To see the other types of publications on this topic, follow the link: Ethnopharmacy study.

Journal articles on the topic 'Ethnopharmacy study'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 journal articles for your research on the topic 'Ethnopharmacy study.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Perawati, Santi, Lili Andriani, Lia Anggresani, and Eti Ardila. "Ethnopharmacy Study of Suku Anak Dalam (SAD) in Muara Kilis Village, Tengah Ilir, Tebo District, Jambi Province." Biospecies 12, no. 2 (October 8, 2019): 36–42. http://dx.doi.org/10.22437/biospecies.v12i2.5551.

Full text
Abstract:
ABSTRACT Background: Indonesia consists of various ethnics on each island, one of which is Suku Anak Dalam (SAD) precisely on Sumatra island of Jambi Province. Each ethnic group has a variety of natural and traditional remedies. This observation was conducted from November 2017 to February 2018 in Muara Kilis Village, Tengah Ilir District, Tebo District, Jambi Province.This research purpose to determined of various disease and know the various natural resources that are used as a treatmenton Suku Anak Dalam at Muara Kilis. Method: This research type is descriptive research using qualitative method and purposive sampling for sampling technique and open-ended interview with informant using voice recording media. Results: The disease are often experienced by Suku Anak Dalam among others fever, cough, asthma, measles, gastritis, hemorrhoids, stomachaches, and allergy. To treat the disease by utilizing natural resources like plants and animals. Part of the plants used among others, leaves, sap, and fruit, while for animal parts used are bile, urine, and blood. Processing methods are pounded, boiled, grated, and fried, while the use of these ingredients by eating, drinking, bathed, and applied directly on part of sickness skin Conclusion: Based on the results that has been done there are 8 diseases that often occur and there are 5 kinds of plants and 4 animals from different genus and family that are used as traditional medicine in Suku Anak Dalam Muara Kilis Village. Keywords: (Ethnopharmacy, Suku Anak Dalam, Diseases, Natural Resources)
APA, Harvard, Vancouver, ISO, and other styles
2

Drobnik, Jacek, and Adam Stebel. "Four Centuries of Medicinal Mosses and Liverworts in European Ethnopharmacy and Scientific Pharmacy: A Review." Plants 10, no. 7 (June 25, 2021): 1296. http://dx.doi.org/10.3390/plants10071296.

Full text
Abstract:
(1) Medicinal use of bryophytes dates to ancient times, but it has always been marginal due to their small size, difficult identification, lack of conspicuous organs which would attract attention (flowers, fruits) and insipid taste of the herb. The earliest testimonies of their medical use come from the 1500s. The interest in medicinal bryophytes diminished considerably in the 1880s, except for Sphagnum spp., which became a source of dressing material. The second half of the 20th century saw the revival of the study of bryophyte chemistry. (2) Historical printed sources from 1616 to 1889 were queried. Bryophyte species found were taxonomically identified and presented against the background of their confirmed properties and ecology. The study was supplemented with historical vs. modern ethnomedicinal data. (3) In 26 publications, 28 species were identified. Modern usage was known for 10 of them. Medicinal properties of 16 species were confirmed. (4) Species of wide geographical distribution range were (or are still being) used in local folk medicines. Historical ethnobiological and ethnopharmaceutical uses of them are sometimes convergent with their confirmed properties, mostly external (as antimicrobial or cytotoxic remedies).
APA, Harvard, Vancouver, ISO, and other styles
3

Bhui, Kamaldeep, and Nasir Warfa. "Retraction notice to “Trauma, khat & common psychotic symptoms: A quantitative study” [J. Ethnopharmacol. 131 (2010) 459–463]." Journal of Ethnopharmacology 134, no. 1 (March 2011): 202. http://dx.doi.org/10.1016/j.jep.2010.10.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soulimani, Rachid, Chafique Younos, Salah Jarmouni-Idrissi, Dalila Bousta, Farid Khallouki, and Amazzale Laila. "Corrigendum to “Behavioral and pharmaco-toxicological study of Papaver rhoeas L. in mice” [J. Ethnopharmacol. 74 (2001) 265–274]." Journal of Ethnopharmacology 114, no. 2 (November 2007): 277. http://dx.doi.org/10.1016/j.jep.2007.07.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chang, Ching-Mao, Po-Chang Wu, Jen-Huai Chiang, Yau-Huei Wei, Fang-Pey Chen, Tzeng-Ji Chen, Tai-Long Pan, Hung-Rong Yen, and Hen-Hong Chang. "Corrigendum to “Integrative therapy decreases the risk of lupus nephritis in patients with systemic lupus erythematosus: A population-based retrospective cohort study” [J. Ethnopharmacol. 196 (2017) 201–212]." Journal of Ethnopharmacology 206 (July 2017): 426. http://dx.doi.org/10.1016/j.jep.2017.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bolson, Mônica, Sonia Marisa Hefler, Elisiane Inês Dall’Oglio Chaves, Arquimedes Gasparotto, and Euclides Lara Cardozo. "Corrigendum to “Ethno-medicinal study of plants used for treatment of Human ailments, with residents of the surrounding region of forest fragments of Paraná, Brazil” [J. Ethnopharmacol. 161(2015) 1–10]." Journal of Ethnopharmacology 173 (September 2015): 468. http://dx.doi.org/10.1016/j.jep.2015.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Mo, Jian Liang Chen, Jie yu Ye, Su yi Li, En yu Liang, and Beng Chong. "Angelica Polysaccharide and TPO Have a Protective Effect On Hcmv-Induced Apoptosis In Megakaryocytes." Blood 122, no. 21 (November 15, 2013): 3553. http://dx.doi.org/10.1182/blood.v122.21.3553.3553.

Full text
Abstract:
Abstract Human cytomegalovirus (hCMV) infection is often associated with thrombocytopenia. Megakaryocytes may be one of the major sites of hCMV infection, then inducing this cell apoptosis. Angelica Sinensis (Danggui) is an important ingredient of many commonly used herbal Medicine for promoting blood production. Our previous study has showed that the hematopoietic effect of Angelica Sinensis is related to its constituent, angelica polysaccharide (APS) (Yang M et al, J Ethnopharma, 2009). This present study investigated the anti-apoptotic effect of APS and TPO on hCMV-induced apoptosis in megakaryocytes. Human bone marrow mononuclear cells (MNC) or megakaryocytic cell line CHRF-288-11 and hCMV AD169 strain were co-cultured in this study. hCMV significantly inhibited the formation of CFU-MK as shown in three different concentrations of viral infection groups (103, 104 and 105 pfu/ml), compared with blank control and mock control (n=10, P<0.05). hCMV also significantly inhibited the growth of CHRF cells in these three different concentrations after incubation for 3 days, which compared with control group (n=10, P<0.01). hCMV DNA and mRNA were also positively detected in CHRF cells and the cells of CFU-MK with IS-PCR and RT-PCR respectively, while it was negative in blank and mock control groups. We further studied the effect of APS and TPO on CFU-MK formation. Results showed that APS (50 ug/ml) like TPO (50 ng/ml) enhanced hCMV-reduced CFU-MK (P=0.05, n=6). CHRF cells were also analyzed by Annexin V/PI with flow cytometry at day 3 after infection with hCMV AD169. The percentage of apoptotic cells in group of 103 pfu/ml was 19.0 ± 2.0%; The group of 104 pfu/ml was 23.0 ± 1.5%; The group of 105 pfu/ml was 28.0 ± 3.0%. The control group was 2.0 ± 0.5%. The apoptotic cells were confirmed by morphologic observation. In addition, apoptotic signals from megakaryocytic surface, cytoplasma and mitochondria were detected in hCMV infected cells by flow cytometry with Caspase-3 and JC-1 assay. Compared to mock infection control at day 5, Annexin-V positive cells population increased by 58%; active caspase-3 signal increased by 120% in viable cell population; and cell population with damaged mitochondial membrane showed a 5-times increase. Moreover, the anti-apoptotic effect of APS and TPO on CHRF cells was also demonstrated by using Annexin-V assay. Our studies showed that hCMV induces the apoptosis in megakaryocytes via mitochondrial and caspase-3 signaling, and angelica polysaccharide (APS) like TPO has a protective effect on hCMV-induced apoptosis in these cells. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Ming-Shun, Chih-Chiang Chien, Kur-Ta Cheng, Gottumukkala V. Subbaraju, and Yen-Chou Chen. "Hispolon Suppresses LPS- or LTA-Induced iNOS/NO Production and Apoptosis in BV-2 Microglial Cells." American Journal of Chinese Medicine 45, no. 08 (January 2017): 1649–66. http://dx.doi.org/10.1142/s0192415x17500896.

Full text
Abstract:
Hispolon (HIS) is an active polyphenol compound derived from Phellinus linteus (Berkeley & Curtis), and our previous study showed that HIS effectively inhibited inflammatory responses in macrophages [Yang, L.Y., S.C. Shen, K.T. Cheng, G.V. Subbaraju, C.C. Chien and Y.C. Chen. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J. Ethnopharmacol. 156: 61–72, 2014]; however, its effect on neuronal inflammation is still undefined. In this study, HIS concentration- and time-dependently inhibited lipopolysaccharide (LPS)- and lipoteichoic acid (LTA)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production with increased heme oxygenase (HO)-1 proteins in BV-2 microglial cells. Accordingly, HIS protected BV-2 cells from LPS- or LTA-induced apoptosis, characterized by decreased DNA ladder formation, and caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage in BV-2 cells. Similarly, the NOS inhibitor, N-nitro-L-arginine methyl ester (NAME), inhibited LPS- or LTA-induced apoptosis of BV-2 cells, but neither NAME nor HIS showed any inhibition of NO production or cell death induced by the NO donor, sodium nitroprusside (SNP), indicating the involvement of NO in the inflammatory apoptosis of microglial cells. Activation of c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-[Formula: see text]B contributed to LPS- or LTA-induced iNOS/NO production and apoptosis of BV-2 cells, and that was suppressed by HIS. Additionally, HIS possesses activity to induce HO-1 protein expression via activation of extracellular signal-regulated kinase (ERK) in BV-2 cells, and application of the HO inhibitor, tin protoporphyrin (SnPP), or knockdown of HO-1 protein by HO-1 small interfering (si)RNA significantly reversed HIS inhibition of NO production and cell death in BV-2 cells stimulated by LPS. Results of an analysis of the effects of HIS and two structurally related chemicals, i.e. dehydroxy-HIS (D-HIS) and HIS-methyl ester (HIS-ME), showed that HIS expressed the most potent inhibitory effects on iNOS/NO production, JNK activation, and apoptosis in BV-2 microglial cells activated by LPS with increased HO-1 protein expression. Overall these results suggested that HIS possesses inhibitory activity against LPS- or LTA-induced inflammatory responses including iNOS/NO production and apoptosis in BV-2 microglial cells and that the mechanisms involve upregulation of the HO-1 protein and downregulation of JNK/NF-[Formula: see text]B activation. A critical role of hydroxyl at position C3 in the anti-inflammatory actions of HIS against activated BV-2 microglial cells was suggested.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Mo, Qianli Jiang, Bin Xiao, Chang Liu, Su yi Li, Lin fang Huang, Beng Chong, and Fan yi Meng. "Astragalus Polysaccharide has hematopoietic and thrombopoietic activities in an irradiation mouse model." Blood 122, no. 21 (November 15, 2013): 4216. http://dx.doi.org/10.1182/blood.v122.21.4216.4216.

Full text
Abstract:
Abstract A herbal decoction (Danggui Buxue Tong, DBT) is a traditional Chinese medicine formula comprising Danggui (Radix Angelicae) and Huang Qi (Radix Astragali), which has been used for promotion of “blood production” for centuries and have shown favorable effects on thrombocytopenia. Previously, we have showed that it has significant effects on promoting hematopoiesis and thrombopoiesis (Yang M et al. J Ethnopharmacol, 2009). Many chemical components have been identified in DBT. Among them is the polysaccharides fraction of Angelica sinensis and Radix Astragali. Our study has demonstrated that Angelica Polysaccharide (APS) promotes hematopoiesis and platelet recovery in a mouse model (Liu et al, BMC Complement Altern Med, 2010). In this present study, we further assess the effect of Astragalus Polysaccharide (ASPS) on hematopoiesis and thrombopoiesis in-vivo and in vitro. A myelosuppression mouse model (4-Gy-irradiated) was treated with ASPS (10 mg/kg/day) and TPO (1 mg/kg/day). Peripheral blood cells from ASPS, TPO and vehicle-treated samples were counted on days 0, 7, 14 and 21. Using the colony-forming unit (CFU) assays, we determine the effects of ASPS on the hematopoietic stem/progenitor cells and megakaryocytic lineages. Analyses of Annexin V, Caspase-3, and Mitochondrial Membrane Potential were also conducted in HL-60 cells and megakaryocytic cell line M-07e. The effects of ASPS on cells treated with Ly294002, a PI3K inhibitor and the effect of ASPS on the phosphorylation of AKT were further studied. Results showed that ASPS, like TPO, significantly enhanced the recovery of WBC and platelet count, and bone marrow CFU-GM and CFU-MK formation (n=8) in this model. Morphological examination of bone marrows also showed that ASPS treatment significantly increased the recovery of hematopoietic stem/progenitor cells and megakaryocytic series. We further analyzed the in vitro effect of ASPS on CFU-MK and CFU-GM formation. ASPS (50-100 ug/ml) enhanced TPO (50 ng/ml) -induced CFU-MK (p=0.05, n=4), and CFU-GM formation (p=0.04, n=4). However, ASPS alone (1-500 ug/ml) did not show significant effect on CFU-MK and CFU-GM proliferation (n=4). Moreover, the anti-apoptotic effect of ASPS in HL-60 and M-07e cells were also demonstrated by using Annexin-V, Caspase-3, and JC-1 assays. Addition of Ly294002 alone increased the percentage of cells undergoing apoptosis. However, additional of ASPS to Ly294002-treated cells reversed the percentage of cells undergoing apoptosis. Furthermore, addition of ASPS significantly increased the phosphorylation of AKT. Here, we showed that ASPS, the polysaccharide from the root of Radix Astragali, has hematopoietic and thrombopoietic activities in a mouse model. This effect is likely to result from the stimulation of cell proliferation through the activation of PI3K/AKT pathway, the activation of which prevents cells from undergoing apoptosis. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
10

Machado, A. R., D. B. Pinho, M. Silva, and O. L. Pereira. "First Report of Leaf Spot Disease Caused by Cercosporella pfaffiae on Brazilian Ginseng (Pfaffia glomerata) in Brazil." Plant Disease 96, no. 11 (November 2012): 1702. http://dx.doi.org/10.1094/pdis-06-12-0614-pdn.

Full text
Abstract:
Pfaffia glomerata (Spreng) Pedersen (Amaranthaceae) and other species in this genus, popularly known as “Brazilian ginseng,” have been marketed and used for many years in folk medicine for the treatment of various diseases (1). In January 2012, samples of P. glomerata with leaf spots were collected in the city of Viçosa, state of Minas Gerais, Brazil. Two samples were deposited in the herbarium at the Universidade Federal de Viçosa (VIC31849 and VIC31851). The diseased leaves were examined using a stereomicroscope (75×). The fungal structures were scraped with a scalpel from the plant surface and mounted in lactophenol. Thirty measurements of all of the relevant morphological characters were obtained using light microscopy for the identification of the species. To confirm the identification, fungal DNA from single-spore pure culture was isolated from the diseased leaves on PDA, and the DNA was amplified using primers ITS1 and ITS4 for the ITS region (GenBank Accession No. JQ990331) and LR0R and LR5 for partial 28S rDNA (Accession No. JQ990330). Sequencing was performed by Macrogen, Korea. The symptoms observed were leaf spots, subcircular, usually up to 6 mm diameter, initially yellowish becoming brown to reddish, margin indefinite, with the formation of fungal structures, hypophyllous, white, scattered, or grouped. Conidiophores were very numerous in dense subsynnematal fascicles, moderately brown at the base but for most of the length subhyaline, 42.5 to 350 × 2.5 to 3.5 μm, showing conidial scars. Conidia formed singly, 22.5 to 77.5 × 5 to 6 μm, hyaline, hilum slightly thickened, and refractive. These characteristics show that the fungus found on P. glomerata matched well with the description of Cercosporella pfaffiae (2). Koch's postulates were fulfilled by inoculation of 6-mm-diameter PDA plugs with the isolate mycelia on leaves of P. glomerata. Six plants were inoculated with the isolate and six plants were inoculated with an isolate-free agar plug. Inoculated plants were maintained in a moist chamber for 24 hours and subsequently in a greenhouse at 26°C. Leaf spot was observed in inoculated plants 15 days after inoculation, and symptoms were similar to those in the field. All non-inoculated plants remained healthy. A Megablast search of the NCBI GenBank nucleotide sequence database using the ITS sequence retrieved C. virgaureae as the closest match [GenBank GU214658; Identity = 458/476 (96%), Gaps = 2/476 (0%)]. To confirm the identification, Bayesian inference analyses were employed, and the tree was deposited in TreeBASE (Study S12680). The analysis placed our isolate in the same clade with the type species of Cercosporella. Molecular studies and morphological characteristics confirm our identification. C. pfaffiae has been previously reported in P. iresinoides (H.B.K.) Spreng. in Trinidad and Gomphrena glomerata L. in Argentina (2). To our knowledge, this is the first report of C. pfaffiae causing disease in P. glomerata in Brazil and it may become a serious problem for some medicinal plant growers, due to the severity of the disease and the lack of chemical products for this pathogen. References: (1) Neto et al. J. Ethnopharmacol. 96:87, 2005. (2) U. Braun. A Monograph of Cercosporella, Ramularia and Allied Genera (Phytopathogenic Hyphomycetes). Eching bei Müchen, IHW-Verlage. Vol. 1, p. 68, 1995.
APA, Harvard, Vancouver, ISO, and other styles
11

Lalitha Ramaswamy. "Antimicrobial Properties of Cocos nucifera: A Review." CORD 31, no. 1 (April 1, 2015): 6. http://dx.doi.org/10.37833/cord.v31i1.62.

Full text
Abstract:
Akinyele, T.A., 2011. Assessment of the antibacterial properties of n-Hexane extract of Cocos Nucifera and its interactions with some Conventional antibiotics. Masters Dissertation. University of Fort Hare, Alice. Alan´ıs, A.D., Calzada, F, Cervantes J.A., Torres, J., and Ceballos, G.M. 2005. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders, Journal of Ethnopharmacology. 100, 153–157. Alviano, W.S., Alviao, D.S., Diniz, C.G., Antoniolli, A.R., Alviano, C.S., Frias, L.M. 2008. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine. Arch Oral Biol. 53:545-552. Arora, R, Chawla, R, Marwah, R, Arora, P, Sharma R.K., Kaushik, V, Goel, R, Kaur, A, Silambarasan, M, Tripathi, R.P., and Bhardwaj, J.R. 2011. Corporation. Evidence-Based Complementary and Alternative Medicine. Hindawi Publishing. Bakhru, H.K. 2000. Foods That Heal. Orient Paper Backs, New Delhi. Batovska, I.D., Todorova, I.T., Tsvetkova I.V., and Najdenski H.M. 2009. Antibacterial Study of the Medium Chain Fatty Acids and Their 1- Monoglycerides: Individual Effects and Synergistic Relationships. Polish Journal of Microbiology. 58: 43- 47. Bolling, B.W., McKay, D.L., Blumberg, J.B. 2010. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac J Clin Nutr; 19: 117-23. Conrado S. Dayrit. 2000. Read at the XXXVII Cocotech Meeting, Chennai, India Deb Mandal M, Mandal. S 2011. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease Prevention. Asian Pacific Journal of Tropical Medicine, 241-247. Dyana, J.P., and Kanchana, G. 2012. Preliminary Phytochemical Screening of Cocos Nucifera L. Flowers, International Journal of Current Pharmaceutical Research, Vol 4, Issue 3. Effiong, G.S., Ebong, P.E., Eyong, E.U., Uwah, A.J., and Ekong, U.E. 2010. Amelioration of Chloramphenicol Induced Toxicity in Rats by Coconut Water, Journal of Applied Sciences Research, 6(4): 331-335. Esquenazi D, Wigg M.D, Miranda M.M.F.S., Rodrigues H.M., Tostes J.B.F., Rozental S, da Silva A.J.R. and Alviano, C.S 2002. Antimicrobial and antiviral activities of polyphenolics fromCocos nucifera Linn. (Palmae) husk fiber extract. Research in Microbiology 153: 647–652. Food and Agricultural Organization of the United Nations, Economic and Social Department. Statistics division (September 2, 2010). FAOSTAT- Production- Crops [Selected annual data]. Retrieved April 14, 2011 from the FAOSTAT database. Ifesan, B.O.T., Fashakin, J.F., Ebosele, F, and Oyerinde, A.S. 2013. Antioxidant and Antimicrobial Properties of Selected Plant Leaves, European Journal of Medicinal Plants 3(3): 465-473. Krishnamoorthy, M. and Arjun, P. 2012. Probiotic and antimicrobial activity of bacteria from fermented toddy of Cocos nucifera, J. Acad. Indus. Res. Vol. 1(3). Mandal S.M., Dey, S, Mandal, M, Sarkar, S, Maria-Neto, S. and Franco, O.L. 2009. Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water. Peptides. 30. 633-637. Mariselvam, R, Ranjitsingh, A.J.A., Nandhini, U.R.A. and Kalirajan, K. 2013. Antihelmintic and antibacterial activity of Cocos nucifera tree inflorances crude extract. IJSID, 3 (2), 311-316. Mehlhorn H, Al-Quraishy S, Al-Rasheid KAS, Jatzlau A, and Abdel-Ghaffar F. Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops Gastrointestinal Helminthic infections. Parasitol Res (2011) 108:1041–1046. Mendonça-Filho R.R, Rodrigues I.A, Alviano D.S, Santos A.L.S, Soares R.M.A, Alviano C.S, Lopes A H.C.S., Rosa M.S. 2004. Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae) Research in Microbiology 155: 136–143. Mukherjee PK, Kumar SN and Heinrich M (2008). Plant Made Pharmaceuticals (PMPs)- Development of Natural Health Products from Bio-Diversity. Indian J. Pharm Educ. Res 42(2), 113-121. Nakatsuji, T, Kao M.C., Fang, J.Y., Zouboulis, C.C., Zhang, L, Gallo R.L. and Huang C.M. 2009. Antimicrobial Property of Lauric Acid against Propionibacterium acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris, Journal of Investigative Dermatology, Volume 129. NMCE. Report on Copra. National Multi-Commodity Exchange of India Limited; 2007, 1-14. O’Neil, C.E., Keast, D.R., Nicklas, T.A. and Fulgoni V.L. 2012. Out of-hand nut consumption is associated with improve nutrient intake and health risk markers in US children and adults: National Health and Nutrition Examination Survey 1999-2004. Nutr Res 32: 185–194. Ogbolu D.O., Oni AA, Daini OA, and A.P. Oloko 2007. In Vitro Antimicrobial Properties of Coconut Oil on Candida Species in Ibadan, Nigeria, J Med Food 10 (2), 384–387. Pushpan R, Kumari H, Nishteswar K and N Vishwanathan. 2013. Preliminary Phytochemcial Screening of Narikelapushpa (Flower of Cocos nucifera L.) Global Journal of Traditional Medicinal Systems, 2(2): 1-3. Singla R.K., Jaiswal N, Bhat V and Hitesh Jagani 2011. Antioxidant & Antimicrobial Activities of Cocos Nucifera Linn. (Arecaceae) Endocarp Extracts Indo Global Journal of Pharmaceutical Sciences; 1(4): 354-361. Taheri J.B., Espineli F.W., Lu H, Asayesh M, Bakshi M, Nakhostin M.R 2010. Antimicrobial effect of coconut flour on oral microflora: An in vitro study. Res J Biol Scs. 5(6): 456-459. Thaweboon S, Nakaparksin J, Thaweboon B.2011. Effect of Oil-Pulling on Oral Microorganisms in Biofilm Models, Asia Journal of Public Health, Vol. 2 No. 2. Venkataraman S, Ramanujam T.R, Venkatasubbu V.S. 1980. Antifungal activity of the alcoholic extract of coconut shell—Cocos nucifera Linn. J. Ethnopharmacol. 2: 291–293. Verma V, Bhardwaj A, Rathi S. and Raja R.B 2012. A Potential Antimicrobial Agent from Cocos nucifera mesocarp extract; Development of a New Generation Antibiotic. ISCA Journal of Biological Sciences. Vol. 1(2), 48-54.
APA, Harvard, Vancouver, ISO, and other styles
12

Puspitasari, Endah, Alfina Eka Damayanti, Intan Nabila Sufi Zikrina, and Dewi Dianasari. "Exploring the Ethnopharmaceutical Plants of Osing Tribe in Banyuwangi Regency: Potential Application for COVID-19 Therapy." Ulum Islamiyyah, June 19, 2021, 113–20. http://dx.doi.org/10.33102/uij.vol33no3.330.

Full text
Abstract:
Ethnopharmacy is the study on herbs or plants that certain ethnic groups practice for treating particular illness. Scientific reporting of beneficial therapeutic plants through this study could promote further development of herbal medicines. We conducted an ethnopharmacy study at several villages of Osing tribe located in Banyuwangi, Indonesia, to identify plants that have the potential to be tested for certain bioactivity, in this case, for COVID-19 therapy. The snowball and purposive sampling methods using qualitative and quantitative research with semi-structured interviews and questionnaires were applied for this study. The parameters used were the Use Value (UV), Informant Consensus Factor (ICF), and Fidelity Level (FL). The plants used in this study were obtained and determined at Balai Konservasi Tumbuhan Kebun Raya Purwodadi, the Indonesian Institute of Science. The results were then followed by the literature study on the plants’ potential for COVID-19 therapy. Plant exploration was obtained by considering the results of UV calculation. Based on UV calculations in ethnopharmacy studies, there are several plants that are considered essential and have more efficacies. They are temulawak, turmeric, suruh, gigen-gigen, mating, anggrek merpati and pace. Three of the eight plants potentially possess immunomodulatory activity that can be used to prevent the infections of SARS-CoV-2. They are the temulawak (Curcuma xanthorrhiza), turmeric (Curcuma domestica) and gigen-gigen (Centella asiatica).
APA, Harvard, Vancouver, ISO, and other styles
13

Lima, Ana Luísa de Araújo, Abrahão Alves de Oliveira Filho, Ana Luíza Alves de Lima Pérez, Janiere Pereira de Sousa, Lilian Sousa Pinheiro, Hermes Diniz Neto, José Pinto de Siqueira Júnior, and Edeltrudes de Oliveira Lima. "Atividade antifúngica do óleo essencial de Cymbopogon winterianus contra Candida não-albicans de importância clínica no atendimento pediátrico." ARCHIVES OF HEALTH INVESTIGATION 8, no. 11 (June 4, 2020). http://dx.doi.org/10.21270/archi.v8i11.4287.

Full text
Abstract:
Introdução: Devido às altas taxas de mortalidade, a candidemia têm se tornado um grave problema de saúde na realidade pediátrica, sobretudo quando se considera o aumento de infecções e a letalidade dos casos em grupos de risco como as crianças hospitalizadas e com sistema imunológico deficiente. Ultimamente têm-se percebido um aumento de infecções fúngicas provocadas por espécies não-albicans, trazendo uma nova realidade para o combate destas infecções, especialmente por envolver espécies resistentes à terapia convencional. Já foi demonstrado que o óleo essencial de Cymbopogon winterianus possui uma vasta gama de propriedades farmacológicas, incluindo atividade antifúngica. Objetivo: Este trabalho buscou avaliar a atividade antifúngica do óleo essencial de Cymbopogon winterianus Jowitt ex Bor (Poaceae) contra isolados de Candida não-albicans de importância clínica pediátrica. Material e Método: A concentração inibitória mínima (CIM) e a concentração fungicida mínima (CFM) foram determinadas pelas técnicas de microdiluição em caldo. Resultados: Tanto a CIM50 quanto a CFM50 do óleo essencial de C. winterianus para os isolados testados foi de 128 μg/mL.Conclusão: Este produto natural apresentou potencial antifúngico in vitro contra cepas de Candida não-albicans clinicamente relevante para a pediatria médica. Contudo, mais estudos são necessários para elucidar seu mecanismo de ação.Descritores: Técnicas de Tipagem Micológica; Candida; Candidemia; Cymbopogon; Óleos; Pediatria.ReferênciasSteinbach WJ. Pediatric invasive candidiasis: epidemiology and diagnosis in children. J Fungi (Basel). 2016;2(1):5.Ruiz LS, Khouri S, Hahn RC, da Silva EG, de Oliveira VK, Gandra RF et al. Candidemia by species of the Candida parapsilosis complex in children’s hospital: prevalence, biofilm production and antifungal susceptibility. Mycopathologia. 2013;175(3-4):231-39.Oliveira VKP, Ruiz LS, Oliveira NAJ, Moreira D, Hahn RC, Melo ASA et al. Fungemia caused by candida species in a Children´s Public Hospital in the city of São Paulo, Brazil: study in the period 2007-2010. Rev Inst Med Trop Sao Paulo. 2014;56(4):301-5.Morace G, Borghi E, Iatta R, Amato G, Andreoni S, Brigante G et al. Antifungal susceptibility of invasive yeast isolates in Italy: the GISIA3 study in critically ill patients. BMC Infect Dis. 2011;11:130.Khan SMA, Malik A, Ahmad I. Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med Mycol. 2012;50(1):33-42.Svetaz L, Aguero MB, Alvarez S, Luna L, Feresin G, Derita M et al. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action. Planta Med. 2007;73(10):1074-80.Ganjewala D, Silviya S, Khan HK. Biochemical composition and antibacterial activities of Lantana Camera plants with yellow, lavender, red and white flowers. EurAsia J BioSci. 2009;3:69-77.Scazzocchio F, Garzoli S, Conti C, Leone C, Renaioli C, Pepi F et al. Properties and limits of some essential oils: chemical characterisation, antimicrobial activity, interaction with antibiotics and cytotoxicity. Nat Prod Res. 2016;30(17):1909-18.Silva MR, Ximenes RM, da Costa JG, Leal LK, de Lopes AA, Viana GS. Comparative anticonvulsant activities of the essential oils (EOs) from Cymbopogon winterianus Jowitt and Cymbopogon citratus (DC) Stapf. in mice. Naunyn Schmiedebergs Naunyn Schmiedebergs Arch Pharmacol. 2010;381(5):415-26.Silva CT, Wanderley-Teixeira V, Cunha FM, Oliveira JV, Dutra KA, Navarro DM et al. Biochemical parameters of Spodoptera frugiperda (J. E. Smith) treated with citronella oil (Cymbopogon winterianus Jowitt ex Bor) and its influence on reproduction. Acta Histochem. 2016;118(4):347-52.Oliveira WA, Pereira FO, Luna GCDG, Lima IO, Wanderley PA, Lima RB et al. Antifungal activity of Cymbopogon winterianus Jowitt ex Bor against Candida albicans. Braz J Microbiol. 2011;42(2):433-41.Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64(8):711-13.Hadacek F, Greger H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal. 2000;11(3):137-47.CLSI. Clinical and laboratory standards institute. protocol M27-A3. Reference method for broth dilution antifungal susceptibility testing of yeasts. 3ed. Wayne, PA, USA. 2008.Espinel-Ingroff A, Chaturvedi V, Fothergill A, Rinaldi MG. Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J Clin Microbiol. 2002;40(10):3776-81.Falagas ME, Roussos N, Vardakas KZ. Relative frequency of 3 albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis. 2010;14(11):e954-66.Nucci M, Queiroz-Telles F, Alvarado-Matute T, Tiraboschi IN, Corte J, Zurita J et al. Epidemiology of candidemia in Latin America: a laboratory-based survey. Plos One. 2013;8(3):e59373.Simões ER, Santos EA, de Abreu MC, Silva JN, Nunes NM, da Costa MP et al. Biomedical properties and potentiality of Lippia microphylla Cham. and its essential oils. J Intercult Ethnopharmacol. 2015;4(3):256-63.Bilia AR, Santomauro F, Sacco C, Bergonzi MC, Donato R. Essential Oil of Artemisia annua L.: An Extraordinary Component with Numerous Antimicrobial Properties. Evid Based Complement Alternat Med. 2014; 2014:159819.Duarte MCT, Figueira G M, Sartoratto A, Rehder VLG, Delarmelina C. Anti-Candida activity of Brazilian medicinal plants. J Ethnopharmacol. 2005;97(2):305-11.Sartoratto A, Machado ALM, Delarmelina C, Figueira GM, Duarte MCT, Rehder VLG. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol. 2004;35(4):275-80.Morales G, Paredes A, Sierra P, Loyola LA. Antimicrobial activity of three baccharis species used in the traditional medicine of Northern Chile. Molecules. 2008;13(4):790-94.Oliveira WA, Arrua JMM, Wanderley PA, Lima RB, Lima EO. Effects of the essential oil of Cymbopogon winterianus against Candida albicans. Rev Pan-Amaz Saude. 2015;6(3):21-6.Tragiannidis A, Tsoulas C, Groll AH. Invasive candidiasis and candidaemia in neonates and children: update on current guidelines. Mycoses 2015;58(1):10-21.Hafidh RR, Abdulamir AS, Vern LS, Bakar FA, Abas F, Jahanshiri F et al. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J. 2011;5:96-106.Monk BC, Goffeau A. Outwitting multidrug resistance to antifungals. Sci. 2008;321(5887):367-69.
APA, Harvard, Vancouver, ISO, and other styles
14

Nhung, Pham Thi Hong, and Dinh Doan Long. "Establishment of an in vitro screening model of bioactive compounds from Vietnamese medicinal plants using the recombinant central nervous system receptors." VNU Journal of Science: Natural Sciences and Technology 34, no. 1 (March 23, 2018). http://dx.doi.org/10.25073/2588-1140/vnunst.4724.

Full text
Abstract:
The central nervous system receptors are important targets of the drugs, involved in many neurological diseases. Therefore, this study was designed to build an in vitro screening model using recombinant receptors distributed in the central nervous system (CNS). Method: construction of cDNA system encoding for receptors; using Semliki Forest virus for the rapid and high expression of receptors in mammalian cell lines; designing binding assays for in vitro pharmacological studies of compounds and methanol plant extracts. Results: 24 cDNAs encoding for receptors and 1 screening kit with neurokinin-1 receptor were constructed; 4 receptors were expressed successfully. Conclusion: The in vitro screening model was established successfully and applied for NK1 receptors with high sensitivity and specificity. This model is a useful tool for discovery and development of target compounds acting in the CNS. Keywords Recombinant CNS receptors, an in vitro screening assays, bioactive compounds, Semliki Forest virus. specificity References [1] Đỗ Huy Bích và cs, Cây thuốc và động vật làm thuốc ở Việt Nam, NXB Khoa học và kỹ thuật, 2004[2] Kenneth H. Lundstrom, M.L. Chiu, G Protein - Coupled receptors in Drug Discovery, Taylor & Francis Group, 2006[3] Zhu M., Bowery N.G., Greengrass P.M., Phillipson J.D., Application of radioligand receptor binding assays in the search for CNS active principles from Chinese medicinal plants, J. Ethnopharmacol. 54 (1996) 153[4] Phạm Thị Hồng Nhung, Hoàng Thị Mỹ Nhung, Đinh Đoàn Long, Cải biến vectơ hệ Virus Semliki Forest (SFV) nhằm biểu hiện thụ thể GPCR của người Việt Nam, Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ 31 (2015) 47[5] Berglund P., Sjoberg M., Garoff H., Atkins G.J., Sheahan B.J., and Liljestrom P., Semliki Forest virus expression system: production of conditionally infectious recombinant particles, Biotechnology 11 (1993) 916[6] Dinh DL, Pham THN, Hoang TMN, Trinh TC, Vo TTL, Pham TH, Kenneth L., Interaction of Vietnamese medicinal plant extracts with recombinantly expressed human neurokinin-1 receptor, Planta Medica Letters, 2(2015)42 [7] Rosso M., Mu᷈ Noz M., Berger M., The Role of Neurokinin -1 Receptor in the Microenvironment of Inflammation and Cancer, The Scientific World Journal, 2012 (2012)1[8] Tô Việt Bắc, Bùi Minh Đức, Phạm Thị Kim, Thử nghiệm khả năng gây độc trên chuột của chế phẩm rotundin, Tạp chí Y hoc Việt Nam, 7(1994)46[9] Violin J.D., Crombie A.L., Soergel D.G., Lark M.W., Biased ligands at G-protein-coupled receptors: promise and progress, Trends Pharmacol Sci, 35(2014) 308[10] Lundstrom K., Henningsen R., Semliki Forest virus vectors applied to receptor expression in cell lines and primary neurons, J. Neurochem 71 (1998) [11] Federal Register 58 No. 19, Addition of Appendix DL-X to the NIH guidelines regarding Semliki Forest virus. Human Gene Therapy. 1993. p.5.
APA, Harvard, Vancouver, ISO, and other styles
15

Souza, Elaine Roberta Leite de, José Henrique de Araújo Cruz, Nílvia Maria Lima Gomes, Laise Luz Ramos, and Abrahão Alves de Oliveira Filho. "Lavandula angustifolia Miller e sua utilização na Odontologia: uma breve revisão." ARCHIVES OF HEALTH INVESTIGATION 7, no. 12 (March 20, 2019). http://dx.doi.org/10.21270/archi.v7i12.3125.

Full text
Abstract:
O uso de medicamentos fitoterápicos vem crescendo mundialmente entre os programas preventivos e curativos, e tem estimulado a avaliação dos extratos de plantas para o uso na odontologia como controle do biofilme dental e outras desordens bucais. As plantas do gênero Lavandula, pertencem à família Lamiaceae, e têm sido utilizadas através dos anos para uma variedade de propósitos cosméticos e terapêuticos. Sua utilização na odontologia é, na grande maioria dos estudos, devido ao seu potencial ansiolítico. Entretanto, a Lavandula angustifólia demonstra outros potencias farmacológicos, como sua atividade antimicrobiana, antifúngica, anti-inflamatória e antinociceptiva. O presente estudo teve como objetivo integrar os conhecimentos já existentes sobre os aspectos das propriedades farmacológicas da Lavandula angustifolia Miller e sua aplicação na Odontologia. Trata-se de uma revisão bibliográfica no qual foi realizada uma seleção de artigos científicos a partir das bases de dados: Lilacs, MEDLINE, BVS e Scielo, além de monografias que atenderam aos requisitos do tema abordado, no período 2008 a 2018 com exceção de artigos clássicos que se apresentaram imprescindíveis ao presente estudo. Obteve-se um total de 1.532 artigos. Foram selecionados 38 artigos como amostra, que apresentaram a temática elencada para a pesquisa e que foram divididos por sessões: aspectos botânicos da planta; aspectos bioquímicos da planta; potencial antimicrobano; potencial anti-inflamatório; potencial ansiolítico e; potencial antinociceptivo. Pode-se concluir que a Lavandula angustifóliaMiller apresenta-se como uma boa alternativa para utilização na odontologia. Entretanto, a falta de trabalhos que abordem sua utilidade na odontologia revela a necessidade de se intensificar as pesquisas sobre o assunto.Descritores: Plantas Medicinais; Odontologia; Lavandula.ReferênciasFrancisco KSF. Fitoterapia: uma opção para o tratamento odontológico. Rev Saúde. 2010;4(1):18-24.Silveira SM, Cunha Júnior A, Scheuermann GN, Secchi FL, Silvani V, Marisete K et al . Composição química e atividade antibacteriana dos óleos essenciais de Cymbopogon winterianus (citronela), Eucalyptus paniculata (eucalipto) e Lavandula angustifolia (lavanda). Rev Inst Adolfo Lutz. 2012;71(3):462-70.Koulivand PH, Ghadiri MK, Gorji A. Lavender and the nervous system. Evid Based Complement Alternat Med. 2013;2013:681304.Verma RS, Rahman LU, Chanotiya CS, Verma RK, Chauhan A, Yadav A et al. Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J Serb Chem Soc. 2010;75(3):343-48.Biasi LA, Deschamps C. Plantas Aromáticas: do cultivo à produção de óleo essencial. Curitiba: Layer;2009.Lorenzi, H, Matos EJA. Plantas medicinais do Brasil: nativas e exóticas. 2. ed. Nova Odessa: Instituto Plantarum de Estudos da Flora;2008.Índice Terapêutico Fitoterápico (ITF). Petrópolis: Editora de Publicações Biomédicas;2008.Chioca LR. Avaliação do mecanismo de ação do efeito tipo ansiolítico da inalação do óleo essencial de lavanda em camundongos [tese]. Curitiba: Universidade Federal do Paraná;2013.Zabirunnisa M, Gadagi JS, Gadde P, Myla N, Koneru J, Thatimatla C. Dental patient anxiety: Possible deal with Lavender fragrance. J Res Pharm Pract. 2014;3(3):100-3.Platt ES. Lavender: How to grow and use the fragrant herb. 2. ed. Mechanicsburg PA: Stackpole Books;2009.Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol. 2003;89(1):67-71.Machado MP, Ciotta MN, Deschamps C, Zanette F, Côcco LC, Biasi LA. In vitro propagation and chemical characterization of the essential oil of Lavandula angustifolia cultivated in Southern Brazil. Cienc Rural 2013;43:283-89.Porto C da, Decorti D, Kikic I. Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem. 2009;112(4):1072-78.Duke JA. Handbook of Medicinal Herbs. Flórida: CRC;2000.Mantovani ALL, Vieira GPG, Cunha WR, Groppo M, Santos RA, Rodrigues V et al . Chemical composition, antischistosomal and cytotoxic effects of the essential oil of Lavandula angustifolia grown in Southeastern Brazil. Rev. bras. farmacogn. 2013;23(6):877-84.Jianu C, Pop G, Gruia AT, Horhat FG. Chemical Composition and Antimicrobial Activity of Essential Oils of Lavender (Lavandula angustifolia) and Lavandin (Lavandula x intermedia) Grown in Western Romania. Int J Agric Biol. 2013;15(4):772-76.Lam M, Jou Pc, Lattif Aa, Lee Y, Malbasa Cl, Mukherjee Pk et al. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol. 2011;87(4):904-9.Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO. Susceptibility of Candida albicans, staphylococcus aureus, and streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci. 2011;26(3):341-48.Neville BW, Damm DD, Allen CM, Bouquot JE. Patologia Oral e Maxilofacial. 3. ed. Rio De Janeiro: Elsevier;2009.de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The in vitro antimicrobial activity of lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid Based Complement Alternat Med. 2013;2013:852049.Uniyal V, Bhatt RP, Saxena S, Talwar A. Antifungal activity of essential oils and their volatile constituents against respiratory tract pathogens causing Aspergilloma and Aspergillosis by gaseous contact. J Appl Nat Sci. 2012;4(1):65-70.Ribeiro BP, Pereira WS, Sousa AIP, Guerra RNM, Nascimento FRF. Alteração no perfil bioquímico induzido por reação inflamatória granulomatosa em camundondos. Rev Ciênc Saúde. 2010;12(1):73-9.Rubin E, Gorstein F, Rubin R, Schwarting R, Strayer D. Patologia. Bases clínicopatológicas da Medicina. 4. ed. Rio de Janeiro: Guanabara Koogan;2006.Silva GL. Avaliação da atividade antioxidante, antiinflamatória e antinociceptiva do óleo essencial de lavanda (Lavandula angustifolia Mill) [dissertação]. Dissertação (Mestrado). Porto Alegre: Universidade Católica do Rio Grande do Sul;2009.Cryan, JF, Sweeney FF. The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol. 2011;164(4):1129-61.Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G et al. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science. 2013;339(6117):332-35.Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am. 2009;32(3):549-75.Oler JA, Fox AS, Shelton SE, Rogers J, Dyer TD, Davidson RJ et al. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature. 2010;466(7308):864-68.Loggia ML, Schweinhardt P, Villemure MC, Bushnell Mc. Effects of psychological state on pain perception in the dental environment. J Can Dent Assoc. 2008;74(7):651-56.Carvalho RWF, Falcão PGCB, Campos GJL, Bastos AS, Pereira JC, Pereira MAS et al. Ansiedade frente ao tratamento odontológico: prevalência e fatores predictores em brasileiros. Ciênc Saúde Colet. 2012;17(7):1915-22.Siviero M, Nhani VT, Prado EFGB. Análise da ansiedade como fator preditor de dor aguda em pacientes submetidos à exodontias ambulatoriais. Rev Odontol UNESP. 2008;37(4):329-36Coelho LS, Correa-Netto NF, Masukawa MY, Lima AC, Maluf S, Linardi A et al. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual-but not tone-fear conditioning in rats. J Ethnopharmacol. 2018;215:34-41.Oliveira RRB, Góis RMO, Siqueira RS, Almeida JRGS, Lima JT, Nunes XP et al . Antinociceptive effect of the ethanolic extract of Amburana cearensis (Allemão) A.C. Sm., Fabaceae, in rodents. Rev bras farmacogn. 2009;19(3):672-76.Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355-474.Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413(6852):203-10.Centers for Disease Control and Prevention. Unintentional drug poisoning in the United States. CDC: Atlanta, 2010. Disponível em: https://www.cdc.gov/homeandrecreationalsafety/pdf/poison-issue-brief.pdf.Donatello NN. Ativação de receptores opioides periféricos e espinais pela inalação do óleo essencial de lavandula augustifolia reduz hiperalgesia mecânica em modelos animais de neuropatia e inflamação crônica [dissertação]. Palhoça: Universidade do Sul de Santa Catarina, Pós-graduação em Ciências da Saúde;2017.Maior FNS. Atividade ansiolítica e antinociceptiva do óxido de linalol em modelos animais [tese]. João Pessoa: Universidade Federal da Paraíba;2011.
APA, Harvard, Vancouver, ISO, and other styles
16

Thi Hong Nhung, Pham, Do Hanh Nguyen, Bui Thi Yen, Do Thi Le Hang, Vu Thi Thom, and Dinh Doan Long. "Genotyping ITS and matK regions of Hedera nepalensis K. Koch in Vietnam." VNU Journal of Science: Medical and Pharmaceutical Sciences 36, no. 3 (September 25, 2020). http://dx.doi.org/10.25073/2588-1132/vnumps.4241.

Full text
Abstract:
This study develops procedures for cloning ITS and matK genes on six specimens in order to exploit and conserve the genetic resources of H. nepalensis and evaluate its genetic diversity based on molecular markers. The study methods include DNA extraction from dried leaf samples, amplification of ITS and matK regions using PCR, sequencing and comparing with the sequences on Genbank. The study results include a successfully-established process of cloning ITS and matK genes; successful amplification and sequencing of the ITS and matK regions. The results also show that four samples (N1-N4) were 100% homologous to H. nepalensis and H1and H2 samples were 100% homologous to H. helix. The results provide data and tools for further studies of exploitation and development of the H. nepalensis K. Koch genetic resources in Vietnam. Keywords ITS, matK, Hedera nepalensis K. Koch, PCR References [1] V.V. Chi. Dictionary of Vietnamese Medicinal Plants, Publ. House Medicine, Ho Chi Minh City, 2012 (in Vietnamese).[2] D.H. Bich, D.Q. Cuong, B.X. Chuong, N. Thuong, D. T. Dam. The medicinal plants and animals in Vietnam, Hanoi Sci. Technol. Publ. House Hanoi, 2006 (in Vietnamese).[3] A. Sadat, M. Alam, A. Rauf, W. Ullah, Biological screening of ethyl acetate extract of Hedera nepalensis stem, Afr J Pharm Pharmacol, 6 (2012) 2934-2937. https://doi.org/10.5897/AJPP12.828.[4] T. Li, H. Pan, Y. Feng, H. Li, Y. Zhao, Bioactivity-guided isolation of anticancer constituents from Hedera nepalensis K. Koch, S Afr J Bot, 100 (2015) 87-93. https://doi.org/10.1016/j.sajb.2015.05.011.[5] L. Jafri, S. Saleem, N. Ullah, B. Mirza, In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch, Arab J Chem, 10 (2017) 3699-3706. https://doi.org/10.1016/j.arabjc.2014.05.002. [6] S. Saleem, L. Jafri, I. ul Haq, L.C. Chang, D. Calderwood, B.D. Green, B. Mirza, Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity, J Ethnopharmacol, 156 (2014) 26-32. https://doi.org/10.1016/j.jep.2014.08.017.[7] W.J. Hashmi, H. Ismail, F. Mehmood, B. Mirza, Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ+ AlCl 3 induced rats model, DARU, 26 (2018) 179-190. https://doi.org/10.1007/s40199-018-0223-3.[8] H. Ismail, A. Rasheed, I.-u. Haq, L. Jafri, N. Ullah, E. Dilshad, M. Sajid, B. Mirza, Five indigenous plants of Pakistan with Antinociceptive, anti-inflammatory, antidepressant, and anticoagulant properties in Sprague Dawley rats, Evid Based Complement Alternat Med, 2017 (2017). https://doi.org/10.1155/2017/7849501[9] N.D. Thanh. DNA marker techniques in study and selection of plant. Journal of Biology. 36 (2014) 265-294 (in Vietnamese). https://doi.org/10.15625/0866-7160/v36n3.5974.[10] P.Z. Goldstein, R. DeSalle, Review and interpretation of trends in DNA barcoding, Front Ecol Evol, 7 (2019) 302. https://doi.org/10.3389/fevo.2019.00302.[11] S. Abugalieva, L. Volkova, Y. Genievskaya, A. Ivaschenko, Y. Kotukhov, G. Sakauova, Y. Turuspekov, Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers, BMC plant biol, 17 (2017) 258. https://doi.org/10.1186/s12870-017-1194-0.[12] R.M. Bhagwat, B.B. Dholakia, N.Y. Kadoo, M. Balasundaran, V.S. Gupta, Two new potential barcodes to discriminate Dalbergia species, PloS one, 10 (2015) e0142965. https://doi.org/10.1371/journal.pone.0142965[13] D. Grivet, R. Petit, Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time, Mol Ecol, 11 (2002) 1351-1362. https://doi.org/10.1046/j.1365294x.2002.01522.x.[14] R. Li, J. Wen, Phylogeny and biogeography of Dendropanax (Araliaceae), an amphi-Pacific disjunct genus between tropical/subtropical Asia and the Neotropics, Syst Bot, 38 (2013) 536-551. https://doi.org/10.1600/036364413X666606.[15] Y. Sun, D. Skinner, G. Liang, S. Hulbert, Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA, ‎Theor Appl Genet, 89 (1994) 26-32. https://doi.org/10.1007/BF00226978[16] P. Cuénoud, V. Savolainen, L.W. Chatrou, M. Powell, R.J. Grayer, M.W. Chase, Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences, Am J Bot, 89 (2002) 132-144. https://doi.org/10.3732/ajb.89.1.132.[17] D. Bošeľová, J. Žiarovská, L. Hlavačková, K. Ražná, M. Bežo, Comparative analysis of different methods of Hedera helix DNA extraction and molecular evidence of the functionality in PCR Acta fytotechn zootechn, 19 (2016) 144-149. https://doi.org/10.15414/afz.2016.19.04.144-149.[18] D.D. Long, Comparative analysis of different DNA extraction methods and preliminary analysis of genetic diversity of Hedera nepalensis K. Koch. in Vietnam based on GBSSI marker, VNU Journal of Science: Medical and Pharmaceutical Sciences, 35 (2019) 88-95 (in Vietnamese). https://doi.org/10.25073/2588-1132/vnumps.4165 [19] J.H. Cota-Sánchez, K. Remarchuk, K. Ubayasena, Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue, Plant Mol Biol Rep, 24 (2006)161. https://doi.org/10.1007/BF02914055.[20] S. Xu, D. Li, J. Li, X. Xiang, W. Jin, W. Huang, X. Jin, L. Huang, Evaluation of the DNA barcodes in Dendrobium (Orchidaceae) from mainland Asia, PloS one, 10 (2015) e0115168. https://doi.org/10.1371/journal.pone.0115168.[21] P. Vargas, H.A. McAllister, C. Morton, S.L. Jury, M.J. Wilkinson, Polyploid speciation in Hedera (Araliaceae): Phylogenetic and biogeographic insights based on chromosome counts and ITS sequences, Pl Syst Evol, 219 (1999) 165-179. https://doi.org/10.1007/BF00985577[22] X. Lei, Y.W. Wang, S.Y. Guan, L.J. Xie, L. Xin, C.Y. Sun, Prospects and problems for identification of poisonous plants in China using DNA barcodes, Biomed Environ Sci, 27 (2014) 794-806. https://doi.org/10.3967/bes2014.115.[23] H. Sun, W. McLewin, M.F. Fay, Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian‐Mediterranean disjunction, Taxon, 50 (2001) 1001-1018. https://doi.org/10.2307/1224717.
APA, Harvard, Vancouver, ISO, and other styles
17

Santos, Ana Raquel Ferreira da Costa, José Henrique de Araújo Cruz, Gymenna Maria Tenório Guênes, Abrahão Alves de Oliveira Filho, and Maria Angélica Satyro Gomes Alves. "Matricaria chamomilla L: propriedades farmacológicas." ARCHIVES OF HEALTH INVESTIGATION 8, no. 12 (June 29, 2020). http://dx.doi.org/10.21270/archi.v8i12.4654.

Full text
Abstract:
Introdução: A Matricaria chamomilla L., mais conhecida como camomila, vem sendo bastante utilizada na medicina popular devido suas consideráveis propriedades farmacológicas, como efeito anti-inflamatório, antioxidante, antimicrobiano e leve efeito sedativo. A camomila é muito utilizada sob a forma de infusões, com sabor agradável e aromático. Objetivo: Tendo em vista as várias finalidades e efeitos farmacológicos, objetivou-se neste trabalho realizar uma revisão de literatura acerca das propriedades farmacológicas da Matricaria chamomilla L. Metodologia: Essa busca foi realizada em artigos disponíveis nas bases de dados MEDLINE, Lilacs, PUBMED, BVS e monografias que atendiam aos requisitos do estudo em questão, no período de 2008 a 2018, revisando um total de 48 estudos. Discussão: Estudos demonstraram que a camomila é útil para tratamento da dor de estômago, síndrome do intestino irritável e insônia, além de possuir atividades bactericida e relaxante. A atividade antibacteriana dessa planta foi avaliada contra bactérias gram-negativas e os resultados comprovaram o efeito antibacteriano através dos principais componentes do óleo essencial, além dos flavonoides, ácidos fenólicos e ácidos graxos. Na Odontologia, sua efetividade é demonstrada através de sua ação benéfica contra gengivite, haja vista suas propriedades antimicrobianas e anti-inflamatórias. Conclusão: De acordo com a literatura, a Matricaria chamomilla L. apresenta efeitos antimicrobiano, antifúngico, antioxidante, anti-inflamatório e ansiolítico, os quais são explicados pelos componentes dos seus extratos, fazendo com que esta planta apresente grande importância clínica. Entretanto, mais estudos clínicos precisam ser realizados para enriquecer o conhecimento a respeito desta planta, de forma a ampliar o seu uso como medicamento fitoterápico.Descritores: Fitoterapia; Plantas Medicinais; Farmacologia; Matricaria.ReferênciasSeverino VGP, Felixa MA, Silva MFGF, Lucarini R, Martins CHG. Chemical study of Hortia superba (Rutaceae) and investigation of the antimycobacterial activity of crude extracts and constituents isolated from Hortia species. Quím Nova. 2015;38(1):42-5.Bardaji DK, Reis EB, Medeiros TC, Lucarini R, Crotti AE, Martins CH. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria. Nat Prod Res. 2016;30(10):1178-81.Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61.Suleimen E, Ibataev ZH, Iskakova ZH, Ishmuratova M, Ross S, Martins CHG. Constituent composition and biological activity of essential oil from Artemisia terrae-albae. Chem Nat Compd. 2016;52:173-75.Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017;16(1):190.Habtemariam S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement. Alternat Med. 2016;2016:2680409.Singh O, Khanam Z, Misra N, Srivastava M. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev. 2011;5(9):82-95.Keefe JR, Mao JJ, Soeller I, Li QS, Amsterdam JD. Short-term open-label Chamomile (Matricaria chamomilla L.) therapy of moderate to severe generalized anxiety disorder. Phytomedicine. 2016;23(14):1699-705.Amsterdam JD, Li Y, Soeller I, Rockwell K, Mao JJ, Shults J. A randomized, double-blind, placebocontrolled trial of oral Matricaria recutita (chamomile) extract therapy for generalized anxiety disorder. J Clin Psychopharmacol. 2009; 29(4):378-82.Srivastava JK, Gupta S. Health promoting benefits of chamomile in the elderly population. In: Watson RR (Ed). Complementary and alternative therapies and the aging population an evidence-based approach. San Diego, USA: Academic Press Inc; 2010.Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep.2010;3(6):895-901.Braga FTMM, Santos ACF, Bueno PCP, Silveira RCCP, Santos CB, Bastos JK et al. Use of Chamomilla recutita in the prevention and treatment of oral mucositis in patients undergoing hematopoietic stem cell transplantation. Cancer Nurs. 2015;38(4):322-29.Curra M, Martins MAT, Lauxen IS, Pellicioli ACA, Sant’Ana Filho M, Pavesi VCS et al. Efect of topical chamomile on immunohistochemical levels of IL-1β and TNF-α in 5-fuorouracil-induced oral mucositis in hamsters. Cancer Chemother Pharmacol. 2013;71(2):293-99.Mekonnen A, Yitayew B, Tesema A, Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int J Microbiol. 2016;2016:9545693.Najla OA, Olfat AK, Kholoud SR , Enas ND, Hanan S. Hypoglycemic and Biochemical Effects of Matricaria Chamomilla Leave Extract in Streptozotocin-Induced Diabetic Rats. J Health Sci. 2012;2(5):43-8.Zargaran A, Borhani-Haghighi A, Faridi P, Daneshamouz S, Kordafshari G, Mohagheghzadeh A. Potential effect and mechanism of action of topical chamomile (Matricaria chammomila L.) oil on migraine headache: a medical hypothesis. Med Hypotheses. 2014;83(5):566-69.Srivastava JK, Pandey M, Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci. 2009;85(19-20): 663-69.Sharifi-Rad M, Nazaruk J, Polito L, Morais-Braga MFB, Rocha JE, Coutinho HDM et al. Matricariagenus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol Res. 2018;215:76-88.Amsterdan JD, Shults J, Soeller I, Mao JJ, Rockwell K, Newberg AB. Chamomile (Matricaria recutita) may provide antidepressant activity in anxious, depressed humans: an exploratory study. Altern Ther Health Med. 2012;18(5):44-9.Hashempur MH, Lari ZN, Ghoreishi PS, Daneshfard B, Ghasemi MS, Homayouni K, et al. A pilot randomized double-blind placebo-controlled trial on topical chamomile (Matricaria chamomilla L.) oil for severe carpal tunnel syndrome. Complement Ther Clin Pract. 2015;21(4):223-28.Jarrahi M, Vafaei AA, Taherian AA, Miladi H, Rashidi Pour A. Evaluation of topical Matricaria chamomilla extract activity on linear incisional wound healing in albino rats. Nat Prod Res. 2010;24(8):697-702.Kurcubic V, Maskovic P, Vujic J, Vranic D, Veskovic-Moracanin S, Okanovic Ð et al. Antioxidant and antimicrobial activity of Kitaibelia vitifolia extract as alternative to the added nitrite in fermented dry sausage. Meat Sci. 2014;97(4):459-67.Oliveira I, Sousa A, Ferreira ICFR, Bento A, Estevinho L, Pereira JA. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem Toxicol. 2008;46(7):2326-31.Tekwu EM, Pieme AC, Beng VP. Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. J Ethnopharmacol. 2012;142(1):265-73.Manojlovic N, Rankovic B, Kosani M, Vasiljevic P, Stanojkovic T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine. 2012;19(13):1166-72.Vieira DRP, Amaral FMM, Maciel MCG, Nascimento FRF, Liberio SA, Rodrigues VP. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation. J Ethnopharmacol. 2014;155(3):1441-49.Aleksic V, Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res. 2014;169(4):240-54.Moricz AM, Ott PG, Alberti A, Boszormenyi A, Lemberkovics E, Szoke E et al. Applicability of preparative overpressured layer chromatography and direct bioautography in search of antibacterial chamomile compounds. J AOAC Int. 2013;96(6):1214-21.Silva NCC, Barbosa L, Seito LN, Fernandes Junior A. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Prod Res. 2012;26(16):1510-14.Carvalho AF, Silva DM, Silva TRC, Scarcelli E, Manhani MR. Avaliação da atividade antibacteriana de extratos etanólico e de ciclohexano a partir das flores de camomila (Matricaria chamomilla L.). Rev Bras Pl Med. 2014;16(3):521-26.Albuquerque ACL, Pereira MSV, Perei­ra JV, Costa MRM, Pereira LF, Higino JS. Efeito antimicrobiano do extrato da Matricaria recutita Linn. (camomi­la) sobre microrganismos do biofilme dental. Pesq Bras Odontoped Clin In­tegr. 2010;10(3):451-55.Agatonovic-Kustrin S, Ortakand DB, Morton DW, Yusof AP. Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts. J Chromatogr A. 2015;1385:103-10.Capuzzo A, Occhipinti A, Maffei ME. Antioxidant and radical scavenging activities of chamazulene. Nat Prod Res. 2014;28(24):2321-23.Jabri MA, Sani M, Rtibi K, Marzouki L, El-Benna J, Sakly M et al. Chamomile decoction extract inhibits human neutrophils ROS production and attenuates alcohol-induced haematological parameters changes and erythrocytes oxidative stress in rat. Lipids Health Dis. 2016;15:65.Kolodziejczyk-Czepas J, Bijak M, Saluk J, Ponczek MB, Zbikowska HM, Nowak P et al. Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic–polysaccharide conjugates. Int J Biol Macromol. 2015;72:1152-58.Pereira SV, Reis RASP, Garbuio DC, Freitas LAP. Dynamic maceration of Matricaria chamomilla inflorescences: optimal conditions for flavonoids and antioxidant activity. Rev Bras Farmacogn. 2018;28(1):111-17.Miguel FG, Cavalheiro AH, Spinola NF, Ribeiro DL, Barcelos GR, Antunes LM et al. Validation of a RPHPLC- DAD method for chamomile (Matricaria recutita) preparations and assessment of the marker, apigenin-7-glucoside, safety and anti-inflammatory effect. Evid Based Complement Alternat Med. 2015;2015:828437.Drummond EM, Harbourne N, Marete E, Jacquier JC, O'Riordan D, Gibney ER. An in vivo study examining the antiinflammatory effects of chamomile, meadowsweet, and willow bark in a novel functional beverage. J Diet Suppl. 2013;10(4):370-80.Batista ALA, Lins RDAU, Coelho RS, Barbosa DN, Belem NM, Celestino FJA. Clinical efficacy analysis of the mouth rinsing with pomegranate and chamomile plant extracts in the gingival bleeding reduction. Complement Ther Clin Pract. 2014;20(1):93-8.Rocha NF, Rios ER, Carvalho AM, Cerqueira GS, Lopes AA, Leal LKAM et al. Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(6):525-33.Goes P, Dutra CS, Lisboa MRP, Gondim DV, Leitão R, Brito GAC et al. Clinical efficacy of a 1% Matricaria chamomile L. mouthwash and 0.12% chlorhexidine for gingivitis control in patients undergoing orthodontic treatment with fixed appliances. J Oral Sci. 2016;58(4):569-74.Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho‐oncologic relevance. Phytother Res. 2018;32(5):865-91.Chang SM, Chen CH. Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs. 2016;72(2):306-15.Mao JJ, Xie SX, Keefe JR, Soeller I, Li QS, Amsterdam JD. Long-term chamomile (Matricaria chamomilla L.) treatment for generalized anxiety disorder: A randomized clinical trial. Phytomedicine. 2016;23(14):1735-42.Zick SM, Wright BD, Sen A, et al. Preliminary examination of the efficacy and safety of a standardized chamomile extract for chronic primary insomnia: A randomized placebo-controlled pilot study. BMC Complement Altern Med. 2011;11:78.Choi MY, Min ES, Hur MH, Lee MS. Effect of aromatherapy on the anxiety, vital signs,and sleep quality of percutaneous coronary intervention patients in intensivecare units. Evid Based Complement Alternat Med. 2013;2013:381381.Tolouee M, Alinezhad S, Saberi R, Eslamifar A, Zad SJ, Jaimand K et al. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol. 2010;139(3):127-33.Jamalian A, Shams-Ghahfarokhi M, Jaimand K, Pashootan N, Amani A, Razzaghi-Abyaneh M. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J Mycol Med. 2012;22(4):308-15.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography