Contents
Academic literature on the topic 'Estimateurs non-paramétriques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Estimateurs non-paramétriques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Estimateurs non-paramétriques"
Faucher, D., P. F. Rasmussen, and B. Bobée. "Estimation non paramétrique des quantiles de crue par la méthode des noyaux." Revue des sciences de l'eau 15, no. 2 (April 12, 2005): 515–41. http://dx.doi.org/10.7202/705467ar.
Full textDissertations / Theses on the topic "Estimateurs non-paramétriques"
Paillisse, Pinçon Claire. "Estimateurs non-paramétriques et semi-paramétriques efficaces dans l'analyse des données censurées mutlivariées." Paris 11, 2003. http://www.theses.fr/2003PA11T047.
Full textMaillot, Bertrand. "Propriétés asymptotiques de quelques estimateurs non-paramétriques pour des variables vectorielles et fonctionnelles." Paris 6, 2008. http://www.theses.fr/2008PA066477.
Full textCamirand, Lemyre Félix. "Sur des estimateurs et des tests non-paramétriques pour des distributions et copules conditionnelles." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9517.
Full textLhéritier, Hugo. "Comportement asymptotique de certains estimateurs sur des modèles paramétriques et sous des conditions non standard." Orléans, 2003. http://www.theses.fr/2003ORLE2005.
Full textRivoira, Arnaud. "Analyse spectrale des signaux stochastiques à échantillonage aléatoire." Paris 11, 2003. http://www.theses.fr/2003PA112157.
Full textThe work presented here deals with the spectral analysis of randomly sampled stochastic signals. After some recalls on the technical and scientific issues at stake, a state of the art of the previous methods is given and the mathematical framework is introduced. Spectral analysis methods can be classified into two categories according to whether or not they use the sampling times are used. The methods of the latter category are considered first. Following an overview of these methods, a new parametric approach, based on the identification to the CARMA model, is detailed. Then, the methods using the values of the sampling times are studied. In particular, two classes of estimators are proposed: the estimators, called IRINCORREL, which are related to those introduced by Masry, the estimators by projection, which generalize the very famous Slotting technique and its different versions. Finally, we conclude by giving a synthetic summary exhibiting the different prospects of this study and the possible extensions that could be investigated
Amiri, Aboubacar. "Estimateurs fonctionnels récursifs et leurs applications à la prévision." Phd thesis, Université d'Avignon, 2010. http://tel.archives-ouvertes.fr/tel-00565221.
Full textDebbarh, Mohammed. "Quelques propriétés asymptotiques dans les modèles additifs de régression." Paris 6, 2006. http://www.theses.fr/2006PA066020.
Full textGneyou, Kossi Essona. "Inférence statistique non paramétrique pour l'analyse du taux de panne en fiabilité : Théorèmes limites fonctionnels pour les processus produit-limite et les estimateurs non paramétriques du taux de panne dans les modèles de variables aléatoires arbitrairement censurées." Paris 6, 1991. http://www.theses.fr/1991PA066504.
Full textEl, Waled Khalil. "Estimations paramétriques et non-paramétriques pour des modèles de diffusions périodiques." Thesis, Rennes 2, 2015. http://www.theses.fr/2015REN20042/document.
Full textIn this thesis, we consider a drift estimation problem of a certain class of stochastic periodic processes when the length of observation goes to infinity. Firstly, we deal with the linear periodic signal plus noise model dζt = f (t, θ)dt + σ(t)dWt, ;and we study the parametric estimation from a continuous and discrete observation of the process f_tg throughout the interval [0; T]. Using the maximum likelihood method we show the existence of an estimator θˆT which is consistent, asymptotically normal and asymptotically efficient in the sens minimax. When f(t; _) = _f(t), the expression of ^_T is explicit and we obtain the mean square convergence in the both continuous and discrete observation cases. In addition, we deduce the strong consistency in the case of continuous observation.Secondly, we consider the nonparametric estimation problem of the function f(_) for the next two periodic models of type signal plus noise and Ornstein-Uhlenbeckd_t = f(t)dt + _(t)dWt; d_t = f(t)_tdt + dWt:For the signal plus noise model, we build a kernel estimator, the convergence in mean square uniformly over [0; P] and almost sure convergence are established, as well as the asymptotic normality. For the Ornstein-Uhlenbeck model, we prove the convergence uniformly over [0; P] of the bias and the mean square convergence. Moreover, we study the speed of these convergences
Tadj, Amel. "Sur les modèles non paramétriques conditionnels en statistique fonctionnelle." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1219/.
Full textIn this thesis, we consider the problem of the nonparametric estimation in the conditional models when the regressor takes its values in infinite dimension space. More precisely, we treated two cases when the response variable is real and functional. One establishes almost complete uniform convergence of nonparametric estimators for certain conditional models. Firstly, we consider a sequence of i. I. D. Observations. In this context, we build kernel estimators of the conditional cumulative distribution, the conditional density, the conditional hazard function and the conditional mode. We give the uniform consistency rate of these estimators. We illustrate our results by giving an application on simulated samples. Secondly, we generalize our results when the response variable is in a Banach space. We estimate the regression function. In this context, we treat both cases : i. I. D and dependent observations. In the last case, we consider that the observations are Béta-mixing and we establishes almost complete pointwise convergence. Our asymptotic results exploit the topological structure of functional space for the observations. Let us note that all the rates of convergence are based on an hypothesis of concentration of the measure of probability of the functional variable on the small balls and also on the Kolmogorov’s entropy which measures the number of the balls necessary to cover some set. Moreover, when the response variable is functional the rate of convergence contains a new term which depends on type of Banach space