Academic literature on the topic 'Ethanol-biodiesel blend'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ethanol-biodiesel blend.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ethanol-biodiesel blend"
Jagtap, Sharad P., Anand N. Pawar, and Subhash Lahane. "Effect of Ethanol-Biodiesel-Diesel Blend on Performance and Emission Characteristics of a DI Diesel Engine." International Journal of Heat and Technology 39, no. 1 (February 28, 2021): 179–84. http://dx.doi.org/10.18280/ijht.390119.
Full textRocha, H. L., N. R. Pinto, M. J. Colaço, and A. J. K. Leiroz. "EXPERIMENTAL STUDY OF TERNARY FUEL BLENDS ON AN ASTM-CFR-CETANE ENGINE." Revista de Engenharia Térmica 13, no. 2 (December 31, 2014): 09. http://dx.doi.org/10.5380/reterm.v13i2.62087.
Full textJamrozik, Arkadiusz, Wojciech Tutak, Michał Pyrc, and Michał Sobiepański. "Effect of diesel-biodiesel-ethanol blend on combustion, performance, and emissions characteristics on a direct injection diesel engine." Thermal Science 21, no. 1 Part B (2017): 591–604. http://dx.doi.org/10.2298/tsci160913275j.
Full textMat Yasin, Mohd Hafizil, Rizalman Mamat, Abdul Mutalib Leman, Amir Khalid, and Noreffendy Tamaldin. "Experimental Investigation on Biodiesel-Ethanol-Diesel Blends Operating with a Diesel Engine." Applied Mechanics and Materials 465-466 (December 2013): 221–25. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.221.
Full textBhat, Shrivathsa Nelly, Shreyas Shenoy, and P. Dinesha. "Effect of bio-ethanol on the performance and emission of a biodiesel fueled compression ignition engine." MATEC Web of Conferences 144 (2018): 04017. http://dx.doi.org/10.1051/matecconf/201814404017.
Full textChavan, Nikhil D., and Amar P. Pandhare. "Comparative Investigations on Mahua Biodiesel-Diesel - Alcohol Low Percentage Blends with a VCR Diesel Engine." E3S Web of Conferences 170 (2020): 01014. http://dx.doi.org/10.1051/e3sconf/202017001014.
Full textGhanim, Fatima Mohammed, Ali Mohammed Hamdan Adam, and Hazir Farouk. "Performance and Emission Characteristics of a Diesel Engine Fueled by Biodiesel-Ethanol-Diesel Fuel Blends." No 1 4, no. 1 (June 1, 2018): 26–36. http://dx.doi.org/10.51141/ijatr.2018.4.1.2.
Full textRamesha, D. K., Nishad Rajmalwar, T. Sreeharsha Varma, and Swamy K. M. Mrithyunajaya. "Study of the Effects of Ethanol As an Additive with a Blend of Poultry Litter Biodiesel and Alumina Nanoparticles on a Diesel Engine." Journal of Middle European Construction and Design of Cars 15, no. 2 (December 20, 2017): 49–56. http://dx.doi.org/10.1515/mecdc-2017-0008.
Full textChasos, Charalambos A., George N. Karagiorgis, and Chris N. Christodoulou. "Diesel Internal Combustion Engine Emissions Measurements for Methanol-Based and Ethanol-Based Biodiesel Blends." Conference Papers in Energy 2013 (May 23, 2013): 1–8. http://dx.doi.org/10.1155/2013/162312.
Full textJohn, Panneer, and Karuppannan Vadivel. "The effects of ethanol addition with waste pork lard methyl ester on performance, emission and combustion characteristics of a diesel engine." Thermal Science 18, no. 1 (2014): 217–28. http://dx.doi.org/10.2298/tsci121010058j.
Full textDissertations / Theses on the topic "Ethanol-biodiesel blend"
Klajn, Felipe Fernandes. "Avaliação Comparativa de Diferentes Proporções das Misturas Diesel-Biodiesel-Etanol e Diesel-Biodiesel frente ao Diesel Tipo A :Análises Físico-Químicas e de Desempenho de um Conjunto Motor-Gerador." Universidade Estadual do Oeste do Parana, 2016. http://tede.unioeste.br:8080/tede/handle/tede/807.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The search for alternatives to reduce diesel within the national energy matrix, particularly within the transport sector, has been studied and carried out in a gradual manner with partial insertions of biodiesel to diesel. This binary mixture, however, can be improved by the addition of ethyl alcohol (ethanol), which contain oxygen atoms in its structure and may be able to promote more efficient burning and to reduce exhaust emissions, both sulfur and non-sulfur. This work aimed to evaluate the energy performance of an engine-generator set working with diesel-biodiesel blends and diesel-biodiesel-ethanol, compared with the diesel type "A", i.e, diesel without the addition of biodiesel, as well as physicochemical characteristics of each treatment. The diesel-biodiesel mixtures were based on the currently marketed formulation (B7) and projections provided by the Senate Bill 613/2015 and Resolution No. 3/2015 CNPE for captive consumers or road fleets, ie, B10, B15 and B20. Each binary mixture this has undergone additions of anhydrous ethanol (99.6% p / p) to 1%, 5%, 10% and 15%. The treatments were subjected to 5 resistive loads of 1, 2, 3, 4 and 5 kW in triplicate. The set of data collected, analyzed the density, viscosity, calorific value, specific consumption (CE), energy efficiency (EE) and SO2 emissions. The density and viscosity of the mixtures were close to the diesel and within the specifications of the National Agency of Petroleum, Natural Gas and Biofuels (ANP). The calorific value decreased as the biofuel incorporated into the diesel grew. The best specific fuel consumption was observed in absolute terms at a load of 5 kW for B15E1 with 327.1 g kW-1 h-1followed by B10E1 (330.1 g kW-1 h-1) and diesel (g kW-1 h-1). The ternary mixture composed by adding 1% ethanol did not differ statistically from diesel-biodiesel blends for all applied loads. The greatest EE of 27.15% was observed at the load of 4 kW, to B10E15 mixture. The B15E1 mixtures, B20E1 and B20E0 were more efficient than diesel for all applied loads. The lowest emission of SO2 was 5 kW for the load B10E0 with 397.66 ppm, while the highest was in load of 1 kW for B15E15 with 3391.67 ppm.
A busca de alternativas para a diminuição do uso de diesel dentro da matriz energética nacional, principalmente dentro do setor de transportes, tem sido estudada e realizada de modo gradativo com inserções parciais de biodiesel ao diesel. Esta mistura binária, entretanto, pode ser melhorada com a adição de álcool etílico (etanol), que por conter átomos de oxigênio em sua estrutura pode ser capaz de promover uma queima mais eficiente e reduzir as emissões gasosas, tanto sulfuradas quanto não sulfuradas. Assim, este trabalho buscou avaliar o desempenho energético de um conjunto motor-gerador trabalhando com misturas diesel-biodiesel e diesel-biodiesel-etanol, comparando com o diesel tipo A , isto é, diesel sem a adição de biodiesel, bem como características físico-químicas de cada tratamento. As misturas diesel-biodiesel tiveram como base a formulação atualmente comercializada (B7) e projeções previstas pelo Projeto de Lei do Senado 613/2015 e Resolução CNPE nº 3/2015 para frotas cativas ou consumidores rodoviários, isto é, B10, B15 e B20. Cada mistura binária desta sofreu adições de etanol anidro (99,6% p/p) a 1%, 5%, 10% e 15%. Os tratamentos foram submetidos a 5 cargas resistivas de 1, 2, 3, 4 e 5 kW, em triplicata. Do conjunto de dados colhidos, foram analisados a densidade, viscosidade, poder calorífico superior e inferior, consumo específico (CE), eficiência energética (EE) e as emissões de SO2. A densidade e viscosidade das misturas ficaram próximas ao diesel e dentro das especificações da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). O poder calorífico inferior diminuiu a medida que o teor de biocombustíveis incorporados ao diesel cresceu. O melhor consumo específico em termos absolutos foi verificado na carga de 5 kW, para B15E1, com 327,1 g kW-1 h-1 seguido de B10E1 (330,1 g kW-1 h-1) e do diesel (334,7 g kW-1 h-1). As misturas ternárias compostas pela adição de 1% de etanol não diferiram estatisticamente das misturas diesel-biodiesel para todas as cargas aplicadas. A maior EE verificada foi de 27,15%, na carga de 4 kW, para a mistura B10E15. As misturas B15E1, B20E1 e B20E0 foram mais eficientes que o diesel para todas as cargas aplicadas. A menor emissão de SO2 foi verificada na carga de 5 kW para a mistura B10E0, com 397,66 ppm, enquanto a maior foi na carga de 1 kW, para B15E15, com 3391,67 ppm.
Vanzella, Edson. "Estudo de propriedades físico-químicas do etanol Hidratado com adição de biodiesel para uso em motores De combustão interna ciclo otto." Universidade Estadual do Oeste do Parana, 2015. http://tede.unioeste.br:8080/tede/handle/tede/753.
Full textThe influence of the addition of biodiesel on hydrous ethanol for use at the internal combustion engines (Otto cycle), of vehicles and of aircrafts, as the utilized in the crop duster Ipanema, is that aimed to this study. The Brazilian Aeronautics Company - Embraer, in partnership with Aircraft Industry Neiva, Ipanema agricultural aircraft manufacturers, converted the engine of this aircraft, originally stocked with aviation gasoline (Avgas) for ethanol in 2005. The success of the conversion of the fossil fuel for the biofuel is proven and reported by aircraft operators throughout Brazil, with advantages environmental, economic, of infrastructure and yield. However, some physical and chemical properties of ethanol as the low lubricity, low flash point, its hygroscopic nature and low viscosity, may bring damage to components of the aircraft fuel system, as well as parts of the engine. Biodiesel possesses features that are useful to the Otto cycle engine, because its organic components associated with your higher electrical conductivity, provide high lubricity when it is added to the ethanol. Biodiesel flash point is high, and thus minimizes flammability risks from transport, storage and supply of ethanol. Because it is less corrosive than ethanol, biodiesel when mixed with ethanol also reduces the conditions of wear and corrosion on parts and engine parts. For diagnosing the ideals levels to the mixture formation were performed eight different compositions (four with soybean biodiesel and four with castor bean biodiesel) varying the percentage of biodiesel at 1%, 3%, 5% and 10% (m/m) in hydrous ethanol. Responses were observed in terms of calorific value, viscosity, flash point, density, electrical conductivity and turbidity for each blend. The calorific value and viscosity were influenced by the major carbon chains of biodiesel, with the largest increase in calorific value occurred in the blend with 10% soybean biodiesel (+ 8.70%). The viscosity of the blend with 10% castor bean biodiesel increased 23.8% and for the blends with 5% castor bean biodiesel and 10% soy biodiesel increased 15%. The flash point for the blends with 10% of soy biodiesel and of castor increased approximately 1 ° C, improving the security conditions in the fuel handling. The density extrapolated the ceiling of specified 1.42% for the blend with 10% castor biodiesel. This parameter is dependent on the amount of water present in the ethanol, which in this study if presented in the maximum, thus doing the density of blends exceed the limit. The electrical conductivity and the turbidity diagnosed homogeneous mixtures, without phase separation and increase in fuel lubricity.
A influência da adição de biodiesel ao etanol hidratado para utilização em motores de combustão interna (ciclo Otto), de veículos e de aeronaves, como o utilizado no avião agrícola Ipanema, é o que objetivou esse estudo. A Empresa Brasileira de Aeronáutica Embraer, em parceria com a Indústria Aeronáutica Neiva, fabricantes do avião agrícola Ipanema, converteu o motor desta aeronave, originalmente abastecido com gasolina de aviação (Avgas), para etanol em 2005. O sucesso da conversão do combustível fóssil para o biocombustível é comprovado e relatado por operadores da aeronave em todo o Brasil, com vantagens ambientais, econômicas, de infraestrutura e rendimento. No entanto, algumas características físicas e químicas do etanol, como sua baixa lubricidade, baixo ponto de fulgor, sua natureza higroscópica e baixa viscosidade, podem trazer danos a componentes do sistema de combustível da aeronave, bem como a partes do motor. O biodiesel possui características que são úteis ao motor ciclo Otto, pois seus componentes orgânicos associados a sua maior condutividade elétrica, proporcionam uma capacidade de lubrificação elevada quando este é adicionado ao etanol. O ponto de fulgor do biodiesel é alto, e assim, minimiza os riscos de inflamabilidade decorrentes do transporte, armazenamento e abastecimento do etanol. Por ser menos corrosivo que o álcool combustível, o biodiesel quando misturado ao etanol também atenua as condições de desgaste e corrosão em peças e partes do motor. Para diagnosticar os teores ideais para formação da mistura, foram realizadas 8 diferentes composições (4 com biodiesel de soja e 4 com biodiesel de mamona), variando-se o percentual de biodiesel em 1%, 3%, 5% e 10% (m/m) em etanol hidratado. As respostas foram verificadas em termos do poder calorífico, da viscosidade, do ponto de fulgor, da densidade, da condutividade elétrica e da turbidez para cada blenda. O poder calorífico e a viscosidade foram influenciados pelas grandes cadeias carbônicas do biodiesel, sendo que o maior acréscimo no poder calorífico ocorreu na blenda com 10% de biodiesel de soja (+ 8,70%). A viscosidade da blenda com 10% de biodiesel de mamona aumentou 23,8% e para as blendas com 5% de biodiesel de mamona e 10% de biodiesel de soja aumentou 15%. O ponto de fulgor para as blendas com 10% de biodiesel de soja e de mamona aumentou aproximadamente 1 °C, melhorando a condição de segurança no manuseio do combustível. A densidade extrapolou o limite máximo da especificação em 1,42% para a blenda com 10% de biodiesel de mamona. Este parâmetro é dependente da quantidade de água presente no etanol, que neste estudo se apresentou no limite máximo, assim, fazendo com que a densidade das blendas ultrapassasse o limite. A condutividade elétrica e a turbidez diagnosticaram misturas homogêneas, sem separação de fases e com acréscimo no poder de lubrificação do combustível
GUEDES, ANDREW DAVID MENDES. "EXPERIMENTAL STUDY ABOUT ETHANOL IMPACT IN DIESEL-BIODIESEL-ETHANOL BLENDS IN COMPRESSION IGNITION ENGINES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30923@1.
Full textAGÊNCIA NACIONAL DE PETRÓLEO
Há algum tempo biocombustíveis renováveis são potenciais soluções sugeridas às questões de emissão de poluentes e dependência da sociedade aos derivados fósseis. Biodiesel e etanol são combustíveis comerciais renováveis candidatos à substituição das fontes fósseis, especialmente, em motores de ignição por compressão, os quais são tipicamente mais eficientes do que aqueles de ignição por centelha. Misturas ternárias de diesel, biodiesel e etanol formam estratégias de substituição parcial do diesel aplicáveis em motores de ignição por compressão sem a necessidade de grandes adaptações. Nesta dissertação realizaram-se avaliações experimentais em um motor multi-cilíndrico de ignição por compressão (MWM 4.10 TCA), abastecido com misturas de diesel, biodiesel (até 15 por cento em teor volumétrico) e etanol anidro (até 20 por cento em teor volumétrico). Cada mistura ternária é composta por diferentes proporções do álcool e sempre com a concentração volumétrica de 1 por cento de um aditivo estabilizador da mistura. Portanto, os testes associam substituições parciais do diesel por biocombustíveis a avaliações de desempenho do motor e da combustão das misturas, sob algumas condições de carga, regimes de rotação e instantes de injeção de combustível. Os testes realizados indicam que misturas com 20 por cento em volume de concentração de etanol experimentam inícios de combustão até 4,7 graus CA mais atrasados. Porém, a busca de instantes otimizados na injeção de combustível trouxe melhorias ao desempenho do motor, permitiu conversões energéticas mais vantajosas do etanol na ignição por compressão frente à ignição por centelha, além de minimizar efeitos do etanol em retardar o início da combustão.
Renewable biofuels have been proposed for a long time as an alternative to the issues concerned to pollutants emission and also society s liability to fossil fuels. Biodiesel and ethanol are renewable commercial fuel candidates for fossil fuels substitution, especially, in compression ignition engines, which are typically more efficient than the spark ignition ones. Diesel s partial replacement, such as the substitution by ternary blends formed by diesel, biodiesel and ethanol, is a strategy applicable to compression ignition engines without the need of further modifications. In this dissertation tests were run in a multi-cylinder compression ignition engine (MWM 4.10 TCA), fueled with diesel, biodiesel (up to 15 percent in volumetric content) and anhydrous ethanol (up to 20 percent in volumetric content) blends. Each mixture should be composed by different alcohol s proportions and always containing a 1 percent volumetric concentration of additive in order to ensure ternary s blend stability. Therefore, tests try to ally diesel s partial replacement by biofuels with engine performance and blends combustion assessment, under some combinations of load, engine speed and injection timing conditions. The tests performed indicate that the start of the combustion experienced up to 4.7 degrees CA postponements, when fueled with a 20 percent ethanol volumetric concentration blend. Still, optimized injection timing investigation brought improvements to engine performance, allowed better ethanol energetic conversions through compression ignition when compared to spark ignition and could also minimize delays caused by ethanol s presence in the beginning of the combustion.
PRADELLE, FLORIAN ALAIN YANNICK. "USE OF BIOFUELS IN COMPRESSION IGNITION ENGINES: POTENTIAL OF DIESEL-BIODIESEL-ETHANOL BLENDS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29914@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Para substituir parcialmente a demanda em óleo diesel de origem fóssil, reduzir os elevados custos de importação e respeitar as normas ambientais, políticas sustentáveis já levaram a substituir parcialmente óleo diesel por biodiesel. Entretanto, outras tecnologias, como as misturas diesel-biodiesel-etanol, estão sendo investigadas. O principal desafio dessas misturas consiste em melhorar a miscibilidade e a estabilidade do álcool no óleo diesel. No presente trabalho, formulou-se um aditivo original, a partir de compostos renováveis, que permitiu melhorar a faixa de concentração de etanol anidro dentro de óleo diesel com 15 por cento em volume de biodiesel e de temperatura onde observa-se misturas estáveis. Diversas propriedades físico-químicas das misturas aditivadas foram medidas em uma larga faixa de concentração de etanol para avaliar os aspetos de consumo, qualidade da combustão, comportamento a baixa temperatura, interação entre fluido e superfície, e segurança. Os resultados obtidos mostraram que misturas com, pelo menos, 1,0 por cento em volume de aditivo e até 20 por cento em volume de etanol anidro são estáveis para temperaturas superiores a 10 graus Celsius e respeitam a maioria das especificações brasileiras atuais para óleo diesel. Ensaios experimentais em um motor de ignição por compressão MWM 4.10 TCA (Euro III) foram realizados com estas misturas. Os resultados obtidos mostraram que a substituição do óleo diesel altera as características da combustão: o crescente teor de etanol leva ao aumento do atraso de ignição, à liberação de calor mais rápida e à diminuição da pressão máxima. Mesmo nessas condições não otimizadas de injeção e de combustão, os resultados mostraram uma melhor conversão da energia química no etanol para produzir potência efetiva, comparado com os valores encontrados nos motores flex fuel de ciclo Otto, além de um pequeno aumento no rendimento térmico do motor.
In order to partially replace the demand of fossil diesel fuels, to reduce high import costs and to comply with environmental standards, sustainable policies have led to partially replace diesel fuel by biodiesel. However, other technologies, such as diesel-biodiesel-ethanol mixtures, are being investigated. The major challenge of these mixtures is to improve the miscibility and the stability of alcohol in diesel fuel. In this study, an original additive, from renewable compounds, improved the miscibility of anhydrous ethanol in diesel fuel with 15 per cent by volume of biodiesel and temperature in which stable mixtures were observed. Several physicochemical properties of the additivated mixtures were measured in a large range of ethanol concentration to evaluate aspects of consumption, combustion quality, behavior at low temperature, interaction between the fluid and the surface, and safety. The results showed that blends with, at least 1.0 per cent, by volume of additive and 20 per cent by volume of anhydrous ethanol are stable at temperatures above 10 degrees Celsius and respected most of the current Brazilian specifications for diesel fuel. Experimental tests on a compression ignition engine MWM 4.10 TCA (Euro III) were performed with these mixtures. The results showed that the diesel fuel substitution alters the characteristics of combustion: the increased ethanol content implied an increase of the ignition delay, a faster heat release and a decrease of maximum pressure. Despite these non-optimized conditions for injection and combustion, results showed a better conversion of ethanol chemical energy into brake power, in comparison to the values found in flex fuel spark ignition engine, in addition to a small increase in the indicated efficiency of the engine.
Tsai, jin-ming, and 蔡錦銘. "Study of Biodiesel-Ethanol Blends on Diesel Engine Performance and Emissions Using Response Surface Method." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/46760184743671613381.
Full text國立宜蘭大學
生物機電工程學系碩士班
101
The products of Diesel engine combustion were proven to be one of the major sources for air pollutants, seriously threatening our environment. The impact on the ecosystem creates environmental problems and produce carcinogenic components that significantly endanger the health of human beings. As the consumption of biofuels increases around the world, ethanol and biodiesel become more and more important. Biofuels blending from ethanol and biodiesel can reduce costs and increase the advantages of biofuels. Research on ethanol nowadays shows that it is an attractive renewable energy material. Previous studies showed that ethanol could reduce CO2 and NOx, decrease the emission of hydrocarbons and particulate matter emission, and could become the substitute fuel for diesel engines. This study used different operating conditions to analy diesel engine pollutant reduction. Diesel-ethanol blended fuel was used, the ethanol blend ratios were prepared at BE0, BE5, and BE10 vol %, the speed of the diesel engine was tested at 1000, 1500, and 2000 rpm, and the throttle position emission was set at 10, 55, and 100 %. The response surface was designed under the three conditions, and the model of Box Behnken Design (BBD) was adopted. Measurements included engine power, fuel consumption, particulate matter, and air pollutants to analyze the results. In this study, results showed that the expected function under the low air pollution and low particulate matter condition could be achieved when the mixing ratio is set at 1 %, and the throttle opening 1800 rpm. The concentration of NOx, CO2, and other air pollutant could thus be lowered. The CO of 1340 mg/m3 , CO2 of 1.7 % , NOx of 399 mg/m3 , Engine output power of 1.23 hp.
Yi-ChengLiu and 劉易承. "Energy Performance and Air Pollutant Emissions in a Diesel Engine Generator Fueled with the Blends of Hydrous Ethanol, Biodiesel and Diesel." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/54871620482933889851.
Full text國立成功大學
環境工程學系碩博士班
98
In order to improve fuel combustion performance, hydrous ethanol(95%)、butanol and soybean biodiesel were co-blended at different percentages. Due to the oxygen rich fuel of alcohol, its addition to diesel fuel can improve the combustion performance in CI engine and also can reduce the emission of carbon monoxide (CO) and smoke. However, the emission of Nitrogen oxides (NOx) depends on the types of alcohol additives and operation condition used. In addition, hydrated ethanol poses miscibility challenge with diesel fuel owing to the presence of 5% water. To overcome this Challenge, different percentages of diesel-biodiesel-butanol-ethanol blending ratios were assessed for stability out of which, the most suitable class of blends was selected based on phase stability upon 30 days standing. Stable blends were then selected for testing for their combustion characteristic, energy efficiency performance and pollutant emissions in a diesel engine generator. Tested pollutants included the particulate matter (PM), Oxides of Nitrogen (NOx), carbon monoxide (CO) and Polycyclic aromatic hydrocarbons (PAHs). Experimental results indicated that the selected fuels had better combustion performances as well as reduction in pollutant emissions pollutant emission. At engine’s idle mode, significant control of pollutants was only noted for the emission of PM and PAHs. However at higher engine loading, reduction of PM, NOx, CO and PAHs emission were also noted. In terms of fuel consumption, It was found that the use of blended fuels in diesel engine have no significant difference with petro diesel. Fuel consumption increased from 0.3% to 0.45% at idle mode and higher loading respectively. Similarly, break specific fuel consumption of BD2041 and BD3041 increased by 1.7% at higher loading status in relation to Petro diesel fuel. In terms of pollutants emission, PM emission reduction at higher engine loading decreased at percentage of 3.7% to 27.5% at idle mode, and 4.2% to 84% for higher loading. Similar to other pollutant reduction, CO reduction was observed to be in the range of between 4.5% and 14.5% at higher loading. However, CO emission trend at idle mode was exactly opposite of the emission trend at higher loading. CO emission increasing ranged from 17.8% to 43.0% for idle mode but reduction range from 4.52% to 14.5% for higher engine loading. NOx emission for blended fuels slightly decreased with the use of blended fuels in relation to Petro diesel fuel for both engine operation conditions. NOx emission reduction ranged from 1.09% to 8.70% for idle mode and 6.41% to 11.5% for higher engine loading. The emission of PAHs for blended fuels followed similar trend to PM and CO emission. PAHs emission reduction ranged from 12% to 54% for idle mode and 7.9% to 54.1% for higher engine loading. The results indicated that alcohol blended fuels have no significant effect on the performance of engine combustion. However, they are superior over Petrol diesel fuel in reduction of air pollution emissions.
Book chapters on the topic "Ethanol-biodiesel blend"
Budhraja, Neeraj, Amit Pal, Manish Jain, and R. S. Mishra. "Comparative Analysis of the Engine Emissions from CI Engine Using Diesel–Biodiesel–Ethanol Blends." In Lecture Notes in Mechanical Engineering, 363–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9678-0_32.
Full textChasos, Charalambos A., George N. Karagiorgis, and Chris N. Christodoulou. "Chapter 8. Diesel Internal Combustion Engine Emissions Measurements for Methanol-Based and Ethanol-Based Biodiesel Blends." In Transportation and the Environment, 183–206. 9 Spinnaker Way, Waretown, NJ 08758, USA: Apple Academic Press Inc., 2016. http://dx.doi.org/10.1201/9781315365886-13.
Full textSingh, Amanpreet, Sandeep Singh, Varun Singla, and Varinder Singh. "Performance and Emission Analysis of a C.I. Engine Using Ethanol and Its Blends with Jojoba Biodiesel and Diesel as a Fuel." In Lecture Notes in Mechanical Engineering, 229–39. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6577-5_23.
Full textSingh, Sandip Kumar. "Utilization of Plant Biomass for the Production of Renewable and Sustainable Biofuels With Zero Carbon Emission." In Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines, 26–43. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2539-5.ch002.
Full textBarabas, Istvan, and Ioan-Adrian Todoru. "Utilization of Biodiesel-Diesel-Ethanol Blends in CI Engine." In Biodiesel- Quality, Emissions and By-Products. InTech, 2011. http://dx.doi.org/10.5772/27137.
Full textMaroa, Semakula, and Freddie Inambao. "Effects of Biodiesel Blends Varied by Cetane Numbers and Oxygen Contents on Stationary Diesel Engine Performance and Exhaust Emissions." In Numerical and Experimental Studies on Combustion Engines and Vehicles. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92569.
Full textTse, Ho. "Combustion and Emissions of a Diesel Engine Fueled with Diesel-Biodiesel-Ethanol Blends and Supplemented with Intake CO2 Charge Dilution." In Developments in Combustion Technology. InTech, 2016. http://dx.doi.org/10.5772/64470.
Full textConference papers on the topic "Ethanol-biodiesel blend"
Lee, Po-I., Atsushi Matsumoto, Yi Zheng, Xingbin Xie, and Ming-Chia Lai. "The Spray and Engine Combustion Performances of Ethanol-Biodiesel Fuel Blends." In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60073.
Full textSukjit, Ekarong, Jose M. Herreros, Karl Dearn, and Athanasios Tsolakis. "Improving Ethanol-Diesel Blend Through the Use of Hydroxylated Biodiesel." In SAE 2014 International Powertrain, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-01-2776.
Full textJenkins, Carey, Daniel Mastbergen, and Rudolf Stanglmaier. "Measurement of the Percentage of Biodiesel in Blends With a Commercial Dielectric Fuel Sensor." In ASME 2006 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/icef2006-1539.
Full textYoon, Seung Hyun, Jin Woo Hwang, Hyun Kyu Suh, and Chang Sik Lee. "Effect of Injection Strategy on the Combustion and Exhaust Emissions Characteristics of Biodiesel-Ethanol Blend in a DI Diesel Engine." In ASME 2009 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/ices2009-76063.
Full textMuralidharan, M., M. Subramanian, P. C. Kanal, and R. K. Malhotra. "Evaluation of a Novel Biofuel Blend using Diesel-Biodiesel-Ethanol on Light Commercial Vehicle." In 16th Asia Pacific Automotive Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-28-0015.
Full textZhu, Lei, Wugao zhang, Zhen Huang, and Junhua Fang. "The Effects of Diesel Oxidation Catalyst on Particulate Emission of Ethanol-Biodiesel Blend Fuel." In SAE 2014 International Powertrain, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-01-2730.
Full textKannan, G. R. "Effect of Injection Pressures and Timings on the Performance Emission and Combustion Characteristics of a Direct Injection Diesel Engine Using Biodiesel-Diesel-Ethanol Blend." In SAE 2013 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-01-1699.
Full textYoon, Seung Hyun, Su Han Park, Hyun Kyu Suh, and Chang Sik Lee. "Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54227.
Full textBarabás, István, and Adrian I. Todoruţ. "Key Fuel Properties of Biodiesel-diesel Fuel-ethanol Blends." In Powertrains, Fuels and Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-1810.
Full textAnand, R., G. R. Kannan, and P. Karthikeyan. "A Study of the Performance Emission and Combustion Characteristics of a DI Diesel Engine Using Waste Cooking Oil Methyl Ester-Ethanol Blends." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86705.
Full text