Academic literature on the topic 'Euler Equation - Numerical Solution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Euler Equation - Numerical Solution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Euler Equation - Numerical Solution"
Čiegis, Raimondas. "NUMERICAL SOLUTION OF HYPERBOLIC HEAT CONDUCTION EQUATION." Mathematical Modelling and Analysis 14, no. 1 (March 31, 2009): 11–24. http://dx.doi.org/10.3846/1392-6292.2009.14.11-24.
Full textSiddiqui, Maryam, Mhamed Eddahbi, and Omar Kebiri. "Numerical Solutions of Stochastic Differential Equations with Jumps and Measurable Drifts." Mathematics 11, no. 17 (August 31, 2023): 3755. http://dx.doi.org/10.3390/math11173755.
Full textWang, Qi, Huabin Chen, and Chenggui Yuan. "A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations." Mathematics 10, no. 6 (March 9, 2022): 866. http://dx.doi.org/10.3390/math10060866.
Full textWang, Jinhuan, Yicheng Pang, and Yu Zhang. "Limits of Solutions to the Isentropic Euler Equations for van der Waals Gas." International Journal of Nonlinear Sciences and Numerical Simulation 20, no. 3-4 (May 26, 2019): 461–73. http://dx.doi.org/10.1515/ijnsns-2018-0263.
Full textBlaszczyk, Tomasz, and Mariusz Ciesielski. "Numerical Solution of Euler-Lagrange Equation with Caputo Derivatives." Advances in Applied Mathematics and Mechanics 9, no. 1 (October 11, 2016): 173–85. http://dx.doi.org/10.4208/aamm.2015.m970.
Full textShieh, C. F., and R. A. Delaney. "An Accurate and Efficient Euler Solver for Three-Dimensional Turbomachinery Flows." Journal of Turbomachinery 109, no. 3 (July 1, 1987): 346–53. http://dx.doi.org/10.1115/1.3262112.
Full textSarhan, Falah, and LIU JICHENG. "Euler-Maruyama approximation of backward doubly stochastic differential delay equations." International Journal of Applied Mathematical Research 5, no. 3 (July 25, 2016): 146. http://dx.doi.org/10.14419/ijamr.v5i3.6358.
Full textCHINVIRIYASIT, W., and S. CHINVIRIYASIT. "NUMERICAL SOLUTION OF NONLINEAR EQUATION TO COMBINED DETERMINISTIC AND NARROW-BAND RANDOM EXCITATION." International Journal of Modern Physics B 22, no. 21 (August 20, 2008): 3655–75. http://dx.doi.org/10.1142/s0217979208048528.
Full textZhang, X., X. X. Chen, and C. L. Morfey. "Acoustic Radiation from a Semi-Infinite Duct With a Subsonic Jet." International Journal of Aeroacoustics 4, no. 1-2 (January 2005): 169–84. http://dx.doi.org/10.1260/1475472053730075.
Full textKhaldi, Rabah, and Assia Guezane-Lakoud. "On generalized nonlinear Euler-Bernoulli Beam type equations." Acta Universitatis Sapientiae, Mathematica 10, no. 1 (August 1, 2018): 90–100. http://dx.doi.org/10.2478/ausm-2018-0008.
Full textDissertations / Theses on the topic "Euler Equation - Numerical Solution"
Latypov, Azat. "Numerical solution of Euler equations on streamline-aligned meshes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0010/NQ52411.pdf.
Full textSykes, L. A. "On the numerical solution of compressible flows containing shock discontinuities." Thesis, University of Hertfordshire, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234329.
Full textUngun, Yigit. "Numerical Solution Of One Dimensional Detonation Tube With Reactive Euler Equations Using High Resolution Method." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614128/index.pdf.
Full textOnur, Omer. "Effect Of Jacobian Evaