Academic literature on the topic 'Euler's theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Euler's theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Euler's theorem"

1

Heinrich, Katherine, and Peter Horak. "Euler's Theorem." American Mathematical Monthly 101, no. 3 (March 1994): 260. http://dx.doi.org/10.2307/2975604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heinrich, Katherine, and Peter Horak. "Euler's Theorem." American Mathematical Monthly 101, no. 3 (March 1994): 260–61. http://dx.doi.org/10.1080/00029890.1994.11996939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wardlaw, William P. "Euler's Theorem for Polynomials." Mathematics Magazine 65, no. 5 (December 1, 1992): 334. http://dx.doi.org/10.2307/2691245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wardlaw, William P. "Euler's Theorem for Polynomials." Mathematics Magazine 65, no. 5 (December 1992): 334–35. http://dx.doi.org/10.1080/0025570x.1992.11996048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ÇÖKEN, A. CEYLAN. "ON EULER'S THEOREM IN SEMI-EUCLIDEAN SPACES $\mathbb{E}_{v}^{n+1}$." International Journal of Geometric Methods in Modern Physics 08, no. 05 (August 2011): 1117–29. http://dx.doi.org/10.1142/s0219887811005579.

Full text
Abstract:
In this paper, we study Euler's theorem for semi-Euclidean hypersurfaces in the semi-Euclidean spaces [Formula: see text]. We obtain an analog of the well-known Euler's theorem for semi-Euclidean hypersurfaces in the semi-Euclidean spaces [Formula: see text]. Then we give corollaries of Euler's theorem concerning conjugate and asymptotic directions. After that, we express Euler's theorem and its corollaries for hypersurfaces in the Euclidean space 𝔼m in the case n = m - 1, v = 0. In addition, we give the well-known Euler's theorem and its corollaries for surfaces in the case n = 2, v = 0, for Lorentz surfaces in the case n = 2, v = 1 and for hypersurfaces in Lorentz spaces in the case n = m - 1, v = 1.
APA, Harvard, Vancouver, ISO, and other styles
6

Kandall, Geoffrey A. "Euler's Theorem for Generalized Quadrilaterals." College Mathematics Journal 33, no. 5 (November 2002): 403. http://dx.doi.org/10.2307/1559015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dubeau, F., and S. Labbe. "Euler's characteristics and Pick's theorem." International Journal of Contemporary Mathematical Sciences 2 (2007): 909–28. http://dx.doi.org/10.12988/ijcms.2007.07094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, William Y. C., and Kathy Q. Ji. "Weighted forms of Euler's theorem." Journal of Combinatorial Theory, Series A 114, no. 2 (February 2007): 360–72. http://dx.doi.org/10.1016/j.jcta.2006.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grünbaum, Branko, and Murray S. Klamkin. "Euler's Ratio-Sum Theorem and Generalizations." Mathematics Magazine 79, no. 2 (April 1, 2006): 122. http://dx.doi.org/10.2307/27642919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koshy, Thomas. "82.6 A Generalisation of Euler's Theorem." Mathematical Gazette 82, no. 493 (March 1998): 80. http://dx.doi.org/10.2307/3620158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Euler's theorem"

1

Melo, Henrique Alves de. "Euler's formula in the plan and for polyhedra." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11431.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Polyhedra are geometric solids formed by a finite number of polygons they can be convex or non-convex, regular or not regular. This work we make three demonstrations of Eulerâs theorem for polyhedra in one plane being used graphs. We will adopt preliminary definitions of polygons, polyhedra and graphs and make a brief study of the theorem before the demonstrations analysis when the theorem is valid and what conditions exist polyhedra, since the theorem is accepted. The work brings some applications in the form of questions in the theory presented.
Os poliedros sÃo sÃlidos geomÃtricos formados por uma quantidade finita de polÃgonos. Eles podem ser convexos ou nÃo convexos, regulares ou nÃo regulares . Neste trabalho fazemos trÃs demonstraÃÃes do teorema de Euler para poliedros no plano, sendo uma utilizado grafos. Adotaremos definiÃÃes preliminares de polÃgonos, poliedros e grafos e faremos um breve estudo do teorema antes das demonstraÃÃes analisado quando o teorema à valido em quais condiÃÃes existem os poliedros, uma vez que o teorema à aceito. O trabalho traz algumas aplicaÃÃes em forma de questÃes da teoria apresentada.
APA, Harvard, Vancouver, ISO, and other styles
2

Carvalho, Wesley da Silva. "Cálculo das fórmulas de Euler e Pick no geoplano e no GeoGebra." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6970.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-03-20T12:17:35Z No. of bitstreams: 2 Dissertação - Wesley da Silva Carvalho - 2016.pdf: 2739140 bytes, checksum: 009cb3705c3ac6a28927493419d88e0c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T14:06:03Z (GMT) No. of bitstreams: 2 Dissertação - Wesley da Silva Carvalho - 2016.pdf: 2739140 bytes, checksum: 009cb3705c3ac6a28927493419d88e0c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-20T14:06:03Z (GMT). No. of bitstreams: 2 Dissertação - Wesley da Silva Carvalho - 2016.pdf: 2739140 bytes, checksum: 009cb3705c3ac6a28927493419d88e0c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-09
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this dissertation, we first state Euler's polyhedral formula for a set of points with Euler characteristic 2. We address the two known ways to prove Euler's Theorem: beginning with the classical proof by using Euclidian Geometry and afterwards we take the advantage of Spherical Geometry to give another proof. Furthermore, we address a version of Euler's formula for planar polyhedron, as well as, Pick's formula and the equivalence between Euler and Pick's formula. In the end, we provide application of Euler and Pick's formula, via two pedagogy tools Geoplano and GeoGebra, by giving examples to teach in classroom.
Esta dissertação trata inicialmente da Fórmula de Euler e de sua validade para os conjuntos de pontos com característica de Euler igual a 2. São feitas duas demonstrações da Fórmula de Euler, uma utilizando conceitos de Geometria Euclidiana e uma outra via Geometria Esférica, além da apresentação de uma versão para poliedros planos da Fórmula de Euler. Posteriormente, é apresentada a Fórmula de Pick para o cálculo de áreas de polígonos simples reticulados e sua relação de equivalência com a Fórmula de Pick para poliedros planos. Finalmente mostramos duas possibilidades de trabalho com a Fórmula de Pick, no Geoplano e no software GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
3

Gontijo, Helen Kássia Coelho. "Teorema de Euler em sala de aula." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/3876.

Full text
Abstract:
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-14T13:35:24Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Helen Kássia Coelho Gontijo - 2014.pdf: 1533837 bytes, checksum: 06babe56caa781b8fdc2bc90de1a2947 (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-14T14:11:25Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Helen Kássia Coelho Gontijo - 2014.pdf: 1533837 bytes, checksum: 06babe56caa781b8fdc2bc90de1a2947 (MD5)
Made available in DSpace on 2015-01-14T14:11:25Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Helen Kássia Coelho Gontijo - 2014.pdf: 1533837 bytes, checksum: 06babe56caa781b8fdc2bc90de1a2947 (MD5) Previous issue date: 2014-07-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work is based on the study of the polyhedrons and the Euler's Theorem, by applying strategies of teaching using the concrete material, provoking improvements in the reasoning and in the geometrical perception the Euler's Theorem. Not mentioning a bit of history of tracks already made by several mathematicians who have contributed to the study of geometry, where the ideas previously applied by them teach us and help every day. Going to the presentation of a few concepts and de nitions about polyhedrons, as well as the demonstration that exist only ve polyhedrons of Plato. We've tried to expose the demonstration of the Euler's Theorem, through two researchers, Adrien Marie Legendre and of the professor Zoroastro Azambuja Filho, considering them very interesting and easy to understand. However, in the perspective that going from the concrete one is an alternative to improve the quality of teaching, it has been selected the activity Geometry of cutting soaps , which is in an article of Ana Maria Kale , see at [10], and Geometry of straws , at [9], which are based on work experiences of the same author. Before the new technologies we have opted for the mathematical software Poly, available on http://www.peda.com/poly which allows a better visualization of polyhedrons of di cult construction. All these activities have been presented to the students of the second grade in the Secondary Education to verify the Euler's Theorem through concrete experiences, obtaining this way a useful and creative geometrical knowledge, conquering the students' participation and interest.
Este trabalho baseia-se no estudo dos Poliedros e o Teorema de Euler, aplicando estratégias de ensinar usando o material concreto, desencadeando melhoras no raciocínio e na percepção geométrica do Teorema de Euler. Não deixando de mencionar um pouco da história de caminhos já trilhados por vários matemáticos que contribuíram para o estudo da geometria, onde as ideias anteriormente aplicadas por eles nos ensinam e ajudam no dia-a-dia. Partindo então para apresentação de alguns conceitos e de nições sobre Poliedros, bem como a demonstração de que só existem cinco poliedros de Platão. Buscamos expor a demonstração do Teorema de Euler, por dois pesquisadores, Adrien Marie Legendre e do professor Zoroastro Azambuja Filho, considerando-as bem interessantes e de fácil compreensão. Contudo, na perspectiva de que partir do concreto é uma alternativa para melhorar a qualidade de ensino, foi selecionada a atividade Geometria dos cortes de sabão , que se encontra em um artigo de Ana Maria Kale , veja em [10] e Geometria de Canudos , em [9], que são fundamentados em experiências de trabalho da mesma autora. Frente às novas tecnologias optamos pelo uso do software matemático Poly, disponível em http://www.peda.com/poly, que permite uma melhor visualização de poliedros de difícil construção. Todas estas atividades foram apresentadas para os alunos do 2o ano do Ensino Médio para a veri cação do Teorema de Euler através de experiências concretas, obtendo assim um conhecimento geométrico criativo e útil, conquistando a participação e interesse dos estudantes.
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Hércules do Nascimento. "Poliedros Regulares no Ensino Médio." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/8042.

Full text
Abstract:
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T12:29:14Z No. of bitstreams: 1 arquivototal.pdf: 800250 bytes, checksum: 42e76ab05ea580b4fd24a3312b9b4212 (MD5)
Made available in DSpace on 2016-03-28T12:29:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 800250 bytes, checksum: 42e76ab05ea580b4fd24a3312b9b4212 (MD5) Previous issue date: 2014-08-29
In this work we present a study of the regular polyhedra, comparing and discussing the concepts and de nitions given in the study of regular polyhedra in textbooks most widely used in Brazilian high schools. We prove the theorem of Euler, we calculate surface areas and volumes of regular polyhedra. Finally, we present some mathematical software that can be used by students and mathematics teachers in the spatial geometry classes as auxiliary material in the teaching and learning of this subject in the classroom.
Neste trabalho apresentamos um estudo sobre os poliedros regulares, comparando e discutindo os conceitos e as de nições que são dadas no estudo dos poliedros regulares nos livros didáticos mais utilizados nas escolas brasileiras de Ensino Médio. Provamos o teorema de Euler, calculamos áreas de superfícies e os volumes dos poliedros regulares. Por m, apresentamos alguns softwares matemáticos que podem ser utilizados pelos alunos e professores de Matemática nas aulas de geometria espacial como material auxiliar no processo de ensino e aprendizagem deste tema em sala de aula.
APA, Harvard, Vancouver, ISO, and other styles
5

Silva, Eduardo Alves da. "Formas ponderadas do Teorema de Euler e partições com raiz : estabelecendo um tratamento combinatório para certas identidades de Ramanujan." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/183163.

Full text
Abstract:
O artigo Weighted forms of Euler's theorem de William Y.C. Chen e Kathy Q. Ji, em resposta ao questionamento de George E. Andrews, matemático estadunidense, sobre encontrar demonstrações combinatórias de duas identidades no Caderno Perdido de Ramanujan, nos mostra algumas formas ponderadas do Teorema de Euler sobre partições com partes ímpares e partes distintas via a introdução do conceito de partição com raiz. A propositura deste trabalho é envolta à apresentação de resultados sobre partições com raiz de modo a posteriormente realizar formulações combinatórias das identidades de Ramanujan por meio deste conceito, procurando estabelecer conexões com formas ponderadas do Teorema de Euler. Em particular, a bijeção de Sylvester e a iteração de Pak da função de Dyson são elementos primordiais para obtê-las.
The article Weighted forms of Euler's theorem by William Y.C. Chen and Kathy Q. Ji in response to the questioning of George E. Andrews, American mathematician, about nding combinatorial proofs for two identities in Ramanujan's Lost Notebook shows us some weighted forms of Euler's Theorem on partitions with odd parts and distinct parts through the introduction of the concept of rooted partition. The purpose of this work involves the presentation of results on rooted partitions in order to make combinatorial formulations of Ramanujan's identities, seeking to establish connections with weighted forms of Euler's Theorem. In particular, the Sylvester's bijection and the Pak's iteration of the Dyson's map are primordial elements to obtain them.
APA, Harvard, Vancouver, ISO, and other styles
6

Justino, Gildeci José. "A característica de Euler." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7471.

Full text
Abstract:
Submitted by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-18T18:12:57Z No. of bitstreams: 1 arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5)
Approved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-18T18:15:19Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5)
Made available in DSpace on 2015-05-18T18:15:19Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5) Previous issue date: 2013-09-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This dissertation is focused on the Euler's theorem for polyhedra homeomorphic to the sphere. Present statements made by Cauchy, Poincaré and Legendre. As a consequence we show that there are only ve regular convex polyhedra, called polyhedra Plato.
Esta dissertação tem como tema central o Teorema de Euler para poliedros homeomorfos à esfera. Apresentamos demonstrações feitas por Cauchy, Poincaré e Legendre. Como consequência mostramos a existência de apenas cinco poliedros convexos regulares, os chamados poliedros de Platão.
APA, Harvard, Vancouver, ISO, and other styles
7

Parreira, José Roberto Penachia. "Poliedros e o Teorema de Euler." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tde/2970.

Full text
Abstract:
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-08-29T20:47:14Z No. of bitstreams: 2 Poliedros_E_Teorema_de_Euler.pdf: 4810573 bytes, checksum: f1f57ad45cfd7dc575fe3c3e963b24c6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-08-29T20:47:14Z (GMT). No. of bitstreams: 2 Poliedros_E_Teorema_de_Euler.pdf: 4810573 bytes, checksum: f1f57ad45cfd7dc575fe3c3e963b24c6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-03-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work aims is to demonstrate the Euler's Theorem for polyhedra, given by the equation V 􀀀 A + F = 2, where V; A and F are the numbers of vertices, edges and faces, respectively, the polyhedron. A historical survey of the main characters who contributed to the theme was elaborated. De nitions and properties of polygons and polyhedra were given. The statements were constructed in three distinct ways. The rst by Cauchy, commented by Professor Elon Lages Lima. This statement is valid for any polyhedron homeomorphic to a sphere and has the path planning of the polyhedron withdrawing one of its faces. The second statement was prepared by the professor Zoroastro Azambuja Filho, valid for any convex polyhedron, and its path projection of the polyhedron on a plane and comparison of the internal angles of polygons with projection angles of the polygon faces. The third statements was presented by Legendre, also valid for any convex polyhedron, and its path in the projection of a spherical polyhedron surface. We use the Girard's Formula, the sum of the interior angles of a spherical triangle, to complete the demonstration. This work also suggests methods of applying the proof of Euler's Theorem in the classroom for high school students, and resolution of vestibular exercises involving the subject.
Este trabalho tem por objetivo a demonstra c~ao do Teorema de Euler para poliedros, dado pela equa ção V 􀀀 A + F = 2, onde V; A e F são os n úmeros de v értices, arestas e faces, respectivamente, do poliedro. Foi elaborada uma pesquisa hist orica dos principais personagens que contribuiram para o tema. Foram dadas de ni ções e propriedades de pol ígonos e poliedros. As demonstra ções foram constru ídas em três caminhos distintos. A primeira por Cauchy, comentada pelo professor Elon Lages Lima. Esta demonstra ção é v álida para qualquer poliedro homeomorfo a uma esfera e tem como caminho a plani fica ção do poliedro retirando-se uma de suas faces. A segunda demonstra c~ao foi elaborada pelo professor Zoroastro Azambuja Filho, v álida para qualquer poliedro convexo e tem como caminho a proje ção do poliedro num plano e a compara c~ao dos ângulos internos dos pol ígonos da proje ção com os ângulos dos pol gonos das faces. A terceira demonstra c~ao foi apresentada por Legendre, tamb ém v álida para qualquer poliedro convexo e tem como caminho a projeção do poliedro em uma superf ície esf érica. Utiliza-se a F ormula de Girard, da soma dos ângulos internos de um tri^angulo esf érico, para concluir a demonstra ção. Este trabalho tamb ém sugere metodologias de aplica ção da demonstração do Teorema de Euler em sala de aula, para alunos do Ensino M édio, e resolu ção de exercí cios de vestibulares envolvendo o tema.
APA, Harvard, Vancouver, ISO, and other styles
8

Reeder, Patrick F. "Internal Set Theory and Euler's Introductio in Analysin Infinitorum." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366149288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paião, Ana Pedro Lemos. "Introduction to optimal control theory and its application to diabetes." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16806.

Full text
Abstract:
Mestrado em Matemática e Aplicações
O Cálculo das Variações e o Controlo Ótimo são dois ramos da Matemática que estão muito interligados entre si e também com outras áreas. Como exemplo, podemos citar a Geometria, a Física, a Mecânica, a Economia, a Biologia, bem como a Medicina. Nesta tese estudamos vários tipos de problemas variacionais e de Controlo Ótimo, estabelecendo a ligação entre alguns destes. Fazemos uma breve introdução sobre a Diabetes Mellitus, uma vez que estudamos um modelo matemático que traduz a interação entre a glicose e a insulina no sangue por forma a otimizar o estado de uma pessoa com diabetes tipo 1.
The Calculus of Variations and the Optimal Control are two branches of Mathematics that are very interconnected with each other and with other areas. As example, we can mention Geometry, Physics, Mechanics, Economics, Biology and Medicine. In this thesis we study various types of variational problems and of Optimal Control, establishing the connection between some of these. We make a brief introduction to the Diabetes Mellitus, because we study a mathematical model that reflects the interaction between glucose and insulin in the blood in order to optimize the state of a person with diabetes type 1.
APA, Harvard, Vancouver, ISO, and other styles
10

Badar, Muhammad, and Ansir Iqbal. "Polya's Enumeration Theorem : Number of colorings of n-gons and non isomorphic graphs." Thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-6199.

Full text
Abstract:

Polya’s theorem can be used to enumerate objects under permutation groups. Using grouptheory, combinatorics and some examples, Polya’s theorem and Burnside’s lemma arederived. The examples used are a square, pentagon, hexagon and heptagon under theirrespective dihedral groups. Generalization using more permutations and applications tograph theory.Using Polya’s Enumeration theorem, Harary and Palmer [5] give a function whichgives the number of unlabeled graphs n vertices and m edges. We present their work andthe necessary background knowledge.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Euler's theorem"

1

Chen, Jingkai. Nonlocal Euler–Bernoulli Beam Theories. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69788-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1707-1783, Euler Leonhard, ed. Leonhard Euler et la découverte progressive des sommations des séries infinies. Paris: Compagnie littéraire, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turner, J. C. Number trees for Pythagoras, Plato, Euler, and the modular group. Hamilton, N.Z: University of Waikato, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hakfoort, Casper. Optics in the age of Euler: Conceptions of the nature of light, 1700-1795. Cambridge: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Euler through time: A new look at old themes. Providence, R.I: American Mathematical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Diskin, Boris. New factorizable discretizations for the Euler equations. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shimura, Gorō. Euler products and Eisenstein series. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deshpande, Suresh M. A second-order accurate kinetic-theory-based method for inviscid compressible flows. Hampton, Va: Langley Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Optica in de eeuw van Euler: Opvattingen over de natuur van het licht, 1700-1795 = Optics in the age of Euler : conceptions of the nature of light, 1700-1795. Amsterdam: Rodopi, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tadmor, Eitan. A minimum entropy principle in the gas dynamics equation. Hampton, Va: ICASE, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Euler's theorem"

1

Effinger, Gove, and Gary L. Mullen. "Euler's Formula and Euler's Theorem." In An Elementary Transition to Abstract Mathematics, 129–34. Boca Raton : CRC Press, Taylor … Francis Group, 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429324819-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Newman, Peter. "Euler’s Theorem." In The New Palgrave Dictionary of Economics, 1–2. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_230-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Newman, Peter. "Euler’s Theorem." In The New Palgrave Dictionary of Economics, 1–2. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_230-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Newman, Peter. "Euler’s Theorem." In The New Palgrave Dictionary of Economics, 3935–37. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Childs, Lindsay N. "Orders and Euler’s Theorem." In Springer Undergraduate Texts in Mathematics and Technology, 117–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15453-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Childs, Lindsay N. "Fermat’s and Euler’s Theorems." In A Concrete Introduction to Higher Algebra, 134–54. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4419-8702-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ng, Xian Wen. "Euler’s Theorem and Grand Composite Curves." In Concise Guide to Heat Exchanger Network Design, 63–108. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53498-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Longuski, James M., José J. Guzmán, and John E. Prussing. "The Euler-Lagrange Theorem." In Optimal Control with Aerospace Applications, 39–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8945-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Childs, Lindsay N. "Applications of Fermat’s and Euler’s Theorems." In A Concrete Introduction to Higher Algebra, 155–79. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4419-8702-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pąk, Karol. "Readable Formalization of Euler’s Partition Theorem in Mizar." In Lecture Notes in Computer Science, 211–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20615-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Euler's theorem"

1

Zhu, Wen Tao. "Analyzing Euler-Fermat Theorem Based Multicast Key Distribution Schemes with Chinese Remainder Theorem." In 2008 IFIP International Conference on Network and Parallel Computing (NPC). IEEE, 2008. http://dx.doi.org/10.1109/npc.2008.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bert, Charles W., and Chun-Do Kim. "Whirling of Composite-Material Driveshafts Including Bending-Twisting Coupling and Transverse Shear Deformation." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0182.

Full text
Abstract:
Abstract A simplified theory for predicting the first-order critical speed of a shear deformable, composite-material driveshaft is presented. The shaft is modeled as a Bresse-Timoshenko beam generalized to include bending-twisting coupling. Numerical results are compared with those for both thin and thick walled shell theories and generalized Bernoulli-Euler theory.
APA, Harvard, Vancouver, ISO, and other styles
3

Figliolini, Giorgio, and Ettore Pennestrì. "Kinematic Synthesis of Quasi-Homokinetic Four-Bar Linkages Through the Burmester and Chebyshev Theories." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34951.

Full text
Abstract:
The present paper deals with the formulation of specific algorithms for the kinematic synthesis of quasi-homokinetic four-bar linkages, slider-crank mechanisms included, which are based on the fundamentals of kinematics, as the centrodes, the inflection circle, the cubic of stationary curvature, Freudenstein’s theorem, the Euler-Savary equation and Chebyshev’s theory. These algorithms are aimed to obtain in a given range of motion, a quasi-constant transmission ratio between the driving and driven links, thus producing a quasi-homokinetic behaviour. In particular, the infinitesimal Burmester theory and the Chebyshev optimality criterion are applied to propose a compact closed-form solutions, which are validated through several significant examples.
APA, Harvard, Vancouver, ISO, and other styles
4

Kawarabayashi, Ken-ichi, and Anastasios Sidiropoulos. "Beyond the Euler Characteristic." In STOC '15: Symposium on Theory of Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2746539.2746583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prasanth, R., and R. Mehra. "Nonlinear aeroservoelastic control using Euler-Lagrange theory." In Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kozlova, Irina Vasilevna. "The study of the structure of carbon nanoparticles using the Euler theorem." In International Research and Practical Conference for Pupils, chair Elena Vladimirovna Shirokova. TSNS Interaktiv Plus, 2018. http://dx.doi.org/10.21661/r-474636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, Bin, Shiying Kang, Xiao Zhao, Yuyan Chao, and Lifeng He. "A graph-theory-based Euler number computing algorithm." In 2015 IEEE International Conference on Information and Automation (ICIA). IEEE, 2015. http://dx.doi.org/10.1109/icinfa.2015.7279470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bauchau, Olivier A., and Shilei Han. "Advanced Beam Theory for Multibody Dynamics." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12416.

Full text
Abstract:
In flexible multibody systems, many components are often approximated as beams or shells. More often that not, classical beam theories, such as Euler-Bernoulli beam theory, form the basis of the analytical development for beam dynamics. The advantage of this approach is that it leads to a very simple kinematic representation of the problem: the beam’s section is assumed to remain plane and its displacement field is fully defined by three displacement and three rotation components. While such approach is capable of capturing the kinetic energy of the system accurately, it cannot represent the strain energy adequately. For instance, it is well known from Saint-Venant’s theory for torsion that the cross-section will warp under torque, leading to a three-dimensional deformation state that generates a complex stress state. To overcome this problem, sectional stiffnesses are computed based on sophisticated mechanics of material theories that evaluate the complete state of deformation. These sectional stiffnesses are then used within the framework of an Euler-Bernoulli beam theory based on far simpler kinematic assumptions. While this approach works well for simple cross-sections made of homogeneous material, very inaccurate predictions result for realistic sections, specially for thin-walled beams, or beams made of anisotropic materials. This paper presents a different approach to the problem. Based on a finite element discretization of the cross-section, an exact solution of the theory of three-dimensional elasticity is developed. The only approximation is that inherent to the finite element discretization. The proposed approach is based on the Hamiltonian formalism and leads to an expansion of the solution in terms of extremity and central solutions, as expected from Saint-Venant’s principle.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Yang, Jean W. Zu, and Minghui Yao. "Modeling of Piezoelectric Energy Harvester: A Comparison Between Euler-Bernoulli Theory and Timoshenko Theory." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4995.

Full text
Abstract:
Harvesting vibration energy using piezoelectric materials has gained considerable attention over the past few years. Typically, a piezoelectric energy harvester is a unimorph or bimorph cantilevered beam which undergoes base vibration. The focus of this paper is to compare the Euler-Bernoulli model and the Timoshenko model, which are both used for modeling the vibration-based energy harvester. Procedures of deriving the electro-mechanical equation of motion are provided, following exact expressions for the electrical output in two models. Parametric case studies are carried out in order to compare the frequency response of two models. Simulation results show that there is a great difference between Euler-Bernoulli model and Timoshenko model at low length-to-thickness aspect ratio. Such difference diminishes and becomes negligible as aspect ratio increases. It is shown that for the design of piezoelectric energy harvester with small aspect ratio, Timoshenko model can be more accurate than Euler-Bernoulli model in predicting the system behavior.
APA, Harvard, Vancouver, ISO, and other styles
10

Ribeiro, Aureliano, José Juliano de Lima Junior, and Felipe Eloy. "DIFFERENTIAL TRANSFORM METHOD APPLIED TO EULER-BERNOULLI BEAM THEORY." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-2420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography