Academic literature on the topic 'Ethanol of second generation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ethanol of second generation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ethanol of second generation"

1

Senna, Pedro P., and Stela L. M. Ansanelli. "Second Generation Ethanol - Technological Intensity on the Integrated Cycle." U.Porto Journal of Engineering 4, no. 1 (April 27, 2018): 67–76. http://dx.doi.org/10.24840/2183-6493_004.001_0006.

Full text
Abstract:
The purpose of this study is to investigate Second Generation Ethanol’s (SGE) production cycle in order to understand the level of SGE’s technological intensity in the integrated cycle. The suggested methodology comprises of a review of literature surrounding the requirements and indexes of technological intensity. A wide selection of database and review of specialized literature have been described to demonstrate the proposed discussion and conclusions. It has been observed that SGE puts forward a higher level of technological intensity in relation to First Generation Ethanol (FGE).
APA, Harvard, Vancouver, ISO, and other styles
2

M. B., DILÁSCIO, BARBOSA C. M., JARDIM A. T. P. S., DILÁSCIO B. B., SIQUEIRA P. H. L., and DINIZ D. M.ARTINS. "Technological Monitoring of Second Generation Ethanol Patents." Revista Gestão Inovação e Tecnologias 10, no. 3 (July 15, 2020): 5553–66. http://dx.doi.org/10.7198/geintec.v10i3.1441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silva, Claudemir Natalino da, Giovana Roberta Francisco Bronzato, Ivana Cesarino, and Alcides Lopes Leão. "Second-generation ethanol from pineapple leaf fibers." Journal of Natural Fibers 17, no. 1 (May 2, 2018): 113–21. http://dx.doi.org/10.1080/15440478.2018.1469453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bolivar-Telleria, Maria, Cárita Turbay, Luiza Favarato, Tarcio Carneiro, Ronaldo S. de Biasi, A. Alberto R. Fernandes, Alexandre M. C. Santos, and Patricia M. B. Fernandes. "Second-Generation Bioethanol from Coconut Husk." BioMed Research International 2018 (September 27, 2018): 1–20. http://dx.doi.org/10.1155/2018/4916497.

Full text
Abstract:
Coconut palm (Cocos nucifera) is an important commercial crop in many tropical countries, but its industry generates large amounts of residue. One way to address this problem is to use this residue, coconut husk, to produce second-generation (2G) ethanol. The aim of this review is to describe the methods that have been used to produce bioethanol from coconut husk and to suggest ways to improve different steps of the process. The analysis performed in this review determined that alkaline pretreatment is the best choice for its delignification potential. It was also observed that although most reported studies use enzymes to perform hydrolysis, acid hydrolysis is a good alternative. Finally, ethanol production using different microorganisms and fermentation strategies is discussed and the possibility of obtaining other added-value products from coconut husk components by using a biorefinery scheme is addressed.
APA, Harvard, Vancouver, ISO, and other styles
5

Liguori, Rossana, Carlos Soccol, Luciana Porto de Souza Vandenberghe, Adenise Woiciechowski, and Vincenza Faraco. "Second Generation Ethanol Production from Brewers’ Spent Grain." Energies 8, no. 4 (March 31, 2015): 2575–86. http://dx.doi.org/10.3390/en8042575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Raele, Ricardo, João Mauricio Gama Boaventura, Adalberto Américo Fischmann, and Greici Sarturi. "Scenarios for the second generation ethanol in Brazil." Technological Forecasting and Social Change 87 (September 2014): 205–23. http://dx.doi.org/10.1016/j.techfore.2013.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reddy, Belum V. S., A. Ashok Kumar, P. Srinivas Rao, P. Sanjana Reddy, and Michael Blummel. "Brown midrib sorghum for second-generation ethanol production." Journal of Biotechnology 136 (October 2008): S213. http://dx.doi.org/10.1016/j.jbiotec.2008.07.451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stephen, James D., Warren E. Mabee, and Jack N. Saddler. "Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction." Biofuels, Bioproducts and Biorefining 6, no. 2 (November 4, 2011): 159–76. http://dx.doi.org/10.1002/bbb.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Junior, Nei Pereira, Anelize de Oliveira Moraes, Luiz Felipe Modesto, and Ninoska Isabel Bojorge Ramirez. "Reuse of Residual Biomass of Cellulose Industry for Second Generation Bioethanol Production." JOURNAL OF ADVANCES IN BIOTECHNOLOGY 6, no. 1 (January 30, 2016): 768–72. http://dx.doi.org/10.24297/jbt.v6i1.4805.

Full text
Abstract:
This study aimed at evaluating the potential of pulp mill residue (PMR) as a feedstock for ethanol production. The simultaneous saccharification and fermentation (SSF) process was operated using 8 gL -1 of a commercial strain of Saccharomyces cerevisiae JP1 under optimal proportions of cellulase cocktail (24.8 FPU/g cellulose of Cellic® CTec2) and cellulosic residue (200 gL -1 ). After 48 hours of pre-hydrolysis at 50ºC and 200 rpm, the fermentation was carried out at 37 ºC, generating 48.5 gL -1 of ethanol in 10 hours and reaching a conversion efficiency of 53.3% from cellulose to ethanol and a volumetric productivity of 4.8 gL -1 h -1 that is within the range of values of first generation ethanol production (5-8 gL -1 h -1 ). These results showed that the pulp mill residue is an interesting and effective feedstock for the production of ethanol, which can be used for fuel purposes in the own pulp mills.
APA, Harvard, Vancouver, ISO, and other styles
10

dos Santos, Leandro Vieira, Maria Carolina de Barros Grassi, Jéssica Carolina Medina Gallardo, Renan Augusto Siqueira Pirolla, Luige Llerena Calderón, Osmar Vaz de Carvalho-Netto, Lucas Salera Parreiras, et al. "Second-Generation Ethanol: The Need is Becoming a Reality." Industrial Biotechnology 12, no. 1 (February 2016): 40–57. http://dx.doi.org/10.1089/ind.2015.0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ethanol of second generation"

1

Maitan-alfenas, Gabriela Piccolo. "Enzymatic hydrolysis of lignocellulosic biomass for second generation ethanol production." Universidade Federal de Viçosa, 2014. http://www.locus.ufv.br/handle/123456789/6684.

Full text
Abstract:
Submitted by Amauri Alves (amauri.alves@ufv.br) on 2015-11-16T11:43:38Z No. of bitstreams: 1 texto completo.pdf: 3547883 bytes, checksum: d0ecea27278208d99b9477d7546e1251 (MD5)
Made available in DSpace on 2015-11-16T11:43:38Z (GMT). No. of bitstreams: 1 texto completo.pdf: 3547883 bytes, checksum: d0ecea27278208d99b9477d7546e1251 (MD5) Previous issue date: 2014-11-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A produção de etanol de segunda geração apresenta grande potencial para ser uma realidade sustentável, especialmente no Brasil que prossui grandes quantidades de bagaço de cana-de-açúcar. Os maiores obstáculos deste processo são os pré- tratamentos e a hidrólise da biomassa, principalmente esta última etapa visto que as enzimas ainda apresentam custos muito elevados. Assim, esforços têm se concentrado em tornar o processo mais econômico com a descoberta de enzimas mais efetivas. Novas fontes de enzimas são continuamente encontradas e várias estratégias de prospecção e produção enzimática têm sido estudadas. Uma estratégia bastante utilizada na busca por novas enzimas e/ou enzimas mais eficientes é a análise de genômica comparativa de diferentes micro-organismos que permite a seleção de vários candidatos de interesse num curto período de tempo. Além disso, as enzimas podem ser produzidas por fungos quando estes são crescidos em biomassas que apresentam baixo custo e alta disponibilidade. Este trabalho foi dividido em cinco capítulos sendo que o primeiro consiste de uma revisão atual sobre a produção de etanol de segunda geração focada na etapa de sacarificação enzimática. Várias estratégias de prospecção e produção enzimáticas foram discutidas e detalhadas. No segundo capítulo, a sacarificação de bagaço de cana-de-açúcar após pré-tratamentos ácido e alcalino foi comparada usando o extrato enzimático do fungo fitopatógeno Chrysoporthe cubensis e três coquetéis comerciais. Para o bagaço de cana utilizado neste estudo, o pré-tratamento alcalino promoveu os melhores rendimentos de sacarificação sendo o extrato do fungo C. Cubensis o responsável pela maior liberação de glicose e xilose quando comparado às misturas enzimáticas comerciais. Além disso, o extrato de C. cubensis produziu maiores valores de atividade específica comparados aos dos coquetéis comerciais. No terceiro capítulo, o potencial genômico de fungos candidatos foi avaliado e as enzimas mais interessantes para a hidrólise de bagaço de cana-de-açúcar foram expressas em Aspergillus vadensis. Nove enzimas de três fungos diferentes, Aspergillus terreus, Nectria haematoccoca e Phaeosphaeria nodorum, foram viiclonadas e expressas por sistema heterólogo e representam uma nova possiblidade para a melhor degradação do bagaço de cana. Dentre estas enzimas, quatro - xilosidases foram bioquimicamente caracterizadas e apresentaram atividade máxima em valores de pH 4,5-5,0 e em temperaturas 55-60°C. No quarto capítulo, duas xilanases de Aspergillus nidulans previamente clonadas em Pichia pastoris, aqui denominadas Xyn1818 e Xyn3613, foram expressas, purificadas e caracterizadas. Xyn1818 apresentou ótima atividade em pH 7.5 e à 60°C enquanto Xyn3613 alcançou máxima atividade em pH 6.0 e à 50°C. Xyn1818 apresentou-se bastante termoestável à 50°C mantendo 50% de sua atividade original após 49 horas de incubação nesta temperatura. Xyn1818 apresentou maior atividade contra arabinoxilana de trigo enquanto o melhor substrato para Xyn3613 foi xilana beechwood. Testes de sacarificação mostraram que os coquetéis comerciais liberaram mais açúcares (glicose e xilose) quando suplementados com as xilanases Xyn1818 e Xyn3613 de A. nidulans. Finalmente, no quinto capítulo, os fungos Aspergillus niger e Trichoderma reesei foram avaliados quanto à produção de enzimas após crescimento em do e bagaço de cana-de-açúcar. Os fungos produziram diferentes tipos de enzimas (hemi)celulolíticas, o que foi refletido pelo forte efeito sinergístico na liberação de açúcares durante a sacarificação dos substratos utilizando o conjunto de enzimas dos dois microorganismos. Foi constatado que a remoção de monossacarídeos do meio de produção de enzimas é muito importante quando combinações de enzimas de T. reesei and A. niger são utilizadas para aprimorar a hidrólise de biomassas.
Second generation ethanol production has great potential to be a sustainable reality, especially in Brazil due to the large amount of available sugarcane bagasse. Pretreatment methods and biomass hydrolysis continue to be the bottlenecks of the overall process, mainly this second step since the enzymes present high costs. Therefore, efforts have been taken to make the process more cost-effective with regards to the discovery of more effective enzymes. New sources of enzymes are continuously encountered and several strategies of enzyme prospection and production have been studied. One strategy used in the search for new and/or more efficient enzymes is comparative genomic analysis of different microorganisms which allows for the screening of several candidates of interest in a short period of time. Moreover, plant-degrading enzymes can be produced by fungi grown on abundantly available low-cost plant biomass. This work was divided in five chapters being the first chapter a current review about second generation ethanol production focused mainly on the saccharification step. Several strategies of enzyme prospection and production were discussed and detailed. In the second chapter, saccharification of acid- and alkali-pretreated sugarcane bagasse was compared using the enzymatic extract from the pathogen fungus Chrysoporthe cubensis and three commercial enzymatic mixtures. For the sugarcane bagasse studied in this work, the alkaline pretreatment promoted the best saccharification yields, where the C. cubensis extract was responsible for the higher release of glucose and xylose when compared to the commercial enzymatic mixtures Furthermore, the C. cubensis extract was able to produce high specific enzyme activities when compared to the commercial cocktails. In the third chapter, the genomic potential of the candidate fungi was evaluated and the most interesting enzymes for sugarcane bagasse hydrolysis were expressed in Aspergillus vadensis. Nine enzymes from three different fungi, Aspergillus terreus, Nectria haematoccoca and Phaeosphaeria nodorum, were successfully cloned and expressed by heterologous system and these enzymes represent a possibility for a better degradation of sugarcane bagasse. -xylosidases were biochemicallycharacterized and showed maxima activity in the pH range 4.5-5.0 and at temperatures of 55-60°C. In the fourth chapter, two xylanases from Aspergillus nidulans previously cloned in Pichia pastoris, here nominated as Xyn1818 and Xyn3613, were expressed, purified and characterized. The optima pH and temperature for Xyn1818 were 7.5 and 60°C while Xyn3613 achieved maximal activity at pH 6.0 and 50°C. Xyn1818 showed to be very thermostable, maintaining 50% of its original activity after 49 hours when incubated at 50°C. Xyn1818 presented higher activity against wheat arabinoxylan while Xyn3613 had the best activity against xylan from beechwood. Saccharification results showed that the commercial enzymatic cocktails were able to release more sugars (glucose and xylose) after supplementation with the xylanases Xyn1818 and Xyn3613 from A. nidulans. Finally, in the fifth chapter, Aspergillus niger and Trichoderma reesei were substrates: wheat straw and sugarcane bagasse. The fungi produced different sets of (hemi-)cellulolytic enzymes which was reflected in an overall strong synergistic effect in releasing sugars during saccharification using the enzyme blends from both fungi. It was observed that removing monosaccharides from the enzyme production media is very important when T. reesei and A. niger enzyme blends are combined to improve plant biomass saccharification.
APA, Harvard, Vancouver, ISO, and other styles
2

Hilares, Ruly Terán. "Hydrodynamic cavitation as a new approach for sugarcane bagasse pretreatment aiming to second generation ethanol production." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/97/97131/tde-07082018-153234/.

Full text
Abstract:
Renewable energy sources have been proposed as a viable option to mitigate the consumption and the dependence of fossil fuels. Among the available alternatives, lignocellulosic biomass has shown great potential for bioenergy generation, and biofuels as ethanol can be obtained by fermentation from sugars present in cellulosic and hemicellulosic fractions of biomass. However, for the efficient release of fermentable sugars during the enzymatic hydrolysis step, a pretreatment process is required to modify the material in its structure and composition. In this context, hydrodynamic cavitation (HC) was proposed in this work as a new and promising alternative for pretreatment of sugarcane bagasse. Firstly, the variables NaOH concentration, solid/liquid (S/L) ratio and HC process time were optimized in HC assisted pretreatment. In optimized conditions (0.48 mol/L of NaOH, 4.27% of S/L ratio and 44.48 min), high lignin removal (60.4%) and enzymatic digestibility of cellulose fraction (97.2%) were obtained. Based in those results, new variables (inlet pressure, temperature, alkali concentration) were included for evaluation in a second stage of the study aiming to reduce the HC pretreatment time. In this case, temperature and álcali concentration showed more significance on lignin removal and hydrolysis yield of carbohydrate fraction in pretreated biomass. No significant difference in pretreatment efficiency was observed in 20 and 30 min of process time in the best conditions (70 °C, 3 bar of inlet pressure and 0.3 mol/L of NaOH). The dimensionless cavitation number influence also was evaluated in two levels (0.017 and 0.048), resulting higher efficiency using low cavitation number which was obtained using orifice plate with 16 holes (1 mm of diameter). Using the last optimized conditions and lower temperature (60 °C instead 70 °C) in order to avoid the foam formation when black liquor is reused, other alkalis (Ca(OH)2, Na2CO3, KOH) were evaluated in combination with HC and compared to the use of NaOH. High enzymatic conversions of carbohydrate fraction were observed in biomass pretreated using KOH-HC and NaOH-HC; additionally, NaOH black liquor was reused in 10 sequential batches. The pretreated biomass using fresh and reused black liquor were mixed and used for simultaneous saccharification and fermentation process (SSF) in interconnected column reactors, resulting in 62.33% of hydrolysis of total carbohydrate fractions and 17.26 g/L of ethanol production (0.48 g of ethanol/g of glucose and xylose consumed). Finally, the addition of oxidant agent (H2O2) in the alkali HC-process was optimized. In selected conditions (0.29 mol/L of NaOH, 0.78 % v/v of H2O2 and 9.8 min), 95,43% and 81.34% of enzymatic hydrolysis yield of cellulose and hemicellulose fraction were achieved respectively, using 5% of solid loading (S/L) in the hydrolysis process. When packed bed flow-through column reactor using 20% of S/L was used, 74.7% cellulose hydrolysis yield was reached. Sugars present in hydrolysate were also fermented into ethanol in bubble column reactor resulting in a yield value of 0.49 g/g and 0.68 g/L.h of productivity. By analyzing the results as a whole, HC was shown as a promising technology to accelerate the pretreatment time under mild conditions, showing advantages as simplicity of system and possibility to application in industrial scale.
O uso de fontes de energia renováveis tem sido proposto como uma alternativa viável para reduzir o consumo e a dependência de combustíveis fósseis. Entre as alternativas disponíveis, a biomassa lignocelulósica apresenta grande potencial para geração de bioenergia, sendo que biocombustíveis como o etanol podem ser obtidos por fermentação a partir de açúcares presentes em suas frações celulósicas e hemicelulósicas. No entanto, para a liberação eficiente de açúcares fermentáveis na etapa de hidrólise enzimática, é necessário um processo prévio de pré-tratamento para modificar a estrutura e composição do material. Neste contexto, no presente trabalho a cavitação hidrodinâmica (CH) foi proposta como uma nova e promissora alternativa para o pré-tratamento do bagaço de cana-de-açúcar. Em uma primeira etapa, as variáveis concentração de NaOH, relação sólido/líquido (S/L) e tempo de processo foram otimizadas no pré-tratamento assistido por CH. Em condições otimizadas (0,48 mol/L de NaOH, 4,27% de relação S/L e 44,48 min), elevados valores de remoção de lignina (60,4%) e digestibilidade enzimática da fração de celulose (97,2%) foram obtidos. Com base nesses resultados, novas variáveis (pressão à montante, temperatura e concentração de álcali) foram incluídas para avaliação em uma segunda etapa do estudo com o objetivo de reduzir o tempo de pré-tratamento com CH. Neste caso, a temperatura e a concentração de álcalis foram as mais importantes na remoção de lignina e influenciaram na hidrólise das frações carboidrato da biomassa pré-tratada. Não houve diferença significativa na eficiência do pré-tratamento em 20 e 30 minutos de tempo de processo nas melhores condições (70 ° C, 3 bar de pressão a montante e 0,3 mol/L de NaOH). A influência do adimensional -número de cavitação? também foi avaliada em dois níveis (0,017 e 0,048), resultando em maior eficiência usando o número de cavitação mais baixo, que foi obtido usando placa de orifício com 16 furos (1 mm de diâmetro). Usando estas condições otimizadas e menor temperatura (60 ° C ao invés de 70 ° C) para evitar a formação de espuma quando o licor negro é reutilizado, outros álcalis (Ca (OH)2, Na2CO3, KOH) foram avaliados em combinação com CH e comparados com o uso de NaOH. Conversões enzimáticas elevadas das frações carboidrato foram observadas em material pré-tratado utilizando KOH-CH e NaOH-CH; além disso, o licor negro de NaOH foi reutilizado em 10 bateladas sequenciais. As biomassas pré-tratadas com licor negro reutilizado e fresco foram misturadas e utilizadas em processo de sacarificação e fermentação simultâneas (SSF) em reatores de coluna interligados, resultando em 62,33% de hidrólise das frações carboidrato e 17,26 g/L de produção de etanol (0,48 g de etanol/g de glicose e xilose consumidos). Finalmente, a adição de agente oxidante (H2O2) no processo alcalino-CH foi otimizado. Nas condições selecionadas (0,29 mol/L de NaOH, 0,78% v/v de H2O2 e 9,8 min), 95,43% e 81,34% de rendimento de hidrólise enzimática das frações de celulose e hemicelulose, respectivamente, foram obtidos utilizando 5% de carregamento de sólidos (S/L) no processo de hidrólise. Quando foi utilizado reator de coluna de leito fixo com 20% de S/L, atingiu-se 74,7% de rendimento de hidrólise de celulose. Os açúcares presentes no hidrolisado também foram fermentados em etanol em um reator de coluna de bolhas, resultando em um valor de rendimento de 0,49 g/g e 0,68 g/L.h de produtividade. Analisando-se os resultados de uma forma global, demonstrou-se que a CH é uma tecnologia promissora para acelerar o tempo de pré-tratamento em condições amenas, mostrando vantagens como simplicidade do sistema e possibilidade de aplicação em escala industrial.
APA, Harvard, Vancouver, ISO, and other styles
3

Basso, Thalita Peixoto. "Improvement of Saccharomyces cerevisiae by hybridization for increased tolerance towards inhibitors from second-generation ethanol substrate." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-29042015-132341/.

Full text
Abstract:
Global climate change and volatility of petroleum price have driven the necessity to reduce fossil fuel utilization and replace it by renewable energy. Bioethanol production in the United States and Brazil from cornstarch and sugarcane, respectively, is already established. However, the bioethanol industry appears unsustainable in view of the potential stress that its production places on food commodities. In contrast, second-generation biofuels produced from cheap and abundant lignocellulosic biomass, has been viewed as one plausible solution to this \"food versus fuel\" problem. Sugarcane bagasse is an abundant source of lignocellulosic biomass in Brazil and is generally recognized as a very promising feedstock for lignocellulosic ethanol production. Nevertheless, inhibitors such as furfural, 5-hydroxymethyl furfural (HMF) and carboxylic acids are formed during an acid thermochemical pretreatment of lignocellulosic biomass, which has a negative effect on the fermentative microorganisms - Saccharomyces cerevisiae. Second-generation (2G) ethanol in Brazil has the possibility to use a novel substrate, prepared as a blend of sugarcane bagasse hydrolysate and cane molasses. Molasses supplements the nutritional deficiencies of bagasse hydrolysate, contributing with minerals, amino acids and vitamins. However, molasses also contains additional inhibitors, such as HMF, sulfite, and toxic concentration of some minerals (K, Ca), which affect S. cerevisiae fermentation performance. The goal of this work was to generate tolerant derivatives of S. cerevisiae industrial strains that are able to cope with inhibitors present in bagasse hydrolysate and molasses, by means of sexual hybridization and adaptive evolution, which can be used for 2G-ethanol production. The industrial strains PE-2, CAT-1 and SA-1 were sporulated, and haploids were irradiated by ultraviolet (UV) light in order to increase genetic and phenotypic diversity. After direct mating and screening in molasses and hydrolysate media, 234 hybrid strains were selected for further study. In parallel, mass matings (intra and interlines) of PE-2, CAT-1 and SA-1 from non-irradiated haploids were performed and the generated strains were subjected to adaptive evolution for about 100 generations. The 120 strains derived from mass mating and adaptive evolution were then screened for growth in molasses-hydrolysate media. Six isolates showed good fermentation properties compared to the reference strains, showing that hybridization and adaptive evolution of Brazilian industrial yeast strains was a good strategy to develop new tolerant strains for 2G-ethanol production. To better utilize all the sugars present in bagasse hydrolysate, a cassette containing the three genes responsible for xylose fermentation (xylose reductase, xylitol dehydrogenase and xylulose kinase) was integrated into the genome of a haploid derivative (272-1a) of one of the six selected hybrids (272), which had the highest tolerance to Miscanthus x giganteus hydrolysate. Fermentation studies demonstrated that this engineered strain was able to metabolize xylose into ethanol. Finally, the haploid 272-1a was analyzed by quantitative trait loci (QTL) mapping to identify the genetic basis of hydrolysate tolerance. Although the causative gene(s) were not identified in this work, a number of QTL peaks were identified that will serve as the starting point for future fine-mapping studies.
Mudança climática global e a volatilidade do preço do petróleo tem impulsionado a necessidade de redução e substituição de combustíveis fósseis por energias renováveis. A produção de bioetanol nos Estados Unidos e no Brasil a partir de milho e cana-de-açúcar, respectivamente, está estabelecida. Todavia, a produção de bioetanol mostra-se insustentável, pelo fato da utilização de produtos alimentares para tal produção. Em contrapartida, biocombustíveis produzidos a partir de resíduos lignocelulósicos têm sido vistos como uma solução plausível para o problema \"alimento versus combustível\". No Brasil, o bagaço de cana é uma fonte disponível de biomassa lignocelulósica. No entanto, inibidores como furfural, 5-hidroximetil-furfural (HMF) e ácidos carboxílicos formados durante o prétratamento ácido da biomassa lignocelulósica, têm efeito negativo sobre os microorganismos fermentadores - Saccharomyces cerevisiae. No Brasil, o etanol de segunda-geração (2G) tem possibilidade de utilizar um novo substrato, preparado a partir da mistura de melaço e hidrolisado de bagaço. O melaço será um adjuvante para suprir a deficiência nutricional do hidrolisado, contribuindo com minerais, aminoácidos e vitaminas. Por outro lado, o melaço apresenta alguns inibidores, como HMF, sulfito, e concentração tóxica de alguns minerais, como potássio (K) e cálcio (Ca), que afetam o crescimento e desempenho fermentativo de S. cerevisiae. O objetivo deste trabalho foi gerar descendentes tolerantes de linhagens industriais de S. cerevisiae, capazes de lidar com inibidores presentes no melaço e no hidrolisado de bagaço, por meio de hibridação e evolução adaptativa, para produção do etanol 2G. As linhagens industriais PE-2, CAT-1 e SA-1 foram esporuladas, seus haplóides foram irradiados por luz ultravioleta (UV), objetivando o aumento da diversidade genética e fenotípica das linhagens. Após cruzamento direcionado, 234 híbridos foram selecionados pelo crescimento (DO570nm) em meios de melaço e hidrolisado. Em paralelo, cruzamentos massais (intra e interlinhagens) de haplóides não-irradiados de PE-2, CAT-1 e SA-1 foram realizados e submetidos a evolução adaptativa por cerca de 100 gerações. As 120 estirpes de cruzamentos massais seguidos de evolução adaptativa foram selecionadas pelo crescimento em meios de melaço e hidrolisado. Seis isolados apresentaram boas características fermentativas em comparação às cepas referências, mostrando que hibridação e evolução adaptativa de linhagens de leveduras industriais brasileiras são boas estratégias para desenvolver novas linhagens para produção do etanol-2G. Para uma melhor utilização dos açúcares do hidrolisado, a cassete contendo os três genes responsáveis pela fermentação de xilose (xilose redutase, xilitol desidrogenase e xiluloquinase) foi integrada no genoma do haplóide segregante (272-1a) de uma das seis estirpes selecionadas (272), que apresentou a maior tolerância em hidrolisado de Miscanthus x giganteus. Estudos de fermentação mostraram que a estirpe foi capaz de metabolizar a xilose em etanol. Por fim, o haploide 272-1a foi analisado por quantitative trait loci (QTL) afim de identificar a base genética da tolerância ao hidrolisado. Apesar, do(s) gene(s) causativos não terem sido identificados nesse trabalho, os picos do mapa de QTL identificados servirão como ponto de partida para futuro mapeamento.
APA, Harvard, Vancouver, ISO, and other styles
4

Carvalho, Danila Morais de. "Some factors affecting the production of second generation ethanol from eucalyptus, sugarcane bagasse and sugarcane straw." Universidade Federal de Viçosa, 2016. http://www.locus.ufv.br/handle/123456789/8390.

Full text
Abstract:
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2016-08-25T17:49:22Z No. of bitstreams: 1 texto completo.pdf: 4509982 bytes, checksum: 1ddc3e8d6d2fd98d0186c187ff37a974 (MD5)
Made available in DSpace on 2016-08-25T17:49:22Z (GMT). No. of bitstreams: 1 texto completo.pdf: 4509982 bytes, checksum: 1ddc3e8d6d2fd98d0186c187ff37a974 (MD5) Previous issue date: 2016-02-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O etanol tem sido considerado um promissor biocombustível para substituir combustíveis fósseis. O uso estratégico de eucalipto, bagaço e palha de cana-de-açúcar em tecnologias de segunda geração para a produção de etanol foi estudada neste trabalho, usando vários processos de pré-tratamentos seguidos por sacarificação e fermentação simultâneas (SFS). No artigo I é apresentada a caracterização química de eucalipto, bagaço e palha de cana-de-açúcar antes e após os pré-tratamentos hidrotérmico (H 2 O), ácido diluído (4,5% H 2 SO 4 ) e alcalino (15% NaOH). Foi determinado que o significativo teor de sílica presente em bagaço e palha da cana-de- açúcar causaram superestimação da lignina Klason nessas biomassas. O novo método para reportar a composição química das biomassas, baseado no completo balanço de massas, foi sugerido e provou ser útil para avaliar ambas, matéria-prima e biomassa pré- tratada. A formação de pseudo-extrativos na madeira de eucalipto e pseudo-lignina no bagaço e na palha foi observada como resultado dos pré-tratamentos. O Artigo II apresenta a caracterização química e estrutural das xilanas isoladas a partir de eucalipto, bagaço e palha usando dois métodos, sendo eles: deslignificação com ácido peracético seguida por extração com dimetilsulfóxido e deslignificação com clorito de sódio seguida por extração com dimetilsulfóxido. A xilana obtida a partir do eucalipto foi identificada como do tipo O-acetil-4-O-metilglucuronoxilana, contendo 39 unidades de grupos acetilas e 11 ácidos 4-O-metilglucurônicos para cada 100 unidades de xilose na cadeia principal. Além disso, um ácido 4-O-metilglucurônico foi também substituído por uma unidade de galactosil terminal. A xilana obtida a partir de bagaço e palha foi do tipo arabinoxilana, que apresentou proporcionalmente 100 unidades de xiloses: 29 unidades de grupos acetilas: 5 unidades de arabinofuranosil para o bagaço e proporcionalmente 100 unidades de xiloses: 8 unidades de grupos acetilas: 6 unidades de arabinofuranosil para a palha. O Artigo III descreve o efeito dos pré-tratamentos hidrotérmico e ácido diluído (1,5%, 3,0% e 4,5% de H 2 SO 4 ) na composição química das biomassas e sua subsequente conversão em etanol. Observou-se que a redução no pH dos pré-tratamentos favoreceu a remoção de lignina e carboidratos. O eucalipto apresentou a maior produção de etanol após o pré-tratamento hidrotérmico, mas com rendimento relativamente baixo. Após os pré-tratamentos ácidos, bagaço e palha mostraram maiores produções de etanol que o eucalipto. O pré-tratamentos realizados com 4,5% de H 2 SO 4 foi o mais eficiente. O Artigo IV avalia o efeito da carga alcalina durante os pré-tratamentos alcalinos (5%, 10% e 15% NaOH) na composição química das biomassas e sua subsequente conversão em etanol. Observou-se que as maiores cargas alcalinas propiciaram as maiores remoções de lignina e carboidratos. Para pré- tratamentos alcalinos, o bagaço provou ser a biomassas mais promissora para produção de etanol. O pré-tratamento com 15% de NaOH foi o mais eficiente. O Artigo V apresenta a otimização do pré-tratamento de extração alcalina a frio (EAF) referente à temperatura (20oC, 30oC e 40oC), tempo de reação (10, 35 e 60 min.) e concentração de NaOH (70, 90 e 110 g L -1 ) com foco na remoção de xilanas das biomassas e subsequente conversão das biomassas deficientes em xilanas em etanol. As condições ótimas para a remoção de xilanas de madeira de eucalipto, bagaço e palha da cana-de- açúcar foram respectivamente: 40oC, 60 min. e 70 g L -1 de NaOH; 33oC, 60 min. e 110 g L -1 de NaOH; e 31oC, 55 min. e 110 g L -1 de NaOH. Nessas condições de pré- tratamentos, considerável quantidade de lignina também foi removida das biomassas. Para a madeira de eucalipto, a formação de pseudo-extrativos foi observada durante os pré-tratamentos de EAF. A palha da cana-de-açúcar pré-tratada por EAF foi a biomassa mais promissora para a produção de etanol de segunda geração. Para os pré-tratamentos de EAF, os maiores rendimentos em etanol foram obtidos para bagaço e palha da cana- de-açúcar que para a madeira de eucalipto. Em resumo, os resultados acumulados por essa tese de doutorado sugeriram que bagaço e palha são biomassas aplicáveis à produção de etanol de segunda geração. O uso dessas biomassas lignocelulósicas cria a possibilidade de integrar primeira e segunda plataformas para a produção de etanol, transformando resíduo em produto principal.
The ethanol has been considered a promising biofuel to replace fossil-based fuels. The strategic use of eucalyptus, sugarcane bagasse and sugarcane straw in second generation technology to ethanol production was investigated in this work, by performing various pretreatment processes followed by simultaneous saccharification and fermentation (SSF). In article I it is presented the chemical characterization of eucalyptus, sugarcane bagasse and straw before and after hydrothermal (H 2 O), diluted acid (4.5% H 2 SO 4 ) and alkaline (15% NaOH) pretreatments. It was determined that the significant amount of silica present in sugarcane bagasse and straw led to overestimation of Klason lignin of these biomasses. A novel approach to report the chemical composition of biomasses, based on the complete mass balance, was suggested and proved to be useful to assess both, raw materials and pretreated biomasses. The formation of pseudo-extractives in eucalyptus wood and pseudo-lignin in bagasse and straw as result of pretreatments was observed. Article II presents the chemical and structural characterization of xylans isolated from eucalyptus, bagasse and straw via two different methods, namely: peracetic acid delignification followed by dimethyl sulfoxide extraction and sodium chlorite delignification followed by dimethyl sulfoxide extraction. The xylan obtained from eucalyptus was identified as an O-acetyl-4-O-methylglucuronoxylan type, containing 39 acetyl groups units and 11 4-O-methylglucuronic acids per 100 units of xylose on the backbone. In addition, one 4-O-methylglucuronic acid was also substituted by one terminal galactosyl unit. The xylan obtained from bagasse and straw was an arabinoxylan type, which contained 100 xylose units: 29 acetyl groups units: 5 arabinofuranosyl units for bagasse, proporcionally, and 100 xylose units: 8 acetyl groups units: 6 arabinofuranosyl units for straw, proporcionally. Article III describes the effect of hydrothermal and diluted acid (1.5, 3.0 and 4.5% H 2 SO 4 ) pretreatments on the chemical composition of biomasses and their subsequent conversion into ethanol. It was observed that lowering pretreatment pH resulted in improved lignin and carbohydrates removal. The eucalyptus presented the highest ethanol production after hydrothermal pretreatment, but with relative low yield. After acid pretreatments, bagasse and straw showed higher ethanol productions then eucalyptus. The pretreatment performed at 4.5% H 2 SO 4 was the most efficient. Article IV assesses the effect of alkaline charge during alkaline (5, 10 and 15% NaOH) pretreatments on the chemical composition of biomasses and their subsequent conversion into ethanol. It was observed that higher alkaline charge provided the highest lignin and carbohydrates removal. For the alkaline pretreatments, the bagasse proved to be the most promising biomass for ethanol production. The pretreatment with 15% NaOH was the most efficient. Article V presents an optimization of the cold alkaline extraction (CAE) pretreatment regarding temperature (20oC, 30oC and 40oC), reaction time (10, 35 and 60 min) and NaOH concentration (70, 90 and 110 g L -1 ), focusing on xylan removal from biomasses and subsequent conversion of the xylan-depleted biomasses into ethanol. The optimal conditions for xylan removal from eucalyptus wood, sugarcane bagasse and sugarcane straw were, respectively: 40oC, 60 min and 70 g L -1 NaOH; 33oC, 60 min and 110 g L -1 NaOH; and 31oC, 55 min and 110 g L -1 NaOH. Under these pretreatments conditions, substantial amounts of lignin were also removed from the biomasses. For the eucalyptus wood, the formation of pseudo-extractives was observed during the CAE pretreatments. The sugarcane straw pretreated with CAE was the most promising biomass for production of second generation ethanol. For the CAE pretreatments, higher ethanol yields were achieved with sugarcane bagasse and straw in relation to eucalyptus wood. In summary, the results accumulated from this doctoral thesis suggested that bagasse and straw are suitable biomasses for production of second generation ethanol. The use of these lignocellulosic biomasses creates the possibility of integrating first and second platforms for ethanol production, which turns residues into main product.
APA, Harvard, Vancouver, ISO, and other styles
5

Silverio, Manuella Souza. "Disgestão anaeróbia de vinhaça 2G para produção de biogás." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-18052017-172607/.

Full text
Abstract:
A expansão do setor sucroenergético favoreceu o desenvolvimento da tecnologia de etanol de segunda geração (2G). No entanto, este é um processo que leva à geração de altíssimos volumes de resíduos, bem como o processo de primeira geração (1G). O principal deles é a vinhaça, que também apresenta elevado potencial poluidor. Nesse contexto, vê-se, portanto, a necessidade de se dar uma finalidade adequada ao resíduo. A digestão anaeróbia se tornou uma tecnologia muito disseminada e valorizada em outros países. Isso se deve às vantagens em gestão de resíduos e na geração de energia proporcionadas por essa tecnologia. O potencial de aplicação da vinhaça para produção de biogás é enorme, dado que é um resíduo muito rico em matéria orgânica e de grande disponibilidade no Brasil. A digestão anaeróbia precisa também ser desenvolvida para o resíduo do processo de etanol 2G, pois espera-se que as características da vinhaça gerada sejam diferentes. É importante a investigação da influência que a composição da vinhaça 2G pode ter sobre o processo da digestão anaeróbia e produção de biogás, e este foi o principal objetivo deste trabalho. Para isso, realizou-se inicialmente a caracterização de vinhaça 1G e de vinhaça 2G obtidas para o experimento deste estudo. A composição das duas vinhaças apresentou as principais diferenças para as concentrações de DQO, ácidos orgânicos (sobretudo o ácido acético), compostos fenólicos e sulfato. Foram obtidas concentrações de DQO de 30.732,80 mg O2 L-1 e 19.038,13 mg O2 L-1 para vinhaça 1G e vinhaça 2G, respectivamente. As concentrações de ácido acético e compostos fenólicos totais foram, respectivamente, 88,14% e 84,10% maiores na vinhaça 2G do que na vinhaça 1G. A concentração de sulfato na vinhaça 2G foi 28,11% menor que a concentração obtida na vinhaça 1G. A avaliação de processo de produção de biogás foi realizada em dois reatores metanogênicos, um utilizando vinhaça 1G como substrato e outro, utilizando vinhaça 2G. Os processos foram monitorados segundo a produção de biogás por DQO removida, produção de ácidos orgânicos, alcalinidade, remoção de compostos fenólicos, remoção de ânions e retenção de sólidos. Os efluentes dos reatores metanogênicos também foram caracterizados segundo o teor de cátions. O processo com vinhaça 2G teve produção de biogás quatro vezes maior que o processo com vinhaça 1G. Foram obtidos valores médios de 0,32 Lbiogás DQOremov-1 para o processo com vinhaça 2G e 0,08 Lbiogás DQOremov-1 para o processo com vinhaça 1G. De acordo com o monitoramento dos processos por alcalinidade e concentração de ácidos orgânicos, o processo com vinhaça 2G também se mostrou mais eficiente do que o processo com vinhaça 1G no que diz respeito ao consumo de matéria orgânica. A remoção de compostos fenólicos totais teve eficiência média de 56,96% para o processo utilizando vinhaça 2G, enquanto que o processo com vinhaça 1G não foi capaz de removê-los. Infere-se que a elevada concentração de ácido acético na vinhaça 2G tenha contribuído para o processo de produção de biogás. A alta disponibilidade de acetato favorece a atividade metabólica de arqueas metanogênicas, o que é fundamental para o equilíbrio químico da conversão de matéria orgânica em biogás.
The Sucroenergetic sector expansion has favored the development of second generation ethanol technology. However, the process leads to the production of large amounts of residues, as well as the first generation process. The main residue is the vinasse, which is very pollutant. In this context it becomes clear the need of giving an appropriate application for vinasse. Anaerobic digestion has turned into a very disseminated and very well accepted technology in many countries, which is mainly due to its results as an efficient waste management and energy generation. Vinasse has a great potential for biogas production through anaerobic digestion, since it is a residue with high organic matter and in large availability in Brazil. Such technology has to be developed also for the residues obtained through second generation ethanol process. With a different process, it is expected that residues composition might also be different. It is important to look into the influence that second generation vinasse composition may bring to anaerobic digestion. The purpose of this study was to investigate the effects of second generations vinasse composition over the biogas production process. Before experiments, first and second generation vinasses were characterized. The most remarkable differences for vinasses composition were obtained for COD concentration, organic acids concentration (specially for acetic acid), phenolic compounds and sulphate. COD concentrations were 30,732.80 mg O2 L-1 and 19,038.13 mg O2 L-1 for first generation vinasse and second generation vinasse, respectively. Acetic acid and total phenolic compounds were, respectively, 88.14% and 84.10% higher for second generation vinasse than those found for first generation vinasse. Sulphate concentration for second generation vinasse was 28.11% lower than first generation vinasse\'s concentration. Biogas production process was evaluated for two different methanogenic reactors: first generation vinasse was used as substrate for one reactor and second generation vinasse was used as substrate for the second one. Processes were monitored according to biogas production by removed COD, organic acids production, alkalinity, phenolic compounds removal, anions removal and solids retention. Both reactors had their effluents characterized by cations content. In the process carried out with second generation vinasse the biogas production was four times higher than in the process carried out with first generation vinasse. The average values were 0.08 Lbiogas CODremoved-1 and 0.32 Lbiogas CODremoved-1 for first and second generation, respectively. Considering processes monitoring by alkalinity and organic acids concentrations, the process carried out with second generation vinasse was more efficient in regards to organic matter consumption. The average efficiency for total phenolic compounds removal was 56.96% for the process using second generation as substrate. On the other hand, the process with first generation vinasse was not capable of consuming them. The results obtained in this study suggest that the high acetic acid concentration in second generation vinasse have contributed to biogas production. High acetate availability promotes archaeas metabolic activity, which is fundamental for chemical balance in converting organic matter into biogas.
APA, Harvard, Vancouver, ISO, and other styles
6

Samuel, Victor. "Environmental and socioeconomic assessment of rice straw conversion to ethanol in Indonesia : The case of Bali." Thesis, KTH, Energi och klimatstudier, ECS, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127807.

Full text
Abstract:
The vast rice production in some developing Asian countries like Indonesia raises expectation on poverty alleviation and energy diversification through second generation biofuel production from rice residues, specifically rice straw. This work attempts to estimate the potential environmental and socioeconomic benefits of rice straw-to-ethanol project in Indonesia. Literature research and interviews are performed to quantify several environmental and socioeconomic indicators that are considered as the major concerns inimplementing an energy project. Assuming all the technically available rice straw in Bali is used (~244-415 kilotonne/year), ethanol production may yield gasoline replacement, lifecycle GHG savings, GDP contribution, foreign exchange savings, and employment beneficiaries of 55-93 ML/year, 140-240 millionUSD/year, 19-32 kilotonne of CO2-equivalent/year, 100-180 million USD/year, and 2,200-3,700 persons, respectively. Sensitivity analyses are done for some parameters, showing that ethanol yield, total capital cost, feed-in-tariff for electricity, and imported crude oil price are the major factors affecting the viability of rice straw-to-ethanol project in Indonesia.
Harnessing agricultural feedstock and residues for bioethanol production - towards a sustainable biofuel strategy in Indonesia
APA, Harvard, Vancouver, ISO, and other styles
7

Silva, Amanda Alves. "Caracterização bioquímica da Beta-Xilosidase II de Caulobacter crescentus visando a degradação da biomassa lignocelulósica para aplicações biotecnológicas." Universidade Estadual do Oeste do Parana, 2015. http://tede.unioeste.br:8080/tede/handle/tede/5.

Full text
Abstract:
Made available in DSpace on 2017-05-12T14:36:23Z (GMT). No. of bitstreams: 1 DISSERTACAO AMANDA ALVES MESTRADO EM CIENCIAS FARMACEUTICAS _UNIOESTE 2015.pdf: 10598736 bytes, checksum: 51f0f3eb83858fee62392b7892930766 (MD5) Previous issue date: 2015-12-07
Lignocellulosic biomass are the raw material most abundant and promising as a natural and renewable resource. These plant materials are complex carbohydrate polymer composed mainly of cellulose, hemicellulose and lignin, which are linked by covalent bonds and can be transformed into value-added products, such as biofuels. The degradation of lignocellulosic material is made mainly from enzymes produced by microorganisms such as filamentous fungi, yeast and bacteria. Ethanol production from agricultural residues, based on the enzymatic hydrolysis, it takes basically four stages: production of enzymes, pretreatment, enzymatic hydrolysis and fermentation. Pretreatment is a work that will break the lignin cellulose complex, reducing the degree of crystallinity of the cellulose and increase the porosity of the material, by increasing the surface area of the biomass. However, pre-treatment products can generate inhibitors which include phenolic and other aromatic, aliphatic acids, aldehydes, furans, inorganic ions. The fermentation and simultaneous saccharification is an important approach for producing cellulosic or ethanol of second generation, where the enzymatic hydrolysis of cellulose and fermentation are simultaneously carried out in the same reactor, in order to obtain ethanol at a high rate and decrease formation of inhibitor compounds. Enzymatic hydrolysis requires, first, that the lignocellulosic biomass is pretreated to increase access to enzymatic attack, so that later the cellulose is broken down by cellulase action. Xylanases include the group of enzymes responsible for the hydrolysis of xylan, the major constituent of hemicellulose. The key enzymes involved in this process are β-1,4-endoxylanase and β-D-xylosidase. Endoxylanase cleave glycosidic linkages of the main chain of xylan releasing xylo-oligosaccharides, which are used by β-xylosidase to produce monomers of xylose. The alfaproteobacteria Caulobacter crescentus is non pathogenic, Gram negative, mainly found in aquatic environments and on many types of soils. This bacterium has about seven genes directly associated with xylan degradation and five of them encoding β-xylosidases. To date, there are only three studies on the β-xylosidase II from C. crescentus. The first characterization of this enzyme showed that it is capable of hydrolyzing substrates such as xylobiose, xylotriose and xilopentose whose optimum pH is 6 and optimum temperature is 55°C, although it is stable at 50°C, which shows a thermotolerance, indicating strong enough to be used in different biotechnological applications. The stability and reusability of enzymes are of fundamental importance, since they reflect significantly on the cost of the final product, and one way to achieve this is with the immobilization of enzymes, consisting of confinement thereof in a matrix or support, which can be inert polymers or inorganic materials, so that its catalytic activity is retained and the enzyme can be used repeatedly and continuously. In the present report, it was found that the β-xylosidase II (CcXynB2) of Caulobacter crescentus increased by 62% of its activity in 5 mM KCl probably as a consequence of a positive role of K+ ions. CCxynB2 was measured against various compounds described as inhibitors of hydrolysis and fermentation of lignocellulosic biomass and showed 61% more tolerant incubation with ethanol (200 mM) at 37 °C for 48 h in the absence of alcohol. The specific activities of CcXynB2 were evaluated in the presence of 10mM phenol or galacturonic acid, 100 mM hydroxymethylfurfural or ferulic acid, 1 mM acetic acid, 200 mM arabinose, glucose or xylose and it was found that were equal (100%) or much higher than the values obtained in the total absence of these compounds after 48 h. When the inhibitors were used in combination, the CcXynB2 retained 67% of its initial activity after testing at 37°C during 48 h. The enzymatic hydrolysis of hemicellulose from corncob was conducted with CcXynB2 alone or in synergism with xylanase and commercial β-glycosidase, which were more efficient in performed the saccharification of hemicellulose from 37-50 °C. The immobilized CcXynB2 in mobile phase resin led to a protective effect of specific activity, which was proportionally parallel to decreased temperatures (60 to -20°C). The data presented here indicate that CcXynB2 is promising and has potential to work in simultaneous saccharification and fermentation processes for cellulosic ethanol production. To our knowledge, is the first time that similar results are reported in the literature to bacterial β-xylosidases. Thus, this work contribute positively by providing essential information to improve the use of β-xylosidase II of Caulobacter crescentus.
Biomassas lignocelulósicas constituem a matéria-prima mais abundante e promissora como recurso natural e renovável. Esses materiais vegetais são polímeros de carboidratos complexos compostos basicamente por celulose, hemicelulose e lignina, que estão unidos entre si por ligações covalentes e podem ser convertidos em produtos de valor agregado, como os biocombustíveis. A degradação dos materiais lignocelulósicos é feita a partir de enzimas produzidas principalmente por micro-organismos como fungos filamentosos, leveduras e bactérias. Para obter etanol a partir de resíduos agroindustriais, baseando-se na hidrólise enzimática, são necessárias, basicamente, quatro etapas: produção de enzimas, pré-tratamento, hidrólise enzimática e fermentação. O pré-tratamento é o processo que irá dissociar o complexo lignina-celulose, reduzir o grau de cristalinidade da celulose e aumentar a porosidade dos materiais, através do aumento da área superficial da biomassa. No entanto, o pré-tratamento pode gerar produtos inibidores, que incluem compostos fenólicos e outros aromáticos, ácidos alifáticos, aldeídos, furanos, íons inorgânicos. A fermentação e sacarificação simultânea é uma estratégia importante para a produção de etanol celulósico ou de segunda geração, onde a hidrólise enzimática da celulose e a fermentação são desenvolvidas simultaneamente no mesmo reator, com o intuito de obter etanol em altas taxas e diminuir a formação de compostos inibidores. A hidrólise enzimática necessita, primeiramente, que a biomassa lignocelulósica seja pré-tratada para aumentar o acesso ao ataque enzimático, para que posteriormente a celulose seja quebrada pela ação de celulases. As xilanases compreendem o grupo de enzimas responsáveis pela hidrólise do xilano, principal constituinte da hemicelulose. As principais enzimas envolvidas nesse processo são β-1,4-endoxilanase e a β-D-xilosidase. Endoxilanases clivam as ligações glicosídicas da cadeia principal do xilano liberando xilo-oligossacarídeos, que são utilizados pelas β-xilosidases para liberar xilose. A alfaproteobactéria Caulobacter crescentus é não patogênica, Gram negativa, encontrada principalmente em ambientes aquáticos e em muitos tipos de solos. Essa bactéria apresenta cerca de sete genes envolvidos diretamente na degradação do xilano, sendo que cinco deles codificam para β-xilosidases. Até o momento, existem apenas três trabalhos sobre a β-xilosidase II de C. crescentus. A primeira caracterização da enzima mostrou que esta é capaz de hidrolisar substratos como xilobiose, xilotriose e xilopentose, cujo pH ótimo é 6 e temperatura ótima é 55ºC, embora seja mais estável em 50ºC, o que demonstra uma modesta termotolerância, indicando ser suficientemente resistente para diferentes aplicações biotecnológicas. A estabilidade e a possibilidade de reutilização de enzimas são de fundamental importância, pois refletem significativamente no custo do produto final, e uma forma de conseguir isso é com a imobilização de enzimas, que consiste no confinamento da mesma em uma matriz ou suporte, que podem ser polímeros inertes ou materiais inorgânicos, de modo que sua atividade catalítica fique retida e a enzima possa ser usada repetidamente e continuamente. No presente trabalho, verificou-se que a β-xilosidase II (CcXynB2) de Caulobacter crescentus aumentou 62% da sua atividade em 5 mM de KCl provavelmente em consequência de um papel positivo dos íons K+. CcXynB2 foi avaliada frente a diferentes compostos descritos como inibidores do processo de hidrólise e fermentação da biomassa lignocelulósica e mostrou-se 61% mais tolerante a incubação com etanol (200 mM) a atividades específicas da CcXynB2 foram avaliadas na presença de 10 mM fenol ou ácido galacturônico, 100 mM de hidroximetilfurfural ou ácido ferúlico, 1 mM de ácido acético, 200 mM de arabinose, glicose ou xilose, e verificou-se que foram iguais (100%) ou muito superiores aos valores obtidos na ausência total destes compostos após 48 h. Quando os inibidores foram usados em associação, a CcXynB2 reteve 67% da sua atividade inicial após 48 h de ensaio a 37ºC. A hidrólise enzimática da hemicelulose de sabugo de milho foi conduzida com CcXynB2 isoladamente ou em sinergismo com xilanase e β-glicosidase comerciais, as quais foram mais eficientes em sacarificar a hemicelulose entre 37-50ºC. A imobilização da CcXynB2 em resina de fase móvel levou a um efeito protetor da atividade específica, que ocorreu de forma paralela à diminuição de temperatura (60 a -20ºC). Os dados apresentados aqui indicam que a CcXynB2 é promissora e possui potencial para atuar em processos de sacarificação e fermentação simultânea para produção de etanol celulósico. Segundo nosso conhecimento, é a primeira vez que resultados similares são relatados na literatura para β-xilosidases bacterianas. Dessa forma, este trabalho pode contribuir positivamente, fornecendo informações fundamentais para aprimorar o uso da β-xilosidase II de Caulobacter crescentus
APA, Harvard, Vancouver, ISO, and other styles
8

Bronzato, Giovana Roberta Francisco [UNESP]. "Investigação da biomassa de Eichhornia crassipes (aguapé) para a obtenção de etanol de segunda geração como um processo mitigatório da poluição aquática." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/141985.

Full text
Abstract:
Submitted by GIOVANA ROBERTA FRANCISCO BRONZATO null (giba_roberta@hotmail.com) on 2016-07-30T22:47:31Z No. of bitstreams: 1 Dissertação8.pdf: 3329976 bytes, checksum: 1e0d85f78fcf14b969e03a86c3ce4b3e (MD5)
Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-02T14:18:50Z (GMT) No. of bitstreams: 1 bronzato_grf_me_bot.pdf: 3329976 bytes, checksum: 1e0d85f78fcf14b969e03a86c3ce4b3e (MD5)
Made available in DSpace on 2016-08-02T14:18:50Z (GMT). No. of bitstreams: 1 bronzato_grf_me_bot.pdf: 3329976 bytes, checksum: 1e0d85f78fcf14b969e03a86c3ce4b3e (MD5) Previous issue date: 2016-07-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A Eichhornia crassipes, conhecida popularmente como aguapé, é uma macrófita aquática nativa no Brasil que tem um grande poder de adaptação e uma taxa de crescimento muito elevada, chegando a cobrir o leito de um rio em poucas semanas. Por esses motivos, atualmente, esse vegetal é considerado uma praga, pois sua grande quantidade causa danos ambientais a corpos hídricos, como a eutrofização desses habitats e no setor econômico prejudica a navegação e a produção de energia, pois se prendem aos motores e as turbinas, respectivamente. Uma alternativa para resolver o problema do excesso de aguapé é utilizar a sua biomassa para a produção de etanol de segunda geração, uma tecnologia que utiliza a celulose dos vegetais como matéria-prima. Nesta dissertação foram estudadas algumas rotas de produção, com a intenção de encontrar uma metodologia eficiente para a produção de etanol 2G a partir do aguapé. Para isso foram utilizados quatro diferentes processos químicos de pré-tratamento, auto-hidrólise, hidrólise com peróxido de hidrogênio, e hidrólise com os ácidos sulfúrico e acético, e duas formas de hidrólise enzimática, simultânea ou separada do processo de fermentação alcoólica. Pela caracterização química e pelas análises de TG-DTA, XRD e FTIR, foi possível determinar que a hidrólise com ácido sulfúrico é o pré-tratamento mais eficiente e que os processos de hidrólise enzimática e fermentação alcoólica simultâneas apresentam uma maior produtividade. Em um ano, com apenas um hectare, em corpos hídricos, de aguapé, é possível produzir 265 litros de etanol.
Water hyacinth, Eichhornia crassipes, is a native macrophyte from Brazil that has a great ability to adapt and a very high growth rate, reaching to cover the riverbed in a few weeks. For these reasons, currently, water hyacinth is considered a pest because its large amount causes environmental damage to the rivers and lakes, such as eutrophication of these habitats, and economic sector, affecting navigation and energy production because they are arrested to engines and turbines respectively. An alternative to resolve the excess water hyacinth problem is to use its biomass to second generation ethanol production, which technology use cellulose like feedstock. In this work were studied some ways to optimize the production of 2G ethanol from water hyacinth. For this were used different chemical pre-treatment processes (hydrolysis with water, peroxide, sulfuric and acetic acids), and two way to enzymatic hydrolysis (SSF and SHF). Through the chemical characterization and TG-DTA, XRD and FTIR analyses, was possible to determine that sulfuric acid hydrolysis is the pretreatment more effective and that SSF has the bigger productivity. In one year, from one hectare covered by water hyacinth, it's possible to produce 265 liters of ethanol.
APA, Harvard, Vancouver, ISO, and other styles
9

Mello, Bruno Luan Soares Paula de. "Identificação e caracterização da primeira exoxilanase da família 11 de hidrolase de glicosídeo a partir do estudo do metatranscriptoma de um consórcio derivado da compostagem." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-21092017-104026/.

Full text
Abstract:
O uso de resíduos agrícolas como fonte de carbono para a geração de energia renovável parece uma solução promissora para reduzir nossa dependência em combustíveis fósseis. Na natureza, como na compostagem, comunidades microbianas formam redes metabólicas complexas que degradam eficientemente a biomassa disponível através de um conjunto de enzimas sinérgicas. Entretanto, a desconstrução da lignocelulose continua uma desafio para a indústria devido a natureza recalcitrante do substrato e a baixa atividade das enzimas, aumentando o preço do biocombustível produzido. Estudos de metagenômica e metatranscriptômica de comunidades microbianas complexas tornam possível acessar as funções metabólicas empregadas por consórcios lignocelulolíticos e revelar novos biocatalisadores que podem melhorar a conversão industrial da lignocelulose. Aqui, através de uma abordagem metagenômica, foi examinada a diversidade de microrganismos obtidos em condições laboratoriais quando um meio definido ou um complexo foi usado no seu crescimento. Em seguida, a comunidade microbiana derivada de compostagem foi crescida em meio mínimo com bagaço de cana-de-açúcar como única fonte de carbono. A degradação do substrato foi monitorada e o metatranscriptoma da cultura resultante foi sequenciado, seguido pela seleção e caracterização funcional de vários alvos. Durante as cinco semanas de estudo, a comunidade microbiana crescida em meio mínimo mostrou maior diversidade e enriquecimento em microrganismos capazes de degradar a lignocelulose do que a comunidade microbiana crescida no meio complexo. A partir do metatranscriptoma foi descoberta a primeira hidrolase de glicosídeo da família 11 com atividade exoxilanase (C21). A estrutura cristalográfica da C21, refinada à 1,76 Å, revelou que a atividade exoxilanase observada se deve a presença de duas alças que não estão presentes nas demais estruturas dos membros da família 11 de hidrolase de glicosídeo depositadas até então. A adição da C21 a um coquetel comercial provocou um aumento na velocidade de hidrólise do Avicel quando na presença de xilooligômeros. As análises metagenômica e metatranscriptômica da comunidade microbiana proveniente da compostagem revelaram que o uso de um meio definido pode deslocar espécies generalistas, levando a uma fonte enriquecida para explorar enzimas com aplicação biotecnológica. Também demonstrou a diversidade de mecanismos envolvidos na degradação in situ da lignocelulose.
Using of the globally abundant crop residues as carbon source for energy generation seems a promising solution to reduce our dependency on fossil fuels. In nature, such as in compost habitats, microbial communities create complex metabolic networks that efficiently degrade the available plant biomass using a set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and enzymes low activity, raising the price of the produced biofuel. Metagenomics and metatranscriptomics studies on complex microbial communities can assess the metabolic functions employed by the lignocellulolytic consortia and unveil novel biocatalysts that could improve industrial lignocellulose conversion. Here, using 16S rRNA amplicon metagenomic approach, we examined the diversity of microorganisms obtained in the laboratory setting when a nutrient-limited or nutrient-rich media are used. Then, a microbial community derived from compost was grown in minimal medium with sugarcane bagasse as a sole carbon source. The substrate degradation was monitored and the metatranscriptome from the resulting cultures was sequenced; several target genes were selected and functional characterized. During a five-week time course, the microbial community grown in minimal medium showed greater diversity and enrichment in lignocellulose-degrading microorganisms than the one grown in nutrient rich medium. Metatranscriptomics analysis revealed the first glycoside hydrolase from family 11 with exo-xylanase activity (C21). C21 crystal structure, refined at 1.76 Å, explained the molecular basis of exo-xylanase activity due to two extra loops previously unseen in the other reported structures from members from glycoside hydrolase family 11. A supplementation of commercial enzyme mix with C21 showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. The combination of metagenomic and metatranscriptomic analysis of compost-derived microbial community showed that nutrient-limited medium may displace bacterial generalist species, leading to an enriched source for mining novel enzymes for biotechnology applications. It also unveiled a diversity of mechanisms involved in lignocellulose degradation in situ.
APA, Harvard, Vancouver, ISO, and other styles
10

Van, Der Westhuizen Willem Andries. "A Techno-economic evaluation of integrating first and second generation bioethanol production from sugarcane in Sub-Saharan Africa." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85611.

Full text
Abstract:
Thesis (MScEng)-- Stellenbosch University, 2013.
ENGLISH ABSTRACT: Climate change that results from greenhouse gases (GHG’s) released from the burning of fossil fuels, together with the rising price of oil, have sparked interest in renewable biofuels. The production of biofuels also presents potential socio-economic benefits. There are two types of technologies for bioethanol production: · First generation bioethanol is produced from food feedstocks such as juice of sugarcane. · Second generation bioethanol is produced from non-food feedstocks (lignocellulosic materials). This project is concerned with 1st and 2nd generation bioethanol production from sugarcane juice and bagasse and the integration of these technologies. This project comprises a combination of experimental and process modelling work to assess energy efficiencies and the economic viability of integrated and stand-alone processes in the sub-Saharan African context. First generation fermentation experiments were conducted and high ethanol concentrations of up to 113.7 g/L were obtained. It was concluded that a recombinant yeast strain may be able to replace a natural hexose fermenting yeast for 1st generation fermentations to reduce costs. 2nd generation fermentation experiments were performed and ethanol concentrations of close to 40 g/L were obtained. Combinations of 1st and 2nd generation fermentation experiments were performed to improve the 2nd generation fermentation. In one of the experiments it was concluded that the combination of 1st and 2nd generation fermentations significantly improved the 2nd generation fermentation with an overall ethanol concentration of 57.6 g/L in a shorter time than for the pure 2nd generation experiments. It was determined from washing and pressing experiments that pressing the pre-hydrolysate liquor out of the pre-treated bagasse will sufficiently lower the levels of inhibitors in a 2nd generation fermentation when using a hardened yeast. Some of the data from the 1st generation experiments were used along with literature data to model a first generation process in Aspen Plus® which processes 493 tons of cane per hour (tc/hr). Pinch heat integration was used to reduce the utility requirements. The process used the bagasse that was generated to co-produce steam and electricity. The excess electricity was sold for additional revenue. In one scenario the excess bagasse was determined at 57.5%. This bagasse was sold to a stand-alone 2nd generation plant. The first generation process produced 85.5 litres of ethanol per ton of cane (L/tc), the integrated process produced 128 L/tc while the stand-alone 2nd generation process produced 185 litres of ethanol per ton of bagasse (50% moisture) or 25.5 L/tc. The amount of excess electricity that was produced ranged from 14.3 to 70.2 kWh/tc. Economic analyses were performed using South African economic parameters to resemble the sub- Saharan African context. Data from the 1st generation process model and literature data for integrated 1st and 2nd generation and stand-alone 2nd generation processes were used for the analyses. It was found that the integrated plant is the most economically viable (IRR = 11.66%) while the 1st generation process basically broke even (IRR = 1.62%) and the 2nd generation process is unviable. This was as a result of high sugarcane prices and too few incentives for 2nd generation ethanol.
AFRIKAANSE OPSOMMING: Klimaatsverandering wat veroorsaak word deur kweekhuisgasse wat vrygestel word deur die verbranding van fossielbrandstowwe en die stygenede olieprys het belangstelling in hernubare biobrandstowwe laat opvlam. Die produksie van biobrandstowwe hou ook potensiële sosioekonomiese voordele in. Daar is twee tegnologieë vir bioetanol produksie: · Eerste generasie bioetanol word vanaf voedsel bronne soos suikersap geproduseer. · Tweede generasie bioetanol word van nie-voedsel bronne (lignosellulose materiaal) geproduseer. Hierdie projek handel oor 1ste en 2de generasie bioetanol produksie van suikersap en suikerriet bagasse en die integrasie van hierdie tegnologieë. Hierdie projek bestaan uit ‘n kombinasie van eksperimentele- en prosesmodellering werk om die energiedoeltreffendheid en ekonomise vatbaarheid van geïntegreerde en alleenstaande prosesse in die sub-Sahara konteks te ondersoek. Eerste generasie fermentasie eksperimente is uitgevoer en hoë etanol konsentrasies van tot 113.7 g/L is gekry. Dit was bepaal dat ‘n rekombinante gisras ‘n natuurilke heksose fermenterende gisras kan vervang vir 1ste generasie fermentasies om kostes te bespaar. 2de generasie fermentasie eksperimente is gedoen en etanol konsentrasies van amper 40 g/L is behaal. Kombinasies van 1ste en 2de generasie fermentasie-eksperimente was uitgevoer om die 2de generasie fermentasie te verbeter. In een van die eksperimente is dit bepaal dat die kombinasie van 1ste en 2de generasie fermentasie die 2de generasie fermentasie beduidend verbeter het met ‘n etanol konsentrasie van 57.6 g/L en dít in ‘n korter tyd as vir die suiwer 2de generasie eksperimente. Dit was bepaal vanuit pers- en was eksperimente dat om die pre-hidrolisaat vloeistof uit die stoombehandelde bagasse te pers, die vlak van inhibitore in ‘n 2de generasie fermentasie voldoende verlaag vir die gebruik van ‘n verharde gis. Van die data van die 1ste generasie eksperimente was saam met literatuurdata gebruik om ‘n 1ste generasie proses in Aspen Plus® te modelleer wat 493 ton suikerriet per uur prosesseer (tc/hr). Pinch hitte integrasie was gebruik om die dienste vereistes te verminder. In die proses word die bagasse gebruik om stoom en elektrisiteit te genereer. In een geval was die oortillge bagasse bepaal as 57.5%. Hierdie bagasse was verkoop aan ‘n alleenstaande 2de generasie aanleg. Die eerste generasie proses het 85.5 liter etanol per ton suikerriet geproduseer (L/tc), die geïntegreerde proses het 128 L/tc geproduseer terwyl die 2de generasie proses 185 liter etanol etanol per ton bagasse (50% vog) of 25.5 L/tc geproduseer het. Die hoeveelhede oortillige elektrisiteit wat geproduseer is wissel van 14.3 tot 70.2 kWh/tc. Ekonomiese analieses is gedoen met Suid-Afrikaanse ekonomiese parameters om die sub-Sahara Afrika-konteks uit te beeld. Data van die 1ste generasie prosesmodel en literatuurdata van geïntegreerde 1ste en 2de generasie en alleenstaande 2de generasie prosesse was vir die analieses gebruik. Dit is bepaal dat die geïntegreerde model die mees ekonomies vatbare model is (IRR = 11.66%) terwyl die 1ste generasie proses basies gelyk gebreek het (IRR = 1.62%) en die 2de generasie proses is ekonomies onvatbaar. Hierdie bevindinge is as gevolg van hoë suikerrietpryse en te min aansporings vir 2de generasie etanol.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ethanol of second generation"

1

Yan, JianHua, and ChangMing Du. Hydrogen Generation from Ethanol using Plasma Reforming Technology. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3659-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fast, Howard. Second generation. Naperville, IL: Sourcebooks Landmark, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Second generation. London: Hogarth Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fast, Howard. Second generation. Naperville, IL: Sourcebooks Landmark, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Second generation. Sevenoaks: Coronet, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tracy, Hickman, and Copyright Paperback Collection (Library of Congress), eds. The Second Generation. Renton, Wash: Wizards of the Coast, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Linaker, Michael R. Scorpion: Second generation. Leicester: Linford, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tracy, Hickman, ed. The Second Generation. Lake Geneva, WI: TSR, Inc., 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1955-, Hickman Tracy, ed. The Second Generation. Cambridge: TSR Ltd, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Williams, Raymond. Second generation: A novel. London: Chatto and Windus, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ethanol of second generation"

1

Saini, Anita, Neeraj K. Aggarwal, and Anita Yadav. "Microbial Cellulases: Role in Second-Generation Ethanol Production." In Microbial Bioprospecting for Sustainable Development, 167–87. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0053-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chandel, Anuj Kumar, Tassia Lopes Junqueira, Edvaldo Rodrigo Morais, Vera Lucia Reis Gouveia, Otavio Cavalett, Elmer Ccopa Rivera, Victor Coelho Geraldo, Antonio Bonomi, and Silvio Silvério da Silva. "Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol." In Biofuels in Brazil, 1–29. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05020-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leão, D. A. S., M. M. Conceição, L. S. Conrado, C. R. S. Morais, A. G. Souza, C. S. S. Lima, J. M. Silva Neto, and F. L. H. Silva. "Production of Energy—The Second Generation Ethanol and Prospects." In Advanced Structured Materials, 165–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19767-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martins, Luiza Helena Da Silva, João Moreira Neto, Paulo Weslem Portal Gomes, Johnatt Allan Rocha De Oliveira, Eduardo Dellosso Penteado, and Andrea Komesu. "Potential Feedstocks for Second-Generation Ethanol Production in Brazil." In Sustainable Biofuel and Biomass, 145–66. Includes bibliographical references and index: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429265099-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shrestha, Prachand, Anthony L. Pometto, Samir Kumar Khanal, and J. van Leeuwen. "Second-Generation Biofuel Production from Corn-Ethanol Industry Residues." In Sustainable Bioenergy and Bioproducts, 71–87. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2324-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rakshit, Sudip Kumar. "Second Generation Bio-Ethanol and Renewable Chemicals from Lignocellulosics." In Biofuel Technologies, 259–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34519-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Galdos, M. V., H. Cantarella, A. Hastings, J. Hillier, and P. Smith. "Environmental Sustainability Aspects of Second Generation Ethanol Production from Sugarcane." In Advances of Basic Science for Second Generation Bioethanol from Sugarcane, 177–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49826-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carvalho, M., and L. Ishikawa. "The Economic Viability of Second-Generation Ethanol in Coming Years." In Lecture Notes in Management and Industrial Engineering, 101–8. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93488-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chandel, Anuj K., Ellen C. Giese, Om V. Singh, and Silvio Silvério da Silva. "Sustainable Role of Thermophiles in the Second Generation of Ethanol Production." In Extremophiles, 267–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118394144.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bravim, Fernanda, Melina Campagnaro Farias, Oeber De Freitas Quadros, and Patricia Machado Bueno Fernandes. "Genetic Enhancement of Saccharomyces Cerevisiae for First and Second Generation Ethanol Production." In Industrial Biotechnology, 239–79. Toronto ; [Hackensack?] New Jersey : Apple Academic Press, 2016.: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315366562-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ethanol of second generation"

1

Ester Soares Dal Poz, Maria, and Ellen Patricia Amstalden. "GLOBAL ENERGETIC MARKET TENDENCIES: TECHNOLOGIES FOR THE SECOND GENERATION OF ETHANOL." In XXIII Congresso de Iniciação Científica da Unicamp. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.19146/pibic-2015-38086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Priadi, Hasbi, Sary Awad, Widodo Wahyu Purwanto, and Yves Andres. "Mapping the potential of palm oil by product for second generation bio-ethanol." In INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0014541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reis, Alexandre Libanio Silva Reis, Emmanuel Dutra, Marcos Antonio de Morais Júnior, Raquel de Fátima Rodrigues de Souza, and Patrícia Paiva. "β-glucosidase activity in the yeast Dekkera/Brettanomyces bruxellensis and implications for production of second-generation ethanol." In Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-31636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taha, Ahmed A., Tarek Abdel-Salam, and Madhu Vellakal. "Hydrogen, Biodiesel and Ethanol for Internal Combustion Engines: A Review Paper." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1011.

Full text
Abstract:
Alternative fuels research has been on going for well over many years at a number of institutions. Driven by oil price and consumption, engine emissions and climate change, along with the lack of sustainable fossil fuels, transportation sector has generated an interest in alternative, renewable sources of fuel for internal combustion engines. The focus has ranged from feed stock optimization to engine-out emissions, performance and durability. Biofuels for transportation sector, including alcohols (ethanol, methanol…etc.), biodiesel, and other liquid and gaseous fuels such as methane and hydrogen, have the potential to displace a considerable amount of petroleum-based fuels around the world. First generation biofuels are produced from sugars, starches, or vegetable oils. On the contrary, the second generation biofuels are produced from cellulosic materials, agricultural wastes, switch grasses and algae rather than sugar and starch. By not using food crops, second generation biofuel production is much more sustainable and has a lower impact on food production. Also known as advanced biofuels, the second-generation biofuels are still in the development stage. Combining higher energy yields, lower requirements for fertilizer and land, and the absence of competition with food, second generation biofuels, when available at prices equivalent to petroleum derived products, offer a truly sustainable alternative for transportation fuels. There are main four issues related to alternative fuels: production, transportation, storage, handling and usage. This paper presents a review of recent literature related to the alternative fuels usage and the impact of these fuels on fuel injection systems, and fuel atomization and sprays for both spark-ignition and compression-ignition engines. Effect of these renewable fuels on both internal flow and external flow characteristics of the fuel injector will be presented.
APA, Harvard, Vancouver, ISO, and other styles
5

Gabrielle Silva, Thaís, GONCALO AMARANTE GUIMARAES PEREIRA, and Thamy L. R. Corrêa. "Bacterial Lytic Polysaccharide Monooxygenases (LPMOs) and their impact on deconstruction of lignocellulosic biomass for production of second generation ethanol." In XXV Congresso de Iniciação Cientifica da Unicamp. Campinas - SP, Brazil: Galoa, 2017. http://dx.doi.org/10.19146/pibic-2017-78831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pina, Eduardo Antonio, and Marcelo Modesto. "Proposals to Maximize Electricity Generation From Sugar Cane in Brazil." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20132.

Full text
Abstract:
Brazil’s sugarcane industry has been characterized by low efficiency in energy production as it consumes large amounts of bagasse as fuel in its cogeneration system, considering its low price and abundance. The possibility of selling surplus electricity to the grid has motivated investments in improvements, such as reduction of steam demand by means of process thermal integration and double distillation systems, and employment of condensing instead of back pressure steam turbines. Four different cogeneration systems were analyzed in this work: two traditional Rankine Cycles, the first presenting back pressure steam turbine and the second featuring condensing steam turbine configuration; a BIGCC (Biomass Gasification Combined Cycle) and an altered model of the BIGCC, comprised by an extra gas turbine set operating with ethanol. Thermoeconomic analyses determining exergy based costs of electricity and ethanol for all cases were carried out. The main objective of this work is to assess the proposal to maximize electricity production from the sugarcane industry in Brazil.
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Xipeng, David M. Christopher, Yanshen Li, and Hui Li. "Bubble Dynamics From Artificial Nucleation Sites During Subcooled Pool Boiling." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18242.

Full text
Abstract:
The bubble dynamics of ethanol vapor bubbles growing, coalescing and condensing in a subcooled ethanol liquid pool were investigated experimentally and numerically for a range of subcoolings and heating rates. The bubbles were generated from an artificial pair of nucleation sites made of microscale tubes mounted flush with the bottom surface of the liquid pool with the vapor supplied by a vapor generator. Observations of the bubble generation with a high speed camera show the various coalescence modes with no coalescence at low heating rates and high subcoolings and horizontal and/or vertical coalescence depending on the heating rate and subcooling. At very low subcoolings, the bubbles grew quite large with various types of coalescence. The numerical results using solutions of the Navier-Stokes equations with the VOF model and using a simplified one dimensional model also describe the bubble dynamics and the conditions for coalescence. The numerical results suggest that the condensation rate at the interface is probably much higher than predicted by the model due to significant convection in the liquid pool or due to significant disturbance of the interface by the vapor jet entering the bubble.
APA, Harvard, Vancouver, ISO, and other styles
8

Nelson, George J., Comas Haynes, and Cameron Miller. "Dilute Ethanol Fueled SOFCs: A Symbiotic Solution Strategy." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85088.

Full text
Abstract:
Biofuels have been broached as being more commercially viable under the biorefinery concept wherein multiple product streams enhance overall economics. An example of this concept is presented in which solid oxide fuel cells (SOFCs) and bioethanol are explored in light of the symbiotic pairing of these two promising alternative energy thrusts. Mutual benefit is manifested via dilute ethanol fueled SOFCs. Due to high operating temperatures SOFCs reject high quality heat that can be used for indirect internal reformation of ethanol in the presence of sufficient water. Additionally, carbon monoxide present in hydrogen-rich reformate can be used as a fuel through shift to hydrogen. Thus, the optimization of an additional dilute product stream for SOFC applications can contribute to the realization of the bioethanol infrastructure. This contribution is two-fold. First, across a domain of viable operating conditions the use of dilute ethanol can potentially improve SOFC system performance above cell stack performance and enable distributed SOFC generation fueled by dilute ethanol, providing a secondary market for higher energy ratio bioethanol. Second, integrating in-plant SOFC co-generation fueled by a fraction of dilute ethanol diverted from the process stream is shown to improve the energy ratio of bioethanol. This improvement results from the electricity and by-product heat from the SOFC partially offsetting the energy intensive anhydrous ethanol production.
APA, Harvard, Vancouver, ISO, and other styles
9

Kou, Nannan, Fu Zhao, and Li Zhang. "Aspen Plus Process Simulation of Flexible Feedstock Thermo-Chemical Ethanol Production." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84090.

Full text
Abstract:
Current US transportation sector mainly relies on liquid hydrocarbon derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on global warming and energy security. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification based thermo-chemical conversion can utilize a wide range of biomass wastes and residues and bring flexibility to both feedstock and production sides of a plan. Thus it presents an attractive technical route. In this paper, a flexible feedstock thermo-chemical ethanol production process is investigated. This research focuses mainly on the evaluation of the feasibility of the process through numerical simulation. An existing thermo-chemical ethanol production model developed by NREL has been updated to handle the cases when different biomass feedstock and feedstock combinations are used. It is found that the ethanol yield is positively linear proportional to the feedstock feeding rate, while the total conversion efficiency is negatively proportional to the feeding rate. To demonstrate a feedstock management strategy, a plant located near a major city with a population of 200,000 and above is considered and MSW, corn stover and wood chips are selected as potential feedstock. Simulation results indicate that with wood chips as the backup feedstock the plant can be operated under extreme conditions when corn stover availability is significantly reduced without major equipment modification.
APA, Harvard, Vancouver, ISO, and other styles
10

Rossetti, Ilenia, Cesare Biffi, Lucio Forni, Gian Franco Tantardini, Giuseppe Faita, Mario Raimondi, Edoardo Vitto, and Davide Alberti. "Integrated 5 kWe + 5 kWt PEM-FC Generator From Bioethanol: A Demonstrative Project." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33049.

Full text
Abstract:
A power unit constituted by a reformer, a H2 purification section and a fuel cell is being installed c/o the Dept. of Physical Chemistry and Electrochemistry of Universita` degli Studi di Milano, on the basis of a collaboration with Helbio S.A. (Hydrogen and Energy Production Systems, supplier) and the support of some sponsors (Linea Energia S.p.A., Parco Tecnologico Padano and Provincia di Lodi). The system is suitable to obtain 5 kWelectric (a.c.) + 5 kWthermal (hot water at 70°C) as peak output. H2 is produced by steam reforming (SR) of second generation bioethanol, obtainable by different non-food competitive biomass. The assessment of the effect of biomass nature and of the consequent different impurities left in the produced bioethanol is part of the experimentation, together with the evaluation of the impact of bioethanol production cost on the final energy cost. Furthermore, the effect of different ethanol/steam ratios will be taken into account to lighten as much as possible the energy demanding ethanol dehydration process. The former point focuses on catalyst life, imposing careful ethanol characterisation and proper catalyst formulation, whereas the latter is connected with the overall energetic efficiency and economic sustainability. Indeed, the reforming process requires co-feeding of water, opening the way to the research of different, cheaper, ethanol purification strategies, leading to lower ethanol concentration with respect to the azeotrope. The reformate is purified from CO down to a concentration below 20 ppm, suitable to feed the proton exchange membrane fuel cells (PEMFC) stack integrated in the fuel processor. This result is achieved by feeding it to two water gas shift reactors, connected in series and operating at high and low temperature, respectively. The expected CO concentration in the outcoming gas is ca. 1 vol% and the final CO removal to meet the specifications is accomplished by selective methanation. The purified H2 is fed to a 5 kWe PEMFC stack, which should have an expected overall efficiency around 80% (including thermal output). The main goal of the present project is to check system performance under widely different operating conditions and load, to verify the effectiveness of the proposed technology and to suggest adequate improvements. Different operating conditions are under evaluation as for ethanol origin, purity, concentration, temperature and space velocity of every reaction step, so to obtain the best compromise between H2 yield, power output and operating costs.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ethanol of second generation"

1

Ting, Kai M. Second Generation of Mass Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kwak, Larry W. Second-Generation Therapeutic DNA Lymphoma Vaccines. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada485134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Armijo, J. S., M. Misra, and Piyush Kar. Second Generation Waste Package Design Study. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/910143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sikivie, P., N. S. Sullivan, and D. B. Tanner. Second-generation dark-matter axion search. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/458887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kwak, Larry W. Second Generation Therapeutic DNA Lymphoma Vaccines. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada540718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

M.A. Alvin. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/829652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kwak, Larry W. Second-Generation Therapeutic DNA Lymphoma Vaccines. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada504992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dingledine, Roger, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation Onion Router. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada465464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adam Matzger. Second Generation MOF's for Hydrogen Storage. Office of Scientific and Technical Information (OSTI), May 2008. http://dx.doi.org/10.2172/936781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Archie Robertson. Second Generation PFBC Systems R&D. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/882012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography