scheme. The great benefit of our approach is that it does not treat the case of a particular scheme and it can be used for many schemes. For instance, our result applies to both Euler $(h = 1)$ and Ninomiya Victoir $(h = 2)$ schemes. Furthermore, the random variables used in this set of schemes do not have a particular distribution law but belong to a set of laws. This leads to consider our result as an invariance principle as well. Finally, we will also illustrate this result for a third weak order scheme for one dimensional SDE's. The second part of this thesis deals with the topic of SDE's parameter estimation. More particularly, we will study the Maximum Likelihood Estimator (MLE) of the parameters that appear in the matrix model of Wishart. This process is the multi-dimensional version of the Cox Ingersoll Ross (CIR) process. Its specificity relies on the square root term which appears in the diffusion coefficient. Using those processes, it is possible to generalize the Heston model for the case of a local covariance. This thesis provides the calculation of the EMV of the parameters of the Wishart process. It also gives the speed of convergence and the limit laws for the ergodic cases and for some non-ergodic case. In order to obtain those results, we will use various methods, namely: the ergodic theorems, time change methods or the study of the joint Laplace transform of the Wishart process together with its average process. Moreover, in this latter study, we extend the domain of definition of this joint Laplace transform
Du, Roy de Chaumaray Marie. "Estimation statistique des paramètres pour les processus de Cox-Ingersoll-Ross et de Heston." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0299/document.
Full textThe Cox-Ingersoll-Ross process and the Heston process are widely used in financial mathematics for pricing and hedging or to model interest rates. In this thesis, we focus on estimating their parameters using continuous-time observations. Firstly, we restrict ourselves to the most tractable situation where the CIR processis geometrically ergodic and does not vanish. We establish a large deviations principle for the maximum likelihood estimator of the couple of dimensionnal and drift parameters of a CIR process. Then we establish a moderate deviations principle for the maximum likelihood estimator of the four parameters of an Heston process, as well as for the maximum likelihood estimator of the couple of parameters of a CIR process. In contrast to the previous literature, parameters are estimated simultaneously. Secondly, we do not restrict ourselves anymore to the case where the CIR process never reaches zero and we introduce a new weighted least squares estimator for the quadruplet of parameters of an Heston process. We establish its strong consitency and asymptotic normality, and we illustrate numerically its good performances
Zaïdi, Abdelhamid. "Séparation aveugle d'un mélange instantané de sources autorégressives gaussiennes par la méthode du maximum de vraissemblance exact." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE10233.
Full textAbeida, Habti. "Imagerie d'antenne pour signaux non circulaires : bornes de performance et algorithmes." Paris 6, 2006. http://www.theses.fr/2006PA066330.
Full textGassem, Anis. "Test d'ajustement d'un processus de diffusion ergodique à changement de régime." Phd thesis, Université du Maine, 2010. http://tel.archives-ouvertes.fr/tel-00543318.
Full textKengne, William Charky. "Détection des ruptures dans les processus causaux : application aux débits du bassin versant de la Sanaga au Cameroun." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2012. http://tel.archives-ouvertes.fr/tel-00695364.
Full textTelmoudi, Fedya. "Estimation and misspecification Risks in VaR estimation." Thesis, Lille 3, 2014. http://www.theses.fr/2014LIL30061/document.
Full textIn this thesis, we study the problem of conditional Value at Risk (VaR) estimation taking into account estimation risk and model risk. First, we considered a two-step method for VaR estimation. The first step estimates the volatility parameter using a generalized quasi maximum likelihood estimator (gQMLE) based on an instrumental density h. The second step estimates a quantile of innovations from the empirical quantile of residuals obtained in the first step. We give conditions under which the two-step estimator of the VaR is consistent and asymptotically normal. We also compare the efficiencies of the estimators for various instrumental densities h. When the distribution of is not the density h the first step usually gives a biased estimator of the volatility parameter and the second step gives a biased estimator of the quantile of the innovations. However, we show that both errors counterbalance each other to give a consistent estimate of the VaR. We then focus on the VaR estimation within the framework of GARCH models using the gQMLE based on a class of instrumental densities called double generalized gamma which contains the Gaussian distribution. Our goal is to compare the performance of the Gaussian QMLE against the gQMLE. The choice of the optimal estimator depends on the value of d that minimizes the asymptotic variance. We test if this parameter is equal 2. When the test is applied to real series of financial returns, the hypothesis stating the optimality of Gaussian QMLE is generally rejected. Finally, we consider non-parametric machine learning models for VaR estimation. These methods are designed to eliminate model risk because they are not based on a specific form of volatility. We use the support vector machine model for regression (SVR) based on the least square loss function (LS). In order to improve the solution of LS-SVR model, we used the weighted LS-SVR and the fixed size LS-SVR models. Numerical illustrations highlight the contribution of the proposed models for VaR estimation taking into account the risk of specification and estimation
Rachedi, Fatiha. "Estimateurs cribles des processus autorégressifs Banachiques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00012194.
Full textde représenter des processus à temps continu. Nous considérons
l'estimation de l'opérateur d'autocorrelation d'un ARB(1). Les
méthodes classiques d'estimation (maximum de vraisemblance et
moindres carrées) s'avèrent inadéquates quand l'espace
paramétrique est de dimension infinie, Grenander (1983} a proposé
d'estimer le paramètre sur un sous espace de dimension en général
finie m, puis d'étudier la consistance de cet estimateur lorsque
la dimension m tend vers l'infini avec le nombres d'observations
à vitesse convenable. Cette méthode est dite méthode des cribles.
Notons que plus généralement il serait possible d'utiliser la
méthode des f-divergences. Nous définissons la méthode des
moindres carrées comme problème d'optimisation dans un espace de
Banach dans le cas ou l'opérateur est p-sommable,
p>1. Nous montrons la convergence de l'estimateur
crible et sa normalité asymptotique dans le cas d'un opérateur est
strictement -intégral. Nous utilisons la représentation duale
de la f-divergence pour définir l'estimateur du minimum des
f-divergences. Nous nous limitons ici à l'étude de
l'estimateur dit du minimum de KL-divergence (divergence de
Kullback-Leibler). Cet estimateur est celui
du maximum de vraisemblance. Nous montrons par la suite qu'il
converge presque surement vers la vraie valeur du paramètre
pour la norme des opérateurs p-sommables. La démonstration est
basée sur les techniques de Geman et Hwang (1982), utilisées pour
des observations indépendantes et identiquement distribuées, qu'on
a adapté au cas autorégressif.
Ren, Chengfang. "Caractérisation des performances minimales d'estimation pour des modèles d'observations non-standards." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112167/document.
Full textIn the parametric estimation context, estimators performances can be characterized, inter alia, by the mean square error and the resolution limit. The first quantities the accuracy of estimated values and the second defines the ability of the estimator to allow a correct resolvability. This thesis deals first with the prediction the "optimal" MSE by using lower bounds in the hybrid estimation context (i.e. when the parameter vector contains both random and non-random parameters), second with the extension of Cramér-Rao bounds for non-standard estimation problems and finally to the characterization of estimators resolution. This manuscript is then divided into three parts :First, we fill some lacks of hybrid lower bound on the MSE by using two existing Bayesian lower bounds: the Weiss-Weinstein bound and a particular form of Ziv-Zakai family lower bounds. We show that these extended lower bounds are tighter than the existing hybrid lower bounds in order to predict the optimal MSE.Second, we extend Cramer-Rao lower bounds for uncommon estimation contexts. Precisely: (i) Where the non-random parameters are subject to equality constraints (linear or nonlinear). (ii) For discrete-time filtering problems when the evolution of states are defined by a Markov chain. (iii) When the observation model differs to the real data distribution.Finally, we study the resolution of the estimators when their probability distributions are known. This approach is an extension of the work of Oh and Kashyap and the work of Clark to multi-dimensional parameters estimation problems
Do, Van-Cuong. "Analyse statistique de processus stochastiques : application sur des données d’orages." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS526/document.
Full textThe work presented in this PhD dissertation concerns the statistical analysis of some particular cases of the Cox process. In a first part, we study the power-law process (PLP). Since the literature for the PLP is abundant, we suggest a state-of-art for the process. We consider the classical approach and recall some important properties of the maximum likelihood estimators. Then we investigate a Bayesian approach with noninformative priors and conjugate priors considering different parametrizations and scenarios of prior guesses. That leads us to define a family of distributions that we name H-B distribution as the natural conjugate priors for the PLP. Bayesian analysis with the conjugate priors are conducted via a simulation study and an application on real data. In a second part, we study the exponential-law process (ELP). We review the maximum likelihood techniques. For Bayesian analysis of the ELP, we define conjugate priors: the modified- Gumbel distribution and Gamma-modified-Gumbel distribution. We conduct a simulation study to compare maximum likelihood estimates and Bayesian estimates. In the third part, we investigate self-exciting point processes and we integrate a power-law covariate model to this intensity of this process. A maximum likelihood procedure for the model is proposed and the Bayesian approach is suggested. Lastly, we present an application on thunderstorm data collected in two French regions. We consider a strategy to define a thunderstorm as a temporal process associated with the charges in a particular location. Some selected thunderstorms are analyzed. We propose a reduced maximum likelihood procedure to estimate the parameters of the Hawkes process. Then we fit some thunderstorms to the power-law covariate self-exciting point process taking into account the associated charges. In conclusion, we give some perspectives for further work
Poignard, Benjamin. "Approches nouvelles des modèles GARCH multivariés en grande dimension." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED010/document.
Full textThis document contributes to high-dimensional statistics for multivariate GARCH processes. First, the author proposes a new dynamic called vine-GARCH for correlation processes parameterized by an undirected graph called vine. The proposed approach directly specifies positive definite matrices and fosters parsimony. The author provides results for the existence and uniqueness of stationary solution of the vine-GARCH model and studies its asymptotic properties. He then proposes a general framework for penalized M-estimators with dependent processes and focuses on the asymptotic properties of the adaptive Sparse Group Lasso regularizer. The high-dimensionality setting is studied when considering a diverging number of parameters with the sample size. The asymptotic properties are illustrated through simulation experiments. Finally, the author proposes to foster sparsity for multivariate variance covariance matrix processes within the latter framework. To do so, the multivariate ARCH family is considered and the corresponding parameterizations are estimated thanks to penalized ordinary least square procedures
Barbiero, Franck. "Antibrouillage de récepteur GNSS embarqué sur hélicoptère." Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0052.
Full textIn hostile environments, Global Navigation Satellite System (GNSS) can be disturbed by intentional jamming. Using antenna arrays, space-time adaptive algorithm (STAP) isone of the most efficient methods to deal with these threats. However, when a GNSS receiver is placed near rotating bodies, non-stationary effects called Rotor Blade Modulation (RBM) are created by the multipaths on the blades of the helicopter. They can degrade significantly the anti-jamming system and the signal of interest could belost. The work of the thesis is, consequently, to develop a GNSS protection system adapted to the RBM. In this way, an innovative multipath model, adapted to this phenomenon, has been developed. The model is then confirmed by comparison with a symptotic electromagnetic simulations and experiments conducted on an EC-120helicopter. Using a Maximum Likelihood algorithm, the parameters of the non-stationary part of the received signal have been estimated. And finally, the RBM anti-jamming solution, combining oblique projection algorithm and academic STAP, can mitigate dynamic and static contributions of interferences. In the end, the navigation information is available again
Stupfler, Gilles. "Un modèle de Markov caché en assurance et Estimation de frontière et de point terminal." Phd thesis, Université de Strasbourg, 2011. http://tel.archives-ouvertes.fr/tel-00638368.
Full textGharbi, Zied. "Contribution à l’économétrie spatiale et l’analyse de données fonctionnelles." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1A012/document.
Full textThis thesis covers two important fields of research in inferential statistics, namely spatial econometrics and functional data analysis. More precisely, we have focused on the analysis of real spatial or spatio-functional data by extending certain inferential methods to take into account a possible spatial dependence. We first considered the estimation of a spatial autoregressive model (SAR) with a functional dependent variable and a real response variable using observations on a given geographical unit. This is a regression model with the specificity that each observation of the independent variable collected in a geographical location depends on observations of the same variable in neighboring locations. This relationship between neighbors is generally measured by a square matrix called the spatial weighting matrix, which measures the interaction effect between neighboring spatial units. This matrix is assumed to be exogenous, i.e. the metric used to construct it does not depend on the explanatory variable. The contribution of this thesis to this model lies in the fact that the explanatory variable is of a functional nature, with values in a space of infinite dimension. Our estimation methodology is based on a dimension reduction of the functional explanatory variable through functional principal component analysis followed by maximization of the truncated likelihood of the model. Asymptotic properties of the estimators, illustrations of the performance of the estimators via a Monte Carlo study and an application to real environmental data were considered. In the second contribution, we use the functional SAR model studied in the first part by considering an endogenous structure of the spatial weighting matrix. Instead of using a geographical criterion to calculate the dependencies between neighboring locations, we calculate them via an endogenous process, i.e. one that depends on explanatory variables. We apply the same two-step estimation approach described above and study the performance of the proposed estimator for finite or infinite-tending samples. In the third part of this thesis we focus on heteroskedasticity in partially linear models for real exogenous variables and binary response variable. We propose a spatial Probit model containing a non-parametric part. Spatial dependence is introduced at the level of errors (perturbations) of the model considered. The estimation of the parametric and non-parametric parts of the model is recursive and consists of first setting the parametric parameters and estimating the non-parametric part using the weighted likelihood method and then using the latter estimate to construct a likelihood profile to estimate the parametric part. The performance of the proposed method is investigated via a Monte-Carlo study. An empirical study on the relationship between economic growth and environmental quality in Sweden using some spatial econometric tools finishes the document
Motrunich, Anastasiia. "Estimation des paramètres pour les séquences de Markov avec application dans des problèmes médico-économiques." Thesis, Le Mans, 2015. http://www.theses.fr/2015LEMA1009/document.
Full textIn the first part of this dissertation we consider several problems of finite-dimensional parameter estimation for Markov sequences in the asymptotics of large samples. The asymptotic behavior of the Bayesian estimators and the estimators of the method of moments are described. It is shown that under regularity conditions these estimators are consistent and asymptotically normal. We show that the Bayesian estimator is asymptotically efficient. The one-step and two-step maximum likelihood estimator-processes are studied. These estimators allow us to construct the asymptotically efficient estimators based on some preliminary estimators, say, the estimators of the method of moments or Bayes estimator and the one-step maximum likelihood estimator structure. We propose particular non-linear autoregressive processes as examples and we illustrate the properties of these estimators with the help of numerical simulations. In the second part we give theapplications of Markov processes in health economics. We compare homogeneous and non-homogeneous Markov models for cost-effectiveness analysis of routine use of transparent dressings containing a chlorhexidine gluconate gel pad versus standard transparent dressings. The antimicrobial dressing protects central vascular accesses reducing the risk of catheter-related bloodstream infections. The impact of the modeling approach on the decision of adopting antimicrobialdressings for critically-ill patients is discussed
Graffigne, Christine. "Application des statistiques au traitement d'images." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb375980109.
Full textLeroy, Fanny. "Etude des délais de survenue des effets indésirables médicamenteux à partir des cas notifiés en pharmacovigilance : Problème de l'estimation d'une distribution en présence de données tronquées à droite." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01011262.
Full textBabykina, Evgénia. "Modélisation statistique d'événements récurrents. Exploration empirique des estimateurs, prise en compte d'une covariable temporelle et application aux défaillances des réseaux d'eau." Thesis, Bordeaux 2, 2010. http://www.theses.fr/2010BOR21750/document.
Full textIn the context of stochastic modeling of recurrent events, a particular model is explored. This model is based on the counting process theory and is built to analyze failures in water distribution networks. In this domain the data on a large number of systems observed during a certain time period are available. Since the systems are installed at different dates, their age is used as a time scale in modeling. The model accounts for incomplete event history, aging of systems, negative impact of previous failures on the state of systems and for covariates.The model is situated among other approaches to analyze the recurrent events, used in biostatistics and in reliability. The model parameters are estimated by the Maximum Likelihood method (ML). A method to integrate a time-dependent covariate into the model is developed. The time-dependent covariate is assumed to be external to the failure process and to be piecewise constant. Heuristic methods are proposed to account for influence of this covariate when it is not observed. Methods for data simulation and for estimations in presence of the time-dependent covariate are proposed. A Monte Carlo study is carried out to empirically assess the ML estimator's properties (normality, bias, variance). The study is focused on the doubly-asymptotic nature of data: asymptotic in terms of the number of systems n and in terms of the duration of observation T. The asymptotic behavior of the ML estimator, assessed empirically agrees with the classical theoretical results for n-asymptotic behavior. The T-asymptotics appears to be less typical. It is also revealed that the two asymptotic directions, n and T can be combined into one unique direction: the number of observed events. This concerns the classical model parameters (the coefficients associated to fixed covariates, the parameter characterizing aging of systems). The presence of one unique asymptotic direction is not obvious for the time-dependent covariate coefficient and for a parameter characterizing the negative impact of previous events on the future behavior of a system.The developed methodology is applied to the analysis of failures of water networks. The influence of climatic variations on failure intensity is assessed by a time-dependent covariate. The results show a global improvement in predictions of future behavior of the process when the time-dependent covariate is included into the model
Keribin, Christine. "Tests de modeles par maximum de vraisemblance." Evry-Val d'Essonne, 1999. http://www.theses.fr/1999EVRY0006.
Full textAhmad, Ali. "Contribution à l'économétrie des séries temporelles à valeurs entières." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30059/document.
Full textThe framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models
Fourtinon, Luc. "3D conformal antennas for radar applications." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0060/document.
Full textEmbedded below the radome of a missile, existing RF-seekers use a mechanical rotating antenna to steer the radiating beam in the direction of a target. Latest research is looking at replacing the mechanical antenna components of the RF-seeker with a novel 3D conformal antenna array that can steer the beam electronically. 3D antennas may offer significant advantages, such as faster beam steering and better coverage but, at the same time, introduce new challenges resulting from a much more complex radiation pattern than that of 2D antennas. Thanks to the mechanical system removal, the new RF-seeker has a wider available space for the design of a new 3D conformal antenna. To take best benefits of this space, different array shapes are studied, hence the impact of the position, orientation and conformation of the elements is assessed on the antenna performance in terms of directivity, ellipticity and polarisation. To facilitate this study of 3D conformal arrays, a Matlab program has been developed to compute the polarisation pattern of a given array in all directions. One of the task of the RF-seeker consists in estimating the position of a given target to correct the missile trajectory accordingly. Thus, the impact of the array shape on the error between the measured direction of arrival of the target echo and its true value is addressed. The Cramer-Rao lower bound is used to evaluate the theoretical minimum error. The model assumes that each element receives independently and allows therefore to analyse the potential of active 3D conformal arrays. Finally, the phase monopulse estimator is studied for 3Dconformal arrays whose quadrants do not have the same characteristics. A new estimator more adapted to non-identical quadrants is also proposed
Perreau, Sylvie. "Application des méthodes de maximum de vraisemblance à l'égalisation autodidacte /." Paris : École nationale supérieure des télécommunications, 1998. http://catalogue.bnf.fr/ark:/12148/cb37007407j.
Full textBerrim, Selma. "Tomoscintigraphie par ouverture codée, reconstruction par le maximum de vraisemblance." Paris 13, 1998. http://www.theses.fr/1998PA132033.
Full textKUHN, Estelle. "Estimation par maximum de vraisemblance dans des problèmes inverses non linéaires." Phd thesis, Université Paris Sud - Paris XI, 2003. http://tel.archives-ouvertes.fr/tel-00008316.
Full textKhelifi, Bruno. "Recherche de sources gamma par une méthode de Maximum de Vraisemblance :." Phd thesis, Université de Caen, 2002. http://tel.archives-ouvertes.fr/tel-00002393.
Full textGrâce à ces techniques, nous avons détecté de faibles et rapides variations de flux de Mkn 421, découvert deux nouveaux blazars IES 1959+65 et IES 1426+42.8 qui est de faible luminosité et nous avons identifié deux blazars susceptibles d'émettre au TeV. La comparaison des spectres en énergie des blazars de même redshift (Mkn 421 et Mkn 501) permet de nous affranchir de l'absorption des gamma par l'infrarouge intergalactique (IIR) : Mkn 421 semble posséder un spectre avant absorption distinct d'une loi de puissance sur au moins une nuit. La dérivation d'informations plus précises sur les blazars dépendra des futures connaissances sur l'IIR et des observations simultanées multi-longueurs d'onde.
Ayant observé des restes de supernovae contenant des plérions (IC 443, CTA 1 et CTB 80), nous avons cherché en vain une émission provenant des plérions et de l'interaction de ces restes avec des nuages moléculaires grâce au maximum de vraisemblance. Les valeurs supérieures extraites sur les plérions ont été comparées avec des modèles d'émission électromagnétique d'un spectre d'électrons accélérés. Ces comparaisons nous ont amenées à nous interroger sur les hypothèses faites dans ces modèles et sur la pertinence des plérions choisis.
Kuhn, Estelle. "Estimation par maximum de vraisemblance dans des problèmes inverses non linéaires." Paris 11, 2003. https://tel.archives-ouvertes.fr/tel-00008316.
Full textThis thesis deals with maximum likelihood estimation in inverse problems. In the tree first chapters, we consider statistical models involving missing data in a parametric framework. Chapter 1 presents a version of the EM algorithm (Expectation Maximization), which combines a stochastic approximation with a Monte Carlo Markov Chain method: the missing data are drawn from a well-chosen transition probability. The almost sure convergence of the sequence generated by the algorithm to a local maximum of the likelihood of the observations is proved. Some applications to deconvolution and change-point detection are presented. Chapter 2 deals with the application of the algorithm to nonlinear mixed effects models. Besides the estimation of the parameters, we estimate the likelihood of the model and the Fisher information matrix. We assess the performance of the algorithm, comparing the results obtained with other methods, on examples coming from pharmacocinetics and pharmacodynamics. Chapter 3 presents an application to geophysics. We perform a joint inversion between teleseismic times and velocity and between gravimetric data and density. Our point of view is innovative because we estimate the parameters of the model which were generally fixed arbitrarily. Moreover we take into account a linear relation between slowness and density. Chapter 4 deals with non parametric density estimation in missing data problems. We propose a logspline estimator of the density of the non observed data, which maximizes the observed likelihood in a logspline model. We apply our algorithm in this parametric model. We study the convergence of this estimator to the density of the non observed data, when the size of the logpline model and the number of observations tend to infinity. Some applications illustrate this method
Cao, Zhansheng. "Comportement d'un échantillon sous conditionnement extrême, maximum de vraisemblance sous échantillonnage pondéré." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00802459.
Full textRenaux, Alexandre. "Contribution à l'analyse des performances d'estimation en traitement statistique du signal." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2006. http://tel.archives-ouvertes.fr/tel-00129527.
Full textLa difficulté majeure provient du fait que l'EQM de l'estimateur d'un paramètre à support borné se divise en trois régions : la plage asymptotique, souvent caractérisée par un grand nombre d'observations ou un faible niveau de bruit, où l'erreur d'estimation est faible, la plage de décrochement où l'EQM se dégrade rapidement et la zone a priori où les observations se réduisent principalement à la seule contribution du bruit et donc, n'apportent pratiquement plus d'informations sur les paramètres à estimer. Beaucoup de résultats sont disponibles pour la zone asymptotique : distribution des estimées, biais, variance. En revanche, le comportement des estimateur dans les zones de décrochement et a priori a été beaucoup moins étudié. Pourtant ces zones non-asymptotiques constituent au même titre que le biais ou la variance une caractéristique fondamentale d'un estimateur puisque qu'elle délimite la plage acceptable de fonctionnement optimal.
Le but de cette thèse est, dans un premier temps, de compléter la caractérisation de la zone asymptotique (en particulier lorsque le rapport signal sur bruit est élevé et pour un nombre d'observations fini) pour les estimateurs au sens du maximum de vraisemblance dans un contexte traitement d'antenne. Dans un second temps, le but est de donner les limites fondamentales de l'EQM d'un estimateur sur ses trois plages de fonctionnement. Les outils utilisés ici sont les bornes minimales de l'EQM autres que les bornes de Cramér-Rao dont la validité n'est qu'asymptotique.
Les résultats obtenus sont appliqués à l'analyse spectrale et à l'estimation de porteuse dans le contexte des communications numériques et fournissent de surcroît des outils intéressants pour prédire la zone de décrochement d'un récepteur.
Ahmed, Mohamed Salem. "Contribution à la statistique spatiale et l'analyse de données fonctionnelles." Thesis, Lille 3, 2017. http://www.theses.fr/2017LIL30047/document.
Full textThis thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country
Ranwez, Vincent. "Méthodes efficaces pour reconstruire de grandes phylogénies suivant le principe du maximum de vraisemblance." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2002. http://tel.archives-ouvertes.fr/tel-00843175.
Full textLarzabal, Pascal. "Application du maximum de vraisemblance au traitement d'antenne : radio-goniométrie et poursuite de cibles." Paris 11, 1992. http://www.theses.fr/1992PA112252.
Full textBapteste, Éric. "Phylogénie générale des Eucaryotes basée sur l'analyse de multiples marqueurs." Paris 6, 2003. http://www.theses.fr/2003PA066504.
Full textAl-Khalidi, Khaldoun. "Reconstruction tomographique en géométrie conique par la technique du maximum de vraisemblance : optimisation et parallélisation." Besançon, 1996. http://www.theses.fr/1996BESA2009.
Full textVuattoux, Jean-Luc. "Identification de modèles de séries temporelles non-gaussiennes : une approche du type maximum de vraisemblance." Nantes, 1997. http://www.theses.fr/1997NANT2029.
Full textDouc, Randal. "Problèmes statistiques pour des modèles à variables latentes : propriétés asymptotiques de l'estimateur du maximum de vraisemblance." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXXO001.
Full textAlcaïs, Alexandre. "De la lèpre au maximum de vraisemblance binomiale : histoire naturelle d'une nouvelle méthode d'analyse de liaison génétique." Paris 11, 2002. http://www.theses.fr/2002PA11T072.
Full textGilbert, Helène. "Multidimensionnalité pour la détection de gènes influençant des caractères quantitatifs : Application à l'espèce porcine." Paris, Institut national d'agronomie de Paris Grignon, 2003. http://www.theses.fr/2003INAP0007.
Full textFerràs, Font Marc. "Utilisation des coefficients de régression linéaire par maximum de vraisemblance comme paramètres pour la reconnaissance automatique du locuteur." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00616673.
Full textBeau, Noëlle. "Application du maximum de vraisemblance à la comparaison de deux méthodes de dosage biologique : cas des variances inconnues." Paris 11, 1990. http://www.theses.fr/1990PA11P171.
Full textZiadi, Anis. "Particules gaussiennes déterministes en maximum de vraisemblance non-linéaire : application au filtrage optimal des signaux radar et GPS." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/742/.
Full textParticle filter is now a well-known numeric solution for the non-linear estimation problem. Based on a reinterpretation of Stratonovich non-linear filtering equation as the generator of branching process, it provides a general finite-dimensional solution to the non-linear filtering problem. Previous improvement of the method point out, in one hand, the benefit of Gaussian particles for the state space dynamic representation, and in the other one, the economy of the deterministic sampling, especially in the maximum likelihood case. We therefore present here a maximum likelihood deterministic particle filter generalized to the continuous state space case, using extended Gauss particles. This particle filter was completed with optimization steps, such as non-overlapping selection to guarantee optimal use of computational resources. Besides deterministic particle filter description first part of this report presents a "non-exhaustive" survey of non-linear filtering methods and particularly "Random" particles ones. High performances of the proposed filtering method are illustrated through two applications of interest: Radar detection and tracking of maneuvering target: where performances are studied, until real data provided by military experimentations, and compared to "random" particles ones. GPS receiver: where tracking problem is firstly addressed under high dynamic noises. Then acquisition one is solved with similar dynamics constraints by a modified signal processing structure. .
Etienvre, Anne-Isabelle. "Méthode d'analyse pour la recherche de la double désintégration bêta sans émission de neutrinos dans l'expérience NEMO3 : étude du bruit de fond et premiers résultats." Paris 11, 2003. http://www.theses.fr/2003PA112026.
Full textThe NEMO3 detector, installed in the Fréjus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay : the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the γ-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on ββ0v. The second part is dedicated to a detailed study of the tracking detector of the experiment : after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). A last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the 208-Tl activity of the sources has been determined : it is lower than 68 mBq/kg, at 90% of convidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino
Trevezas, Samis. "Etude de l'estimation du Maximum de Vraisemblance dans des modèles Markoviens, Semi-Markoviens et Semi-Markoviens Cachés avec Applications." Phd thesis, Université de Technologie de Compiègne, 2008. http://tel.archives-ouvertes.fr/tel-00472644.
Full textFilstroff, Louis. "Contributions to probabilistic non-negative matrix factorization - Maximum marginal likelihood estimation and Markovian temporal models." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0143.
Full textNon-negative matrix factorization (NMF) has become a popular dimensionality reductiontechnique, and has found applications in many different fields, such as audio signal processing,hyperspectral imaging, or recommender systems. In its simplest form, NMF aims at finding anapproximation of a non-negative data matrix (i.e., with non-negative entries) as the product of twonon-negative matrices, called the factors. One of these two matrices can be interpreted as adictionary of characteristic patterns of the data, and the other one as activation coefficients ofthese patterns. This low-rank approximation is traditionally retrieved by optimizing a measure of fitbetween the data matrix and its approximation. As it turns out, for many choices of measures of fit,the problem can be shown to be equivalent to the joint maximum likelihood estimation of thefactors under a certain statistical model describing the data. This leads us to an alternativeparadigm for NMF, where the learning task revolves around probabilistic models whoseobservation density is parametrized by the product of non-negative factors. This general framework, coined probabilistic NMF, encompasses many well-known latent variable models ofthe literature, such as models for count data. In this thesis, we consider specific probabilistic NMFmodels in which a prior distribution is assumed on the activation coefficients, but the dictionary remains a deterministic variable. The objective is then to maximize the marginal likelihood in thesesemi-Bayesian NMF models, i.e., the integrated joint likelihood over the activation coefficients.This amounts to learning the dictionary only; the activation coefficients may be inferred in asecond step if necessary. We proceed to study in greater depth the properties of this estimation process. In particular, two scenarios are considered. In the first one, we assume the independence of the activation coefficients sample-wise. Previous experimental work showed that dictionarieslearned with this approach exhibited a tendency to automatically regularize the number of components, a favorable property which was left unexplained. In the second one, we lift thisstandard assumption, and consider instead Markov structures to add statistical correlation to themodel, in order to better analyze temporal data
Keller, Jean-Yves. "Contribution a la validation de données des systèmes statiques et dynamiques." Nancy 1, 1991. http://www.theses.fr/1991NAN10201.
Full text