Academic literature on the topic 'Euler deconvolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Euler deconvolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Euler deconvolution"
Florio, Giovanni, and Maurizio Fedi. "Multiridge Euler deconvolution." Geophysical Prospecting 62, no. 2 (October 11, 2013): 333–51. http://dx.doi.org/10.1111/1365-2478.12078.
Full textHansen, R. O., and Laura Suciu. "Multiple-source Euler deconvolution." GEOPHYSICS 67, no. 2 (March 2002): 525–35. http://dx.doi.org/10.1190/1.1468613.
Full textNabighian, Misac N., and R. O. Hansen. "Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform." GEOPHYSICS 66, no. 6 (November 2001): 1805–10. http://dx.doi.org/10.1190/1.1487122.
Full textZhang, Changyou, Martin F. Mushayandebvu, Alan B. Reid, J. Derek Fairhead, and Mark E. Odegard. "Euler deconvolution of gravity tensor gradient data." GEOPHYSICS 65, no. 2 (March 2000): 512–20. http://dx.doi.org/10.1190/1.1444745.
Full textKeating, Pierre B. "Weighted Euler deconvolution of gravity data." GEOPHYSICS 63, no. 5 (September 1998): 1595–603. http://dx.doi.org/10.1190/1.1444456.
Full textFitzGerald, Desmond, Alan Reid, and Philip McInerney. "New discrimination techniques for Euler deconvolution." Computers & Geosciences 30, no. 5 (June 2004): 461–69. http://dx.doi.org/10.1016/j.cageo.2004.03.006.
Full textMu, Yaxin, Xiaojuan Zhang, Wupeng Xie, and Yaoxin Zheng. "Automatic Detection of Near-Surface Targets for Unmanned Aerial Vehicle (UAV) Magnetic Survey." Remote Sensing 12, no. 3 (February 1, 2020): 452. http://dx.doi.org/10.3390/rs12030452.
Full textMushayandebvu, Martin F., P. van Driel, Alan B. Reid, and James Derek Fairhead. "Magnetic source parameters of two‐dimensional structures using extended Euler deconvolution." GEOPHYSICS 66, no. 3 (May 2001): 814–23. http://dx.doi.org/10.1190/1.1444971.
Full textMushayandebvu, M. F., V. Lesur, A. B. Reid, and J. D. Fairhead. "Grid Euler deconvolution with constraints for 2D structures." GEOPHYSICS 69, no. 2 (March 2004): 489–96. http://dx.doi.org/10.1190/1.1707069.
Full textCooper, G. R. J. "Euler deconvolution in a radial coordinate system." Geophysical Prospecting 62, no. 5 (April 23, 2014): 1169–79. http://dx.doi.org/10.1111/1365-2478.12123.
Full textDissertations / Theses on the topic "Euler deconvolution"
Williams, Simon E. "Extended Euler deconvolution and interpretation of potential field data from Bohai Bay, China." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432651.
Full textMagaia, Luis. "Processing Techniques of Aeromagnetic Data. Case Studies from the Precambrian of Mozambique." Thesis, Uppsala universitet, Geofysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183714.
Full textRodrigues, Rafael Saraiva. "Evid?ncias da heran?a geotect?nica pr?-cambriana na gera??o da Bacia Potiguar: um estudo geof?sico multdisciplinar." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18833.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The 3D gravity modeling of the Potiguar rift basin consisted of a digital processing of gravity and aeromagnetic data, subsidized by the results of Euler deconvolution of gravity and magnetic data and the interpretation of seismic lines and wells descriptions. The gravity database is a compilation of independent geophysical surveys conducted by several universities, research institutions and governmental agencies. The aeromagnetic data are from the Bacia Potiguar and Plataforma Continental do Nordeste projects, obtained from the Brazilian Petroleum Agency (ANP). The solutions of the Euler Deconvolution allowed the analysis of the behavior of the rift main limits. While the integrated interpretation of seismic lines provided the delimitating horizons of the sedimentary formations and the basement top. The integration of these data allowed a 3D gravity modeling of basement topography, allowing the identification of a series of internal structures of the Potiguar rift, as well intra-basement structures without the gravity effect of the rift. The proposed