Dissertations / Theses on the topic 'Éstimation de stabilité globale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Éstimation de stabilité globale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Santacesaria, Matteo. "Unicité, reconstruction, stabilité pour des problèmes inverses bidimensionnels." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00759992.
Full textMarquet, Olivier. "Stabilité globale et contrôle d'écoulements de recirculation." Poitiers, 2007. http://www.theses.fr/2007POIT2328.
Full textWe study the transition and control of real open shear flows in the context of hydrodynamic stability theory. Real open shear flows, as recirculation flows specifically considered in the present study, are fundamentally non-parallel. A global approach of stability theory, that consists in considering two spatial directions as eigendirections, is well suited to examine the flow transition and its control. The first part of this work deals with the linear stability of a recirculation bubble appearing in a curved channel. Both long-time and short-time stability properties of this flow are examined. The long-time dynamics is studied through a modal analysis in which perturbations are sought in the form of global modes exponentially amplified in time. It explain the appearance of three-dimensionality. The short-time dynamics, based on an optimal perturbation analysis giving the most amplified spatial structure at short-time, explains the onset of unsteadiness the two-dimensional recirculation bubble. In the second part of this work, we propose a theoretical approach for the control of globally unstable flows (at long-time), which is based on a sensitivity analysis of eigenvalues to base-flow modifications. Considering generic or force-induced base-flow modifications, we can explain properties of the base-flow that give onset to the instability and predict how to stabilize the flow with a stationary force. The relevance of this theoretical approach is alleviated on the cylinder flow at low Reynolds number. Experimental results of passive flow control by use a of small control cylinder located in wake of the main cylinder are well reproduced, especially with respect to the adequate position of the small control cylinder
Hairoud, Asmaa. "Sur la stabilité globale des jets coaxiaux tournants." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2269/document.
Full textThis work concerns the experimental and numerical study of coaxial jets with outer to inner velocity ratio lower than unity, presenting a rotation in the annular jet. At first, flow visualizations by tomography laser were used in the meridian and transverse plans in order to provide a spatial description of the flow. For various values of the nondimensional parameters : numbers of Reynolds, outer to inner velocity ratio and Swirl number, an inventory of the dominant modes was be established. Instantaneous velocity fields were then measured by Particle lmaging Velocimetry (PIV). The results of longitudinal and azimuthal time-averaged Velocity fields are presented. A comparison with the structures observed by tomography is proposed. A Fourier decomposition was made allowing to identify the dominant modes as well as their position in the radial direction. Experimental investigation was followed by a linear stability analysis. Special attention is paid to the steady base-flow solution reconstructed from the velocity profiles measured by PIV at the end of the nozzle. Given that the is not parallel, a global approach was used. Study of the stability is based on the numerical solution of the incompressible Navier-Stokes equations with pseudo-spectral methods. The objective of this analysis is to the map of azimuthal Fourier modes observed experimentally. We were thus interested in the most amplified growth rate of the disturbance for every azimuthal mode as well as in the absolute/convective nature of the modes. To conclude, a comparison of the results obtained in both numerical and experimental approaches is proposed
Vié, Rémy. "Approche globale de caractérisation des suspensions : stabilité, classification, modélisation." Montpellier 2, 2006. http://www.theses.fr/2006MON20204.
Full textLerisson, Gaétan. "Stabilité d'une onde de gravité interne, analyse locale, globale et croissance transitoire." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX017/document.
Full textInternal gravity waves that exist in a continuously stratified fluid are particularly important in the ocean. They transport energy and are thought to generate turbulent mixing, which contribute to the deep ocean circulation.We generate an internal wave beam that propagates in a continuously stratified fluid with direct numerical simulations. This situation is equivalent to a tidal wave, where the tidal flow oscillates over a topography and generates a wave. Experimental results obtained by cite{Bourget13} are recovered, ie. the beam destabilizes into a small scale mode. We consider the effect of an horizontal mean flow on the instability and lower the forcing frequency in order to compensate for the doppler effect and to keep locally the same wave. A limit case appears when the forcing becomes stationary. This case is equivalent to a lee wave appearing when a stratified fluid flows over a topography.For small mean flow, small scale instabilities develop as in the tidal case. The beam then stabilizes at intermediate mean flows and destabilizes again for increasing flow speed. At this second threshold, down to the lee wave case, the instability is of much larger scale than for the tidal case. Varying the Reynolds number, the Froude number, the wave angle or the beam size doesn't affect the instability scale selection : a small scale instability in the tidal regime, and large scale instability in the lee regime.We show that the instability mechanism may be interpreted using the triadic instability. Scale selection corresponds to different branches of triadic resonance. We confirm the presence of a stability region for intermediate value of the mean advection velocity by computing the linear eigenmode as Floquet mode with an Arnoldi-Krylov technique and show that the leading eigenmode has a negative growth rate.In the lee wave, case the flow is unstable and a selective frequency damping method cite{Akervik06} is used to compute a steady base flow. We then implement a linear direct-adjoint method to compute the optimal perturbations that maximizes the total energy at different time horizons. At short time horizon, the optimal perturbation is small scale while at large time the perturbation switches to a large scale solution and converges to the large scale mode observed through the nonlinear simulations. Short time transients correspond to the small scale triadic instability advected by the flow whereas the long time large scale instability corresponds to large scale branch of the triadic instability that is able to sustain the flow.We propose an interpretation of the selection of these different instabilities in term of absolute and convective instability. In the case of the lee wave, the large scale instability is absolute whereas the small scale instability is convective (and dominates the short time transient growth because it has a larger local growth rate). When the mean flow is varied, the properties of small scale and large scale instabilities exchange: in the tidal case the short scale instability is absolute and the large scale convective. This conjecture is confirmed by computing the impulse response around a plane monochromatic internal gravity wave in an extended two dimensional periodic domain. The spatio temporal evolution of a perturbation localized in space and time points out the formation of three different wave packets corresponding to different branches of triadic instability. Using the triadic theory with finite detuning cite{McEwan77},we derive the group velocity at the maximum growth rate of the three different branches of triadic instability and find a good agreement with the velocity of the three wave paquet maxima in the impulse response. Analyzing the impulse response along rays, i.e. at x/t and z/tconstant, we compute the absolute growth rate along all possible rays and validate our conjecture
Oumoun, Mohamed. "Contribution à la stabilisation globale de certains systèmes non linéaires." Metz, 1995. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1995/Oumoun.Mohamed.SMZ9528.pdf.
Full textThis thesis deals with stabilization of some nonlinear systems by state feedback. In the first part, we give a complete classification of a class of bilinear systems in three space with respect to the asymptotic stabilizability with continuous feedback and homogeneous feedback of degree zero. The second part is devoted to the study of homogeneous systems of odd degree : a necessary and sufficient condition of stabilization by means of homogeneous feedbacks of the same odd degree as the vector fields is given. Moreover, we propose an observer for these systems when the output is linear. In the last part, we give a stochastic version of the well-known Jurdjevic-Qiunn's theorem and Arstein's one
Alizard, Frédéric. "Etude de stabilité linéaire globale d'écoulement fortement décollé de couche limite de plaque plane." Phd thesis, Paris, ENSAM, 2007. http://pastel.archives-ouvertes.fr/pastel-00003596.
Full textFosas, De Pando Miguel Ángel. "Génération d'ondes acoustiques à fréquences discrètes autour d'un profil d'aile : analyse de stabilité globale." Phd thesis, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00816987.
Full textBenbaba, Sarah. "Analyse de stabilité globale pour un écoulement transsonique soumis au phénomène de tremblement de voilure." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00663520.
Full textGuiho, Florian. "Analyse de stabilité linéaire globale d'écoulements compressibles : application aux interactions onde de choc / couche limite." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0003/document.
Full textThe general purpose of this study is to provide a better understanding of the dynamics of an interaction between a shock wave and a laminar or turbulent boundary layer. In particular, we were interested in mechanisms responsible for the emergence of low-frequency self-sustained oscillations. This phenomenon arises in numerous industrial cases as in air inlets of supersonic aircrafts, around a profile of wing in transonic regime and within over-extended nozzle. The first part of this report handles various studies carried out to determine the phenomenology of this kind of dynamics. Secondly, we explain the strategy adopted to make our study which consists in developing a tool of study of the instabilities adapted to turbulent flows including an interaction between a shock wave and a boundary layer. The development of a linearized CFD tool coupled with a method of resolution of a eigenvalue problem by a free-matrix approach ( " time-stepping " approach), allowed the realization of such a study. After a stage of validation of our tool, we studied cases of flows including an interaction between a shock wave and a boundary layer. Three cases in particular were handled. The first case corresponds to an interaction enter an oblique shock wave impacting on a laminar boundary layer developing on a flat plate. This case is generally qualified in the literature of case as " reflected shock wave". We show that such a flow is globally stable and that the dynamics of such a flow behaves as a selective noise amplifier, the dynamic is mainly driven by receptivity mechanisms and by the response of upstream white nose disturbance. Two other cases have been studied on this work, the case of a transonic flow around a profile wing of NACA0012 type around the onset of buffet phenomenon and the case of transonic nozzle of Sajben type on over-extended regime. In the first case, the global stability analysis allows us to highlight the buffet phenomenon of on the profile NACA0012, what shows that the phenomenon is linked to a linear global instability. In the second case, the analysis of stability does not allow to explain the self-sustained low frequencies phenomenon, and shows that the flow is linearly globally stable. In this case, the dynamics is convective, passing and piloted by receptivity mechanisms
Outbib, Rachid. "Sur la stabilisation globale de systèmes non linéaires par retour d'état régulier." Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Outbib.Rachid.SMZ944.pdf.
Full textThis thesis contains some results on the global stabilization of nonlinear systems by smooth feedback. It is divided in for parts. The first one represents a recall of classical results on the stability and stabilization of non linear systems. The second one proposes a simple and general form of a result concerning the affine in controls sytems with dissipative drift (Jurdjevic-Quinn method). A series of theorical and pratical examples is studied. The third part presents a reduction principale for stabilization of systems : this result represents a generalization of the classical lemme of integrators. To illustrate the contribution of this method, some examples of the literature are studied. The goal of the last part is the study of the stabilization of angular velocity equations of a rigid body
Bonne, Nicolas. "Stabilité de l'intéraction onde de choc/ couche limite laminaire." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX025/document.
Full textThe shock wave boundary layer (BL) interaction phenomenon is ubiquitous in aerodynamic. In general this interaction generates some low frequency oscillations which can be disastrous for the machines. The typical example is the buffet phenomenon on an airfoil in transonic conditions. Buffet is dangerous since its low frequency can excite the structural modes of the airfoil and break it. The phenomenology has been wildly studied when the incoming BL is turbulent. These studies have derived several credible scenarii and efficient methodologies to capture its dynamic, especially the stability analysis tools on an averaged turbulent flow (RANS). However laminar technologies, the use of laminar BL to reduce the fuel consumption of planes, represent a new scientific challenge on this problematic. In fact, the physic of the interaction is importantly impacted by the laminar nature of the BL especially because of its weak resilience to an adversed pressure gradient and of the transition to turbulence.The thesis deals with the methodologies for the stability analysis on a RANS base flow in the case of a laminar BL. The originality and the contribution of this work have been to take into account a transition criteria in the linearised dynamic on a RANS base flow. The model used (RANS and transition) have then been linearized in order to make a stability analysis which take into account all the aerodynamic varaibles. The validation of this methodology has been made by comparison to expermient and simulation (LES) on two configurations of application. The first one is a weak reflected shock wave on a flat plate. The second one is the strong shock around an airfoil in a transonic regime. In both cases the incoming BL is laminar.Stability and resolvent analysis have been made. These approches have been able to caratirized the ocillator/noise amplifier behavior of the flow and to enabled a physical analysis of the unsteadinesses observed in the experiments.The case of the reflected shock wave is caracterized by three frequencies. The stability analysis shows that they don't correspond to globally unstable modes but to a noise amplifier behavior of the flow. The resolvent analysis identifies the three frequencies. The analysis of the optimal response, coupled with a local stability analysis, enables to proposed physical scenarii of these dynamics.In the case of the strong shock on an airfoil in transonic regime, the flow is globally unstable. Two unstable modes have been identified. The first one, at low frequency, correspond to the buffet phenomenon also observed in the turbulent case. The second one appears at higher frequency and correspond to the oscillation of the separation bubble formed at the feet of the shock.More generally, this thesis suggests that some dynamics of these two interactions result from the same mecanism linked to the breathing motion of the laminar separation bubble
Tewa, Jean Jules. "Analyse globale des modèles épidémiologiques multi-compartimentaux : application à des modèles intra-hôtes de paludisme et de V.I.H." Metz, 2007. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2007/Tewa.Jean_Jules.SMZ0710.pdf.
Full textIn this thesis, we analyse intrahost models of malaria and H. I. V. These models are of relatively recent appearance and describe the dynamics of the various stages of the parasites, like their interaction with the host cells, in particular the red blood cells and the immunity effectors. During this decade, there was a considerable work on the mathematical modeling of plasmodium falciparum infection ; a review has been done by Molineaux and Dietz. Our work forms part of this effort of comprehension of the models of Anderson, May and Gupta. The study of these models aims three principal goals : to explain the observations by biologically convincing assumptions, to predict the impact of the interventions (for example the use of the anti-paludic drugs and impregnated mosquito nets) and to consider the parameters hidden (one of these parameters being size of the sequestered population of red blood cells). We analyze the stages progression and the differential infectivity models ; then we leave the original model of Anderson, May and Gupta to propose and analyze a general model having the double advantage of describing the dynamics of evolution of the red blood cells, as well as the stages of morphological evolution of the parasites inside the parasitized red blood cells ; to finish we analyze a model whose innovation compared to the precedent is the bond between the compartment of susceptibles and that of the infectious one. We establish in all the studied cases here the global asymptotic stability of the disease free equilibrium (DFE) when the basic reproduction ratio R0 1. What means that the disease naturally dies out. We also obtain for each model studied here, a condition for global asymptotic stability of the endemic equilibrium when R0 > 1. In certain cases, the principle of exclusive competition is also used to slice
Tarsia, morisco Cosimo. "Dynamique nonlinéaire et stabilité linéaire d'une tuyère sur-détendue." Thesis, Paris, HESAM, 2020. https://pastel.archives-ouvertes.fr/tel-03169495.
Full textShock wave-boundary layer interactions in over-expanded rocket nozzles are responsible for large detached regions resulting in non-axisymetric forces called side-loads. The mechanism at stake is self-sustained and involves separation, shear layers and Mach disks. In such cases, an hybrid approach for turbulence is required. This thesis aims at investigating the potentially globally unstable nature of this unsteadiness by means of a Delayed Detached Eddy Simulations (DDES) on an over-expanded nozzle and comparing it with a fully-3D linear stability analysis. The geometry considered is a TIC nozzle, experiencing a FSS unsteadiness and operating at 3 different jet Mach number M_j=[1.83, 2.09, 2.27]. Nonlinear calculations confirm the experimental outcomes: energy in PSD spectra for wall perturbations is distributed over 2 peaks at intermediate frequency (St=0.2-0.3) and two humps at low-frequency $left(St<1right)$ and high frequency (St =1), respectively. Particularly, at M_j=1.83 the peak at St=0.2 competes with that at St=0.3, prevails on the latter at M_j=2.09 and finally vanishes as the other at M_j=2.27. A PSD computed for different azimuthal components of wall pressure perturbation show a clear azimuthal separation for all the contribution above mentioned. Particularly, while the peak at St=0.3 has a double contribution m=2-3 at M_j=1.83 and exclusively a m=2 symmetry at M_j=2.09, the peak at St=0.2 has constantly a m=1 symmetry, which behaves has a persistent signature inside the nozzle at M_j=2.09. Consequently, a global stability analysis is performed on the DDES meanflow at M_j=2.09. Such analysis returns an unstable mode at St=0.2 with a m=1 shape, which develops from separation point and is localised at the external shear layer
Tchoufag, Joël. "Étude de la trajectoire d'objets en chute ou en ascension dans un fluide visqueux : une approche de stabilité globale." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2299/.
Full textWe study the linear and weakly nonlinear global stability of the flow past axisymmetric ostacles such as cylinders and oblate spheroidal bubbles. These bodies are either considered held fixed or mobile under the effect of gravity in a Newtonian fluid otherwise at rest. A modal analysis is used to study the ``fixed" configuration in a parametric manner, varying the body aspect ratio and the Reynolds number. The wake instability is dominated by the helical modes |m|=1, followed up by the |m|=2 modes. The amplitude equations expressing the global modes interactions are derived and validated for thin disks up to the third bifurcation in the transition to chaos. A comparison with DNS shows qualitatively a good agreement. The instability core (wavemaker) and the critical regions most sensitive to an external modification (surfactants, etc) of the flow past a fixed bubble of frozen shape are identified through an adjoint approach. In the ``mobile" configuration, the stability analysis deals with the coupled system modes of the fluid+mobile object and shows non-trivial features of the stability branches among which frequency jumps and codimension-two bifurcation points. We show in particular that many trajectories directly result from the unstable global modes of the coupled system, rather than from the dynamics of the sole wake. A quasi-static approach in the high mass limit is used to establish the the connection with the "fixed" configuration. Last, the zigzag regime of disks and bubbles is proved to be satisfactorily modeled by a weakly nonlinear analysis, which particularly reveals the importance of the mean flow on the frequency
Bonnefis, Paul. "Etude des instabilités de sillage, de forme et de trajectoire de bulles par une approche de stabilité linéaire globale." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0070/document.
Full textThis works deals with the coupling between time-dependent deformation, wake dynamics and path characteristics of a gas bubble in different configurations. An Eulerian-Lagrangian formalism is sought to formulate this problem in a moving domain having a small deformation compared to the reference configuration. This approach allows us to study the linear coupling between bubble deformations and hydrodynamic effects. This formalism makes it possible to first compute the base flow around a bubble and the corresponding steady shape, then to develop a global stability approach aimed at predicting the threshold of path instability and the properties of bubble oscillation modes. To develop this method, we first compute the linear oscillations of bubbles and drops in a quiescent fluid without gravity and compare them to existing theory. Then, the premise of the Eulerian-Lagrangian formalism is illustrated using a model equation, namely the heat equation written in an arbitrarily deformed domain. The same formalism is applied to the NavierStokes equations, yielding a linearized version of these equations in the neighbourhood of a reference domain, including the two-way coupling between shape deformations and perturbations of the base flow. With this system of equations at hand, we implement a Newton method that provides the steady state, i.e. the base flow around the bubble and its geometry. The same system allows us to carry out a global stability analysis of the flow past a deformable bubble. We first consider the situation where the bubble is trapped in a straining flow, for which we compute stable and unstable equilibrium shapes. We finally tackle the case of a buoyancy-driven bubble rising in a pure liquid. A parametric study is carried out over a wide range of liquids, from pure water to high-viscosity silicon oils. Steady states computed with the Newton method and instability thresholds are found to be in good agreement with experimental observations. For low-viscosity fluids, our approach captures the viscous effects that take place in the boundary layer better than existing computational approaches, yielding predictions for the onset of path instability in better agreemnt with observations. Furthermore, it confirms that time-dependent bubble deformations play a minor part for such liquids. In contrast, a stronger coupling between shape and path instabilities is observed in high-viscosity fluids
Boudjlida, Khaled. "Méthodes d’optimisation numérique pour le calcul de stabilité thermodynamique des phases." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3025/document.
Full textThe thermodynamic phase equilibrium modelling is an essential issue for petroleum and process engineering. Phase stability analysis is a highly important problem among phase equilibrium calculations. The stability computation establishes whether a given mixture is in one or several phases. If a mixture splits into two or more phases, the stability calculations provide valuables initialisation sets for the flash calculations, and allow the validation of multiphase flash calculations. The phase stability problem is solved as an unconstrained minimisation of the tangent plan distance (TPD) function to the Gibbs free energy surface. A phase is thermodynamically stable if the TPD function is non-negative at all its stationary points, while a negative value indicates an unstable case. The TPD surface is non-convex and may be highly non-linear in the compositional space; for this reason, phase stability calculation may be extremely difficult for certain conditions, mainly within the vicinity of singularities. One can distinguish two types of singularities: (i) the stability test limit locus (STLL), and (ii) the intrinsic limit of stability (spinodal). Geometrically, the TPD surface exhibits a saddle point, corresponding to a non-trivial (at the STLL) or trivial solution (at the spinodal). In the immediate vicinity of these singularities, the number of iterations of all minimisation methods increases dramatically, and divergence could occur. This inconvenient is more severe for the STLL than for the spinodal. The work presented herein is structured as follow: (i) after the introduction to the concept of tangent plan distance to the Gibbs free energy surface, several iterative methods (gradient, acceleration methods, second-order Newton and quasi-Newton) are presented, and their behaviour analysed, especially near singularities. (ii) following the analysis of Hessian matrix eigenvalues and conditioning, of problem scaling, as well as of the TPD surface representation, the solution of phase stability computation using modified objective functions is adopted. The latter are chosen in such a manner that any stationary point of the TPD function becomes a global minimum of the modified function; at the STLL, the Hessian matrix is no more indefinite, but positive definite. This leads to a better scheme of convergence as will be shown in various examples for synthetic and naturally occurring mixtures. Finally, (iii) the so-called Tunneling global optimization method is used for the stability analysis. This method consists in destroying the minima already found (by placing poles), and to tunnel to another valley of the modified objective function to find a new minimum with a smaller value of the objective function. The process is resumed when criteria for the global minimum are fulfilled. Several carefully chosen examples demonstrate the robustness and the efficiency of the Tunneling method to minimize the TPD function, as well as the modified objective functions
Merle, Xavier. "Résolution des équations de stabilité globale en régimes incompressible et compressible avec une méthode aux différences finies de haute précision." Phd thesis, Paris, ENSAM, 2009. http://pastel.archives-ouvertes.fr/pastel-00005302.
Full textBichara, Derdeï. "Etude de modèles épidémiologiques : stabilité, observation et estimation de paramètres." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0011/document.
Full textThe purpose of this thesis is on the one hand to study stability of equilibria of some epidemic models and secondly to construct an observer to estimate the non-measured states and a key parameter in a within host model. We propose extensions of classical models SIR, SIRS and SIS and we study the global stability of their equilibria. In presence of multiple pathogen strains, we proved that competitive exclusion principle holds: the strain having the largest threshold wins the competition by eliminating the others. It turns out that the winning strain is the one for which the equilibrium gives the minimum of the susceptible host population. This can be interpreted as pessimization principle. By considering the same model with two strains and a frequency-dependent type of the contact law, we prove that dynamics changes and a coexistence equilibrium exists and it is globally asymptotically stable under some conditions. The asymptotic behavior of the two other boundary equilibria is also established. The stability study of equilibrium states is mainly done by construction Lyapunov functions combined with LaSalle's invariance principle. We consider an age-structured within-host model of the Plasmodium falciuparum parasite with a general infection force. We develop a method to estimate the total parasite burden that cannot be measured by the current methods. To this end, we use some tools from control theory, more precisely observers with unknown inputs, to estimate the non measured states from the measured ones (data). From this, we deduce a method to estimate an unknown parameter that represents infection rate of healthy reed blood cells by the parasites
Mettot, Clément. "Linear stability, sensitivity, and passive control of turbulent flows using finite differences." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/92/19/08/PDF/Manuscript_Clement_Mettot.pdf.
Full textThe contribution of this Ph. D consists in a formalism and a methodology to perform linear stability analysis of turbulent flows. The flow dynamics is modelled using the RANS equations closed with a turbulence model, and we focus on the instabilities associated with the large scale structures of turbulence. A global formulation is adopted so as to allow complex geometries analysis. A discrete framework is considered, where the equations are first discretized and then linearized. In particular, the linearization is performed using finite differences. This procedure ensures the generic character of the method regarding the system of equations such as the turbulence model for example, and avoids tedious analytical linearization. Furthermore, it allows to use a numerical code in a black-box manner in order to perform linear stability analysis. Finally, we demonstrate that the sensitivity gradients can be computed within this framework for both laminar and turbulent flows. Sensitivity analysis carries valuable information regarding the location where steady control means can affect the flow unsteadiness, enabling the design of robust strategies for open loop control. The method is first tested on two laminar cases, reproducing former studies concerned with the oscillators dynamics of the wake behind a two dimensional cylinder, and the characterization of a laminar boundary layer as a noise amplifier. The robustness and validity of our procedure is then extensively studied on a compressible turbulent flow over a deep cavity. Numerical validations are performed, ensuring the correctness of our sensitivity gradients up to 3\%, and the flow physics, including unstable mode analysis, acoustics, impact of turbulence modeling, is analysed. In order to enhance the portability and the valuable information carried out by our method, we present several preliminary studies that were performed using our formalism. First, we revisit the transonic buffet over an airfoil, the noise amplifier dynamics of a turbulent shock-boundary layer interaction is then characterized and we conclude with an analysis of the screech phenomenon in under-expanded jets. Finally, we conclude this work by studying the turbulent wake behind a D-shaped cylinder, and show the potential of our method for industrial applications
Bichara, Derdei. "Étude de modèles épidémiologiques : Stabilité, observation et estimation de paramètres." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00841444.
Full textMettot, Clément. "Stabilité linéaire, sensibilité et contrôle passif d'écoulements turbulents par différences finies." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00921908.
Full textDel, Guercio Gerardo. "Optimal streaks amplification in wakes and vortex shedding control." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/12244/1/Del_Guercio.pdf.
Full textHakim, Abdelilah. "Analyse mathématique de modèles de fluides visco-élastiques de type White-Metzner." Paris 11, 1989. http://www.theses.fr/1989PA112397.
Full textThis work is concerned with the study of the flow of an incompressible viscoelastic fluid (fluid with memory) of White-Metzner type. •Because of the dependence of the viscosity and relaxation functions in the second invariant of the rate of deformation tensor, this models leads to a nonlinear (not quasilineair) partial differential equations system. This work consists in a theoretical part and a numerical one. In the theoretical part, we aim to establish several results on existence, uniqueness and stability concerning the aforementioned system. Firstly, under suitable hypothesis on the relaxation and viscosity functions, we prove the local existence and uniqueness of solution of the 2-D initial boundary value problem. Then we prove that these solutions are global provided the data are small. We also show the existence of small, stable periodic (resp. Steady) solutions corresponding to small periodic (resp. Steady) data. Second we study a special class of 1-D flows (shear flow), in particular its linear stability. The numerical part is devoted to the computation of the Poiseuille flow
Mack, Christoph. "Global stability of compressible flow about a swept parabolic body." Phd thesis, Ecole Polytechnique X, 2009. http://pastel.archives-ouvertes.fr/pastel-00005752.
Full textBarbagallo, Alexandre. "Model reduction and closed-loop control of oscillator and noise-amplifier flows." Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/65/49/30/PDF/Barbagallo_PhDThesis.pdf.
Full textCe travail est consacré au contrôle en boucle fermée des perturbations se développant linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et amplificateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur un modèle d'ordre réduit de l'écoulement obtenu par projection de Petrov-Galerkin. La stabilisation d'un écoulement de cavité de type oscillateur est traitée dans une première partie. Il est montré que la totalité de la partie instable de l'écoulement (les modes globaux instables) ainsi que la relation entrée-sortie (action de l'actionneur sur le capteur) de la partie stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux, modes POD et modes BPOD sont successivement évalués comme bases de projection pour modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l'écoulement que lorsque l'instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En revanche, les modes POD et plus particulièrement BPOD sont capable d'extraire la dynamique entrée-sortie stable et permettent de stabiliser efficacement l'écoulement. La seconde partie de ce travail est consacrée à la réduction de l'amplification des perturbations sur une marche descendante. L'influence de la localisation du capteur et de la fonctionnelle de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler une simulation non-linéaire avec un modèle linéaire est évaluée
Yamouni, Sami. "Contrôle en boucle ouverte des instationnarités de cavité en régime transsonique." Palaiseau, Ecole polytechnique, 2013. http://www.theses.fr/2013EPXX0008.
Full textBoyer, Germain. "Étude de stabilité et simulation numérique de l’écoulement interne des moteurs à propergol solide simplifiés." Thesis, Toulouse, ISAE, 2012. http://www.theses.fr/2012ESAE0029/document.
Full textThe current work deals with the modeling of the hydrodynamic instabilities that play a major role in the triggering of the Pressure Oscillations occurring in large segmented solid rocket motors. These instabilities are responsible for the emergence of Parietal Vortex Shedding (PVS) and they interact with the boosters acoustics. They are first modeled as eigenmodes of the internal steady flowfield of a cylindrical duct with sidewall injection within the global linear stability theory framework. Assuming that the related parietal structures emerge from a baseflow disturbance, discrete meshindependant eigenmodes are computed. In this purpose, a multi-domain spectral collocation technique is implemented in a parallel solver to tackle numerical issues such as the eigenfunctions polynomial axial amplification and the existence of boundary layers. The resulting eigenvalues explicitly depend on the location of the boundaries, namely those of the baseflow disturbance and the duct exit, and are then validated by performing Direct Numerical Simulations. First, they successfully describe flow response to an initial disturbance with sidewall velocity injection break. Then, the simulated forced response to acoustics consists in vortical structures wihich discrete frequencies that are in good agreement with those of the eigenmodes. These structures are reflected into upstream pressure waves with identical frequencies. Finally, the PVS, which response to a compressible forcing such as the acoustic one is linear, is understood as the driving phenomenon of the Pressure Oscillations thanks to both numerical simulation and stability theory
Song, Ge. "Sound generation by coherent structures in mixing layers." Phd thesis, Paris, ENSAM, 2012. http://pastel.archives-ouvertes.fr/pastel-00835374.
Full textAlkhatib, Hasan. "ETUDE DE LA STABILITE AUX PETITES PERTURBATIONS DANS LES GRANDS RESEAUX ELECTRIQUES : OPTIMISATION DE LA REGULATION PAR UNE METHODE METAHEURISTIQUE." Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2008. http://tel.archives-ouvertes.fr/tel-00408160.
Full textBellot, Delphine. "Contribution à l'analyse et à la synthèse de schémas de commande référencée vision." Toulouse 3, 2002. http://www.theses.fr/2002TOU30211.
Full textFeng, Yuehong. "Stabilité de solutions régulières pour des systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22484/document.
Full textThis thesis is essentially composed of two parts dealing with Cauchy problems and periodic problems. In the first part, we study the stability of smooth solutions near non constant equilibrium states for a two-fluid isentropic compressible Euler-Maxwell system.By classical energy estimates together with an induction argument on the order of the derivatives of solutions, we prove the existence and uniqueness of global solutions to the system when the given initial data are near the equilibrium states. We also obtain the asymptotic behavior of solutions when the time goes to infinity. In the second part, we consider the long time stability of the global smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systems in non isentropic case when the equilibrium solutions are constants. With the help of suitable choices of symmetrizers and energy estimates, we prove the existence and uniqueness of global solutions to the systems with given small initial data. Furthermore, using the Duhamel principle and the Fourier analysis tool, we obtain the decay rates of smooth solutions as the time goes to infinity
Pujo-Menjouet, Laurent. "Contribution à l'étude d'une équation de transport à retards décrivant une dynamique de population cellulaire." Phd thesis, Université de Pau et des Pays de l'Adour, 2001. http://tel.archives-ouvertes.fr/tel-00001176.
Full textMostefaoui, Imene Meriem. "Analyse mathématique d’un système dynamique/réaction-diffusion modélisant la distribution des bactéries résistantes aux antibiotiques dans les rivières." Thesis, La Rochelle, 2014. http://www.theses.fr/2014LAROS020/document.
Full textThe objective of this thesis is the qualitative study of some models of the dynamic and the distribution of bacteria in a river. We are interested in the stability of equilibria and the existence of periodic solutions. The thesis can be divided into two parts; the first part is concerned with a mathematical analysis of a system of differential equations modelling the dynamics and the interactions of four species of bacteria in a river. The asymptotic behavior of equilibria is established. The stability study of equilibrium states is mainly done by construction of Lyapunov functions combined with LaSalle's invariance principle. On the other hand, the existence of periodic solutions is proved under certain conditions using the continuation theorem of Mawhin. In the second part of this thesis, we propose a non-autonomous convection-reaction diffusion system with nonlinear reaction source functions. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. Our main contributions are : (i) the determination of the limit set of the system; it is shown that it is reduced to the solutions of the associated elliptic system; (ii) sufficient conditions for the existence of a positive solution of the associated elliptic system based on the Leray Schauder's degree theory
Tsanou, Berge. "Etude de quelques modèles épidémiologiques de métapopulations : application au paludisme et à la tuberculose." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0055/document.
Full textThe objective of this thesis is first the modeling, the mathematical analysis and numerical simulations of the metapopulation models of infectious diseases based on some modern approaches of the mobility patterns of humans. Secondly to examine the influence of the mobility (movement) of people on the spread of some human infectious diseases. Finally to deal with the difficult question of the existence and stability of endemic equilibria of metapopulation models. For certain diseases such as Malaria, Tuberculosis or some Sexually Transmitted Diseases that do not confer any immunity, we give some metapopulation models that extend to multiple patches the well know epidemiological models in one patch. Our models are based on the mobility patterns of humans wich can take different forms leading to numerous approaches of modeling metapopulations : the Euler approach of the movement of particles (here humans) as in Fluid Mechanics, is used in the first part. The Lagrange approach of the movement of particles (here humans) as in Fluid Mechanics, is used in the second part. The last and more recent approach based on Statistical Mechanics, wich takes into account the degree distribution of the network of the metapopulation is used in the third and last part of this work. For each approach, we build a metapopulation model for a chosen disease, and gve its mathematical analysis. The theoretical framework we use to analyze ou models is that of triangular, monotone or anti-monotone non-linear dynamical systems. We also use some Lyapunov-Lasalle techniques. In the fisrt two parts of our work, we prove that the steady solutions (called equilibria) of the given systems are globally asymptotically stable when the basic reproduction number R0 is less than or equal to the unity (for the disease free equilibria), and when R0 is greater than one (for the endemic equilibria). In the last part, we build a model to describe the spreading of tuberculosis hinging on the two most used forces of infection in mathematical modeling of epidemics : the frequency-dependant transmission and the density-dependant transmission. For each type of trasmission model, we give the explicit formula for the basic reproduction number. We prove for the frequency-dependant transmission model, that the disease free equilibrium is globally asymptotically stable when R0 is less than one. And for the density-dependant transmission model, we prove the existence of an endemic equilibrium when R0 is greater than one. Numerical simulations are performed at the end of each part to examine the influence of human's mobility on the basic reproduction number, as well as on the behavior of the solutions and consequently on the spreading patterns of the diseases under study
Diagne, Mamadou Lamine. "Modélisation et étude mathématique de la dynamique de prolifération du Typha dans le Parc National des Oiseaux de Djoudj (PNOD)." Thesis, Mulhouse, 2013. http://www.theses.fr/2013MULH5112/document.
Full textIn this thesis, we propose and analyze a switching dynamics model of the proliferation of invasive aquatic plant : Typha. This model which belongs to the class hybrid systems is relatively new in the field biomathematics. It describes the colonization dynamics of the plant taking into account the seasonality of type of reproduction : the sexual reproduction. During the last decade, the plant has colonized PNOD, disrupting the ecosystem and also causing enormous problems for the local population. There had been several significant attrempts to reduce its proliferation.However, these attempts have been futile an inefficient due to the large financial cost. There are some few phenological mathematical models on development of Typha. The propose study is part of an eco-hydrological effort to contribute to the understanding of the roles of each type of reproducing on the proliferation dynamics of Typha. The three main goals of this thesis are : To construct a mathematical model based on biological hypotheses of the reproduction of Typha,– analyze the model and– suggest a proliferation combatting strategy.We analyze sub-models that make up the switching/commutation model by assumptions or considering some hypothesis on the values of the model parameters. We study the zero equilibrium of the switching model, and then we propose and analyze a two-dimensional model by reducing the general model to set the stage for the analysis of the more complicated general three- dimension model. Finally, we determine a condition for the existence of limit cycle of the model. In all the sub-models studies, we establish the local and glob al asymptotic stability of zero equilibrium (equilibrium without any Typha plant) when the basic reproduction rate of the system under consideration is less than unity. We also obtain the condition under which thepositive or non-zero equilibrium of the model/sub-models asymptotically stable when the basic reproduction rate is greater than unity. For the specific case of the reduced model, we show that when the weighted average of the breeding rate of this sub-model is less than 1, the solutions converge to the zero equilibrium. When this average is greater than 1, we prove the existence of a limit cycle
Seck, El Hadji Boubacar. "Contribution au développement d’outils analytiques et numériques pour quantifier et qualifier la robustesse des structures." Thesis, Paris 10, 2018. http://www.theses.fr/2018PA100060/document.
Full textLocalized initial failures in constructions can sometimes be followed by disproportionate damage (collapse) spreading to the whole or the major part of a building. Since the partial and progressive collapse of the Ronnan Point tower (London, $1968$) caused by a gas explosion, the concept of robustness has been introduced in standards. Structural robustness is defined as the ability of a structure to withstand unforeseen events causing local damage like fire, explosion or impact, without suffering disproportionate collapse. This definition encourages engineers to include the concepts of initial damage (local failure) and disproportionate damage (global failure) in design procedures. The main objective of this PhD work is to develop a simulation tool in order to highlight the potential weakness in a structure when uncertain sollicitations (accidental events) and/or dimensional fault (design or realization) interfere with the standard predictions. The robustness is evaluated by an index varying from 0 (non-robust structure) to 1 (very robust structure) and is calculated from the initial and global failure probabilities. The proposed methodology is based on an event tree analysis summurizing all the distinct potential scenarios, from the initial damage to the collapse of the structure. The developed approach is applied to statically indeterminate unidimensional structures like beams and frame. The redundancy's consequence is that the break of one or several cross sections will not necessarily lead to the collapse of the whole system: the redistribution of the internal efforts allows the remaining undamaged parts of the structure to support the external (applied) loading. The methodology is illustrated by some examples of clamped-clamped beam and frame, loaded with punctual forces. The cross sections are supposed to have an elastic behaviour until the formation of plastic hinges (local failure). Two types of probabilistic laws, Gaussian and Log-normal, are tested by the developed approach and by Monte-Carlo simulations. The chosen random variables can be either independent or correlated. The resulting complete event tree contains all the exclusive paths from an localised damage to the global failure, without intersection between branches stemming from the same node. This specific property allows to evaluate the robustness indexes of the structure with the ratio between the local and global probabilities, according to each scenario. The analysis of the event tree and of the robustness indexes allows to highlight the potential brittleness which could cause a generalized collapse of the structure with respect to accidents or malicious acts. The developed methodology provides an effective tool of simulation and diagnostic, both in the design phase and in the rehabilitation one, useful to the reinforcement of existing or future buildings and to ensure the safety of people and surrounding structures
Barbagallo, Alexandre. "Réduction de modèle et contrôle en boucle fermée d'écoulements de type oscillateur et amplificateur de bruit." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00654930.
Full textVyazmina, Elena. "Bifurcations d'un écoulement tournant." Phd thesis, Ecole Polytechnique X, 2010. http://tel.archives-ouvertes.fr/tel-00538944.
Full textBucci, Michele Alessandro. "Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0053/document.
Full textThis thesis aims at highlighting the limits of passive control by usingminiaturized roughness elements. The flow topology induced by the presence ofcylindrical roughness and miniaturized vertex generators has been studied to uncover asymptotic and short time dynamics. Supercritical bifurcations has been investigated by means of global stability analysis. Subcritical bifurcation are induced by transient growth of the energy or receptivity of stable global modes. 3D optimal forcing structures are extracted to figure out the spatial distribution linked to the resonant pulsation. Perturbed direct numerical simulation reveals the pivotal role of the less steady global mode in the non-linear unsteadiness. A detailed analysis of the flowstructures is provided and linked to the involved linear mechanisms. Global feature of the eigenmode are linked to the presence of the separation zone behind the cylindrical roughness. By using miniaturized vortex generators the separation zone is suppressed and no isolated global modes are present. The flow dynamics turns out to be driven not only by roughness Reynolds number and geometrical aspect ratio but also by the ratio between the roughness height and the boundary layer thickens
Jermann, Cyril. "Eclatement tourbillonnaire dans le sillage turbulent d'un véhicule générique." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4340/document.
Full textThis thesis is a contribution to the study of the longitudinal vortices developing in the near wake of ground vehicles, with the general purpose of reducing the aerodynamic drag by triggering the vortex breakdown phenomenon. We present a new data acquisition system called A-SPIV, allowing to reconstruct a 3D turbulent time-averaged velocity field from stereo-PIV planes measured by translation of the whole cameras-laser system, with no need to recalibrate. We also propose a method to reconstruct the mean pressure in the bulk from the A-SPIV data and from a dedicated wall static pressure measurement. This new overall experimental protocol is applied to a standard aerodynamic test-case, the 25° Ahmed body, all results being compared and validated at high turbulent Reynolds number against existing data from the literature. A thorough analysis of the longitudinal vortices suggests the occurrence of a spontaneous vortex breakdown in the near-wake, although there exist no stagnation point in the experimental data. Such vortex breakdown is therefore evidenced using two different theoretical criteria considering the phenomenon as the consequence of either a reorganization of the vorticity, or an accumulation of inertial waves propagating along the vortex core. The underlying analyses are carried out in a cylindrical system attached to the vortex axis and predict a single breakdown position, in good agreement with the singular position initially inferred from the A-SPIV data. The thesis ends with a global stability analysis of the turbulent mean flow suggesting a possible connection between the occurrence of vortex breakdown and a global instability of the longitudinal vortex
Fall, Abdoul Aziz. "Etudes de quelques modèles épidémiologiques : application à la transmission du virus de l'hépatite B en Afrique subsaharienne (cas du Sénégal)." Thesis, Metz, 2010. http://www.theses.fr/2010METZ003S/document.
Full textWe propose new models based on the state of art and the epidemiology currently known from the transmission of the hepatitis B virus. Thus, we present two models of the transmission of Hepatitis Bvirus, a model without vertical transmission and another in which the vertical transmission of the disease is taken into account, This second model is justified by the controversy, with regard to the incidence of the vertical and perinatal transmission of the virus in some parts of Africa ; between the World Health Organization on one hand and hepatitis B's specialists in Senegal on the other hand. These models helped us to analyse epidemiological models with a differential susceptibility of the population, and stagged progression of infectious. We present a thorough analysis of the stability of the models using the Lyapunov techniques and obtain the basic reproduction ratio, R0 which allows into the study of general epidemiological models including those proposed for the transmission of the hepatitis B virus. Numerical simulations are done to illustrate the behaviour of the model, using data collected during the campaign against epidemic hepatitis B in Senegal and from published literature. These models enable the evaluation of the incidence of the vertical and perinatal transmission of the hepatitis B virus on the policies of Public Health
Busquet, Denis. "Study of a high Reynolds number flow around a two dimensional airfoil at stall : an approach coupling a RANS framework and bifurcation theory." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX027.
Full textAirfoil stall is commonly described as a sudden drop of lift when increasing the angle of attack. This phenomenon is detrimental to aircrafts and helicopters, since it strongly limits their flight envelope. Past experimental and numerical investigations, specifically dedicated to static stall (i.e. for rigid wings), have clearly identified two phenomena which appear close to the stall angle: low-frequency oscillations and hysteresis of the lift coefficient. The first one is an oscillation of the lift between maximal and minimal values obtained when the instantaneous flow is attached and fully separated, respectively. The corresponding Strouhal number (St ~ 0.02) is usually an order of magnitude lower than the Strouhal number (St ~ 0.2) of the vortex-shedding that may appear for larger angles of attack. The second phenomenon is characterized by the existence of different time-averaged solutions around the stall angle depending on whether the angle of attack is increased or decreased.The objective of this thesis is to better understand the origin of stall and of these two phenomena using numerical simulations of turbulent flows modelled in the RANS (Reynolds-Averaged Navier-Stokes) framework. A combination of various numerical and theoretical approaches (unsteady simulations, continuation of steady solutions, linear stability and bifurcation analyses) have been developed and applied to the stall of a 2D helicopter blade airfoil OA209 at low Mach number (M~0.2) and high Reynolds number (Re~1.8x10^6).Steady RANS computations are performed using Spalart-Allmaras model to obtain steady states for several angles of attack taking advantage of continuation methods (naive continuation and pseudo-arclength method). The results highlight one upper branch (of high lift), one lower branch (of low lift) and, in between, a middle branch. Close to stall, for a same angle of attack, solutions coexist on each branch, characterizing a hysteresis phenomenon. Linear stability analyses performed around these equilibrium states reveal the existence of a low-frequency unstable mode associated to stall. The evolution of the corresponding eigenvalues along the branches of steady solutions allows us to establish a first sketch of the bifurcation scenario. Unsteady RANS computations are carried out to complete it. Low-frequency limit-cycle solutions have been identified in a narrow range of angles of attack close stall. These periodic solutions are characterized by maximal and minimal instantaneous values of the lift that are larger and lower than the associated high-lift and low-lift steady solutions, respectively. To clarify the formation and disappearance of this low-frequency limit cycle, and thus improve our knowledge about the bifurcation scenario, a one-equation model reproducing the linear characteristics of the phenomenon is proposed. This nonlinear static-stall model is calibrated on the steady states and their linear behavior obtained with RANS computations. A study of the nonlinear behavior of this model then reveals a possible scenario leading to the appearance and collapsing of the low frequency limit cycle. Finally, the case of a NACA0012 at Re~1.0x10^6 is considered to check the robustness of the scenario identified
Destyl, Edes. "Modélisation et analyse de systèmes d'équations de Schrödinger non linéaires." Thesis, Antilles, 2018. http://www.theses.fr/2018ANTI0283/document.
Full textThe works of this thesis concern the modeling and the numerical study of thesystems of two coupled nonlinear Schrödinger equations. At first, we considered aparity-time-symmetric system of the two coupled nonlinear Schrödinger (NLS) equationsthat modeled phenomenons in birefringent nonlinear optical fiber. We studythe behavior of the solution in some spaces like the Sobolev space H1. And we studythe numerical aspect of the model which clearly shows the behavior of the solutionin the chosen space. For the same model in higher dimension, we establish sufficientconditions for the initial conditions to blow up in finite time for some nonlinearityand for others we do the numerical study of the model and we present some casesof blowing up of the solution in finite time and also of the solutions of the modelthat exist all the time. On the other hand, we address a new model of discrete nonlinearSchrödinger equations PT -symmetric. A such model describes dynamics inthe chain of weakly coupled pendula pairs near the resonance between the parametricallydriven force and the linear frequency of each pendulum. In order to studythe stability of the pendulums, we establish sufficient conditions on the parametersof the model so that the equilibrium solution is stable. Numerical experiments arepresented to validate the analytical results and to characterize the unstabilizationof the coupled pendulum chain in the region of instability
Mraidi, Ramzi. "Modélisation et contrôle de la transmission du virus de la maladie de Newcastle dans les élevages aviaires familiaux de Madagascar." Thesis, La Réunion, 2014. http://www.theses.fr/2014LARE0014.
Full textNewcastle disease (ND) severely harms Malagasy bird productions, mainly uses to food and family economy. ND is a pathological dominant without general vaccination. The objective of this thesis is modelling the transmission of ND virus (NDV) in smallholder chicken farms in general and, Madagascar in particular. We propose new models based on the state of art and the epidemiology currently known from the transmission of the NDV. Thus, we present two models of the transmission of NDV: a first model with environmental transmission and a second model in which imperfect vaccination of chickens is considered. We present a thorough analysis of the stability of the models using the Lyapunov techniques and obtain the basic reproduction ratio R0. This work is based on field surveys to understand the current vaccination practices in Madagascar
Pirogov, Aleksandr. "Equilibrage robuste de lignes de production : modèles de programmation linéaire en variables mixtes et règles de pré-traitement." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0158/document.
Full textThis work deals with a robust optimisation of production lines at the design stage. The design of such lines can be interpreted as an optimisation problem that consists in finding a configuration optimising individual objectives and respecting technological and economic constraints. We conside rtwo types of production lines: assembly and transfer lines. The first one can be represented as a set of linearly ordered stations where the tasks are executed sequentially. The second one is composed of transfer machines, including several multispindle heads. All tasks within a single head are executed simultaneously, while tools on a machine work in a sequential mode. We describe different approaches for modelling the uncertainty of data in line balancing problems. Our objective is to identify the approaches that best fit the context of the design. In particular, the attention concentrates on the robust approach. We propose a new optimisation criterion based on the stability radius of a feasible solution. Then, robust formulations are presented for the design of the assembly and transfer lines under variations of task processing times. We also develop heuristic methods whose results are used to improve mathematical models. Finally, a new hybrid resolution method is elaborated to solve different variants of the stability radius maximisation
Verdoit-Jarraya, Marion. "Caractérisation et modélisation de la dynamique spatiale et saisonnière de populations démersales et benthiques exploitées de la Mer Celtique." Paris 6, 2003. http://www.theses.fr/2003PA066596.
Full textMeliga, Philippe. "Analyse théorique et contrôle des instationnarités dans un écoulement de culot en régime compressible." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00004529.
Full textAndré, Thierry. "Contrôle actif de la transition laminaire-turbulent en écoulement hypersonique." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2022/document.
Full textDuring a hypersonic flight (Mach 6, 20 km altitude), the boundary layer developing on the forebody of a vehicle is laminar. This state may destabilize the scramjet engine propelling the vehicle. To overcome this problem during the flight, the boundary layer transition has to be forced using a control device whose effect is fixed (passive) or adjustable (active). In this work, we analyze the efficiency of a jet in crossflow in forcing the boundary layer transition on a generic forebody. The flow is computed with a Large Eddy Simulations (LES) approach. A parametric study of the injection pressure allows the efficiency of the jet in tripping the boundary layer to be quantified. The influence of flight conditions (Mach, altitude) on the transition is also studied. Dynamic Mode Decomposition (DMD) is applied to the simulation results to determine the transition leading to dynamic modes and to understand underlying transition mechanisms. Experiments in the Purdue University quiet wind tunnel (BAM6QT) were performed to quantify the efficiency of a passive transition device (diamond roughnesses) and an active transition device (single air jet) in tripping the boundary layer. A thermo-sensitive paint and pressure transducers (Kulite, PCB) were used to determine the state of the boundary layer on the generic forebody. Experimental and numerical results show a sonic injection is sufficient to induce transition. We observe from the experiments that for the same penetration height, a single roughness is less efficient than a single air jet in destabilizing the boundary layer
Houdebine, Marc. "Contribution pour l'amélioration de la robustesse et du bruit de phase des synthétiseurs de fréquences." Phd thesis, Grenoble INPG, 2006. http://tel.archives-ouvertes.fr/tel-00137092.
Full text