Academic literature on the topic 'Euler Beam Theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Euler Beam Theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Euler Beam Theory"
LIM, TEIK-CHENG. "ANALYSIS OF AUXETIC BEAMS AS RESONANT FREQUENCY BIOSENSORS." Journal of Mechanics in Medicine and Biology 12, no. 05 (December 2012): 1240027. http://dx.doi.org/10.1142/s0219519412400271.
Full textGul, U., and M. Aydogdu. "Wave Propagation Analysis in Beams Using Shear Deformable Beam Theories Considering Second Spectrum." Journal of Mechanics 34, no. 3 (May 15, 2017): 279–89. http://dx.doi.org/10.1017/jmech.2017.27.
Full textSiva Sankara Rao, Yemineni, Kutchibotla Mallikarjuna Rao, and V. V. Subba Rao. "Estimation of damping in riveted short cantilever beams." Journal of Vibration and Control 26, no. 23-24 (March 20, 2020): 2163–73. http://dx.doi.org/10.1177/1077546320915313.
Full textKljučanin, Dino, and Abaz Manđuka. "The cantilever beams analysis by the means of the first-order shear deformation and the Euler-Bernoulli theory." Tehnički glasnik 13, no. 1 (March 23, 2019): 63–67. http://dx.doi.org/10.31803/tg-20180802210608.
Full textLi, Anqing, Qing Wang, Ming Song, Jun Chen, Weiguang Su, Shasha Zhou, and Li Wang. "On Strain Gradient Theory and Its Application in Bending of Beam." Coatings 12, no. 9 (September 5, 2022): 1304. http://dx.doi.org/10.3390/coatings12091304.
Full textGolushko, Sergey, Gleb Gorynin, and Arseniy Gorynin. "Analytic solutions for free vibration analysis of laminated beams in three-dimensional statement." EPJ Web of Conferences 221 (2019): 01012. http://dx.doi.org/10.1051/epjconf/201922101012.
Full textWang, Gang. "Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory." Journal of Intelligent Material Systems and Structures 24, no. 2 (September 27, 2012): 226–39. http://dx.doi.org/10.1177/1045389x12461080.
Full textNaghinejad, Maysam, and Hamid Reza Ovesy. "Free vibration characteristics of nanoscaled beams based on nonlocal integral elasticity theory." Journal of Vibration and Control 24, no. 17 (June 28, 2017): 3974–88. http://dx.doi.org/10.1177/1077546317717867.
Full textShimpi, Rameshchandra P., Rajesh A. Shetty, and Anirban Guha. "A simple single variable shear deformation theory for a rectangular beam." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 24 (September 29, 2016): 4576–91. http://dx.doi.org/10.1177/0954406216670682.
Full textKaraoglu, P., and M. Aydogdu. "On the forced vibration of carbon nanotubes via a non-local Euler—Bernoulli beam model." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, no. 2 (February 1, 2010): 497–503. http://dx.doi.org/10.1243/09544062jmes1707.
Full textDissertations / Theses on the topic "Euler Beam Theory"
Batihan, Ali Cagri. "Vibration Analysis Of Cracked Beams On Elastic Foundation Using Timoshenko Beam Theory." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613602/index.pdf.
Full textthese models are Winkler Foundation, Pasternak Foundation, and generalized foundation. The equations of motion are derived by applying Newton'
s 2nd law on an infinitesimal beam element. Non-dimensional parameters are introduced into equations of motion. The beam is separated into pieces at the crack location. By applying the compatibility conditions at the crack location and boundary conditions, characteristic equation whose roots give the non-dimensional natural frequencies is obtained. Numerical solutions are done for a beam with square cross sectional area. The effects of crack ratio, crack location and foundation parameters on transverse vibration natural frequencies are presented. It is observed that existence of crack reduces the natural frequencies. Also the elastic foundation increases the stiffness of the system thus the natural frequencies. The natural frequencies are also affected by the location of the crack.
Ho, Qhinhon D. "An Assessment Of The Accuracy Of The Euler-Bernoulli Beam Theory For Calculating Strain and Deflection in Composite Sandwich Beams." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2084.
Full textPratt, Brittan Sheldon. "An assessment of least squares finite element models with applications to problems in heat transfer and solid mechanics." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85941.
Full textDettmann, Aaron. "Loosely coupled, modular framework for linear static aeroelastic analyses." Thesis, KTH, Lättkonstruktioner, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262047.
Full textRapporten beskriver en beräkningsmodell för linjära, statisk aeroelastiska analyser. Modellen kan användas för konceptuella designstudier av flygplan. En partitionerad metod används, d v s separata lösare för aerodynamik- och strukturanalyser kopplas på ett lämpligt sätt, och bildar tillsammans en modell för aeroelastiska simulationer. Aerodynamik modelleras med hjälp av en så kallad vortex-lattice method (VLM), en enkel modell för beräkningsströmningsdynamik (CFD) som är baserad på friktionsfri strömning. Strukturen representeras av en tredimensionell (3D) Euler-Bernoulli-balkmodell implementerad med hjälp av en finita elementmetod (FEM). Ovannämnda modeller har utvecklats med fokus på modularitet och lös koppling. Kärnan i den aeroelastiska modellen har abstraherats så att den inte beror på specifika detaljer i de underliggande aerodynamik- och strukturmodulerna. Aeroelasticitetsmodellen i sin helhet består av separata mjukvaruprogram för VLM och balk-FEM, såväl som ett ramverk som möjliggör den aeroelastiska kopplingen. Dessa olika program har utvecklats som en del av examensarbetet. Ett vindtunnelförsök med en enkel vingmodell presenteras som ett valideringstest. Dessutom beskrivs en analys av ett elastiskt obemannad flygplan (OptiMale) och resultaten jämförs med en befintlig studie som har genomförts med modeller av högre trovärdighet.
Dona, Marco. "Static and dynamic analysis of multi-cracked beams with local and non-local elasticity." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14893.
Full textDixit, Akash. "Damage modeling and damage detection for structures using a perturbation method." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43575.
Full textGonzalez, Campos David Jonathan. "A Study of Shock Analysis Using the Finite Element Method Verified with Euler-Bernoulli Beam Theory; Mechanical Effects Due to Pulse Width Variation of Shock Inputs; and Evaluation of Shock Response of a Mixed Flow Fan." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1294.
Full textChidurala, Manohar. "Dynamic Characteristics of Biologically Inspired Hair Receptors for Unmanned Aerial Vehicles." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2040.
Full textBelkhiri, Ayman. "Modélisation dynamique de la locomotion compliante : Application au vol battant bio-inspiré de l'insecte." Phd thesis, Ecole des Mines de Nantes, 2013. http://tel.archives-ouvertes.fr/tel-00874497.
Full textJohnson, William Richard. "Active Structural Acoustic Control of Clamped and Ribbed Plates." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/4011.
Full textBook chapters on the topic "Euler Beam Theory"
Bauchau, O. A., and J. I. Craig. "Euler-Bernoulli beam theory." In Structural Analysis, 173–221. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2516-6_5.
Full textÖchsner, Andreas. "Euler–Bernoulli Beam Theory." In Classical Beam Theories of Structural Mechanics, 7–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76035-9_2.
Full textKrey, Maximilian, and Hannes Töpfer. "Topology Optimization of Magnetoelectric Sensors Using Euler-Bernoulli Beam Theory." In Microactuators, Microsensors and Micromechanisms, 115–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61652-6_10.
Full textPrajapati, S. K., V. K. Gupta, and S. Mukherjee. "Mathematical Modelling of Stepped Beam Energy Harvesting Using Euler–Bernoulli’s Theory." In Springer Proceedings in Physics, 549–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78919-4_43.
Full textKim, Cheol Woong, Sang Heon Lee, and Kee Joo Kim. "Modified Bernoulli-Euler Laminate Beam Theory Using Total Effective Moment in LIPCA." In Advances in Composite Materials and Structures, 413–16. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.413.
Full textCauvin, Aldo, and Giuseppe Stagnitto. "L. Euler and the birth of modern structural mechanics. From the catenary to the beam theory." In Studies in History of Mathematics Dedicated to A.P. Youschkevitch, 217–34. Turnhout: Brepols Publishers, 2002. http://dx.doi.org/10.1484/m.dda-eb.4.01017.
Full textZhang, Jianxun, Pengchong Zhang, Huicun Song, and Lei Zhu. "Transverse Vibration Characteristics of Clamped-Elastic Pinned Beam Under Compressive Axial Loads." In Advances in Frontier Research on Engineering Structures, 527–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_47.
Full textOñate, Eugenio. "Slender Plane Beams. Euler-Bernoulli Theory." In Structural Analysis with the Finite Element Method Linear Statics, 1–36. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_1.
Full textCarlsson, H., and R. Glowinski. "Vibrations of Euler-Bernoulli Beams with Pointwise Obstacles." In Advances in Kinetic Theory and Continuum Mechanics, 261–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-50235-4_23.
Full text"Euler Beam Theory." In Encyclopedia of Thermal Stresses, 1336. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_100205.
Full textConference papers on the topic "Euler Beam Theory"
Kahrobaiyan, M. H., M. Zanaty, and S. Henein. "An Analytical Model for Beam Flexure Modules Based on the Timoshenko Beam Theory." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67512.
Full textRibeiro, Aureliano, José Juliano de Lima Junior, and Felipe Eloy. "DIFFERENTIAL TRANSFORM METHOD APPLIED TO EULER-BERNOULLI BEAM THEORY." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-2420.
Full textAldraihem, Osama J., Robert C. Wetherhold, and Tarunraj Singh. "A Comparison of the Timoshenko Theory and the Euler-Bernoulli Theory for Control of Laminated Beams." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0655.
Full textBauchau, Olivier A., and Shilei Han. "Advanced Beam Theory for Multibody Dynamics." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12416.
Full textStolte, James, and Joseph M. Santiago. "Determination of Reflection and Transmission Coefficients in Rigidly Connected Beams Using Timoshenko Beam Theory." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/cie-1614.
Full textZhang, Yichi, and Bingen Yang. "Medium Frequency Vibration Analysis of Beam Structures Modeled by the Timoshenko Beam Theory." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23098.
Full textPark, S. K., and X. L. Gao. "A New Bernoulli-Euler Beam Model Based on a Modified Couple Stress Theory." In 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40830(188)166.
Full textZhu, Yang, Jean W. Zu, and Minghui Yao. "Modeling of Piezoelectric Energy Harvester: A Comparison Between Euler-Bernoulli Theory and Timoshenko Theory." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4995.
Full textWang, Lin, and Yan Wang. "Study on Coupling Between Euler Beam and Nonlinear Solitary Wave Based on Cosserat Theory." In 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). IEEE, 2021. http://dx.doi.org/10.1109/spawda51471.2021.9445420.
Full textDe Rosa, Maria Anna, Maria Lippiello, Hector Martin, and Francesco Vairo. "Free vibration analysis of embedded SWCNTs using DQM based on nonlocal Euler-Bernoulli beam theory." In 2013 International Conference on Advanced Computer Science and Electronics Information. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/icacsei.2013.52.
Full text