inversion procedure of the gravity data allowed to identify the main structural features of the Potiguar rift, elongated in the NE-SW direction, and its southern and eastern faulted edges, where the sedimentary infill reachs thicknesses up to 5500 m. The southern boundary is marked by the Apodi and Baixa Grande faults. These faults seem to be a single NW-SE oriented fault with a strong bend to NE-SW direction. In addition, the eastern boundary of the rift is conditioned by the NE-SW trending Carnaubais fault system. It was also observed NW-SE oriented faults, which acted as transfer faults to the extensional efforts during the basin formation. In the central part of the residual anomaly map without the gravity effect of the rift stands out a NW-SE trending gravity high, corresponding to the Or?s-Jaguaribe belt lithotypes. We also observe a gravity maximum parallel to the Carnaubais fault system. This anomaly is aligned to the eastern limit of the rift and reflects the contact of different crustal blocks, limited by the eastern ward counterpart of the Portalegre Shear Zone
A modelagem gravim?trica 3D do rifte da Bacia Potiguar, apresentada neste trabalho, constituiu de um processamento digital de dados gravim?tricos e aeromagn?ticos, subsidiados pelos resultados da Deconvolu??o de Euler de dados gravim?tricos e magn?ticos e pela interpreta??o de linhas s?smicas e descri??es de po?os. O banco de dados gravim?trico ? proveniente de um trabalho de compila??o de levantamentos geof?sicos independentes realizados por diversas universidades, institui??es de pesquisa e ?rg?os governamentais. Os dados aeromagn?ticos s?o proveniente dos projetos Bacia Potiguar e Plataforma Continental do Nordeste, obtidos junto ? Ag?ncia Nacional do Petr?leo, G?s Natural e Biocombust?veis (ANP). As solu??es da Deconvolu??o de Euler possibilitaram a an?lise do comportamento dos principais limites do rifte, enquanto que a interpreta??o integrada das linhas s?smicas propiciou a delimita??o dos relevos dos horizontes da base das forma??es sedimentares e do topo do embasamento do Rifte Potiguar. A integra??o desses dados permitiu uma modelagem gravim?trica 3D do relevo do embasamento da bacia, possibilitando a identifica??o de uma s?rie de estruturas do arcabou?o estrutural do Rifte Potiguar e do embasamento cristalino sem o efeito gravim?trico do rifte. Com o procedimento de invers?o dos dados gravim?tricos, foi poss?vel identificar as principais fei??es estruturais do rifte da Bacia Potiguar, alongadas na dire??o NE-SW, bem como suas bordas falhadas nos limites Sul e Leste do rifte, onde o pacote sedimentar atinge espessuras superiores a 5500 m. O limite Sul ? marcado pelas falhas de Apodi e Baixa Grande, aparentando tratar-se de uma ?nica falha de dire??o NW-SE, com forte inflex?o para NE-SW. Observa-se ainda o limite Leste do rifte condicionado pelo Sistema de Falha Carnaubais de dire??o preferencial NE-SW. Observa-se ainda falhas de dire??o NW-SE, que atuaram como falhas de transfer?ncia aos esfor?os distensionais de forma??o da bacia. No mapa de anomalias residuais do embasamento cristalino sem o efeito gravim?trico do rifte destaca-se, na sua parte central, um alto gravim?trico de dire??o NW-SE, correspondendo a litotipos da Faixa Or?s-Jaguaribe. Observa-se ainda um m?ximo gravim?trico paralelo ao Sistema de Falhas de Carnaubais. Tal anomalia encontra-se alinhada ao limite Leste do rifte e reflete o contato de blocos crustais distintos, limitados pela continua??o Nordeste da Zona de Cisalhamento Portalegre
Beiki, Majid. "New Techniques for Estimation of Source Parameters : Applications to Airborne Gravity and Pseudo-Gravity Gradient Tensors." Doctoral thesis, Uppsala universitet, Geofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-143015.
Full textFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 730
Doo, Wen-Bin, and 杜文斌. "Development and applications of analytic signal and Euler deconvolution methods." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/98229207061514937507.
Full text國立中央大學
地球物理研究所
99
Magnetic and gravity data are generally used to discuss geological structure characteristics, and the most applications are used to determine the location of the sources. Among the interpretation techniques, the methods of the analytic signal and Euler deconvolution have been widely adopted for these purposes. The major advantage of using these two techniques is that the determination of magnetic source locations and depths is independent of the ambient earth magnetic parameters. In this thesis, generally based on the analytic signal and Euler deconvolution we attempt to develop new methods and then discuss its applications. We have developed a new method by using the joint analysis of analytic signal and Euler deconvolution to estimate the parameters of 2D magnetic sources, especially to identify the horizontal locations, depths, structural types (indices), magnetization contrasts and structural dips. Furthermore, this method is used to estimate the possible magnetization contrast of geomagnetic reversals. This information could be a useful constrain for geomagnetic age modeling. Thus, one does not need to assume a constant magnetization of the magnetized layer in the modeling. This could make the synthetic magnetic anomaly more realistic. This method has been tested to determine the magnetization contrast of the Brunhes-Matuyama boundary of geomagnetic reversal. The Poisson theorem provides a simple relationship between the gravity and magnetic potentials. Based on the simple Poisson theorem, magnetization/density ratio (MDR) can be estimated. Here, we combined the Poisson theorem and analytic signal technique to estimate MDR. Follow this method the MDR values can be determined from gravity and magnetic data. Apply this method to a profile across the offshore area of the northern Taiwan. In comparison with the reflection seismic profile, it shows that the method can help us to identify the existence of a deep-seated igneous body beneath the area of Mienhuayu and Pengchiagu islands off northern Taiwan. Finally, we show a magnetic survey result for the purpose of detecting buried buildings of Siaolin Village in southern Taiwan after the catastrophic landslide induced by Typhoon Morakot in 2009. Compared the original locations of buildings with the magnetic data analysis results, high-resolution magnetic survey can effectively identify positions of buried buildings in Siaolin Village. The estimated depths of the possible buried buildings are about 5-10 meters deep. In addition, magnetic data analysis can further suggest the possible debris-flow direction of N250o, because the northern part of village was mostly destroyed off while the southern part of village buildings remained in place.
Pereira, Antonio Do Nascimento. "Geophysical Fault Mapping Using the Magnetic Method at Hickory Sandstone Aquifer, Llano Uplift, Texas." Thesis, 2013. http://hdl.handle.net/1969.1/149383.
Full textBook chapters on the topic "Euler deconvolution"
Roth, M., N. Sneeuw, and W. Keller. "Euler Deconvolution of GOCE Gravity Gradiometry Data." In High Performance Computing in Science and Engineering ‘12, 503–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33374-3_36.
Full textPašteka, Roman, and David Kušnirák. "Role of Euler Deconvolution in Near Surface Gravity and Magnetic Applications." In Springer Geophysics, 223–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28909-6_9.
Full textUsman, Nuraddeen, Khiruddin Abdullah, and Mohd Nawawi. "A Method for the Full Automation of Euler Deconvolution for the Interpretation of Magnetic Data." In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017 – Volume 2, 817–25. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8471-3_80.
Full textConference papers on the topic "Euler deconvolution"
Hansen, R. O., and Laura Suciu. "Multiple source Euler deconvolution." In SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. http://dx.doi.org/10.1190/1.1821038.
Full textReid, Alan, Desmond FitzGerald, and Philip McInerny. "Euler deconvolution of gravity data." In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817993.
Full textSalem, Ahmed, Richard Smith, Simon Williams, Dhananjay Ravat, and Derek Fairhead. "Generalized magnetic tilt‐Euler deconvolution." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2792530.
Full textFitzGerald, D., A. Reid, and P. McInerney. "New Discrimination Techniques for Euler Deconvolution." In 8th SAGA Biennial Technical Meeting and Exhibition. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.144.24.
Full textFarrelly, B. "What is Wrong with Euler Deconvolution?" In 59th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.131.gen1997_f033.
Full textFlorio, G., and M. Fedi. "Euler Deconvolution for a Multiridge Set." In 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201400356.
Full textKeating, P., and M. Pilkington. "Euler Deconvolution of the Analytic Signal." In 62nd EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609-pdb.28.p193.
Full textMushayandebvu, M. F., P. van Driel, A. B. Reid, and J. D. Fairhead. "Magnetic imaging using extended euler deconvolution." In SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. http://dx.doi.org/10.1190/1.1821035.
Full textKeating, Pierre. "Weighted Euler deconvolution of gravity data." In SEG Technical Program Expanded Abstracts 1996. Society of Exploration Geophysicists, 1996. http://dx.doi.org/10.1190/1.1826371.
Full textFedi, Maurizio, Giovanni Florio, and Tatiana Quarta. "Multiridge analysis and reduced Euler deconvolution." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2792528.
Full textReports on the topic "Euler deconvolution"
Krahenbuhl, Richard, Yaoguo Li, Misac Nabighian, Kris Davis, and Steve Billings. Advanced UXO Detection and Discrimination Using Magnetic Data Based on Extended Euler Deconvolution and Shape Identification Through Multipole Moments. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada548972.
Full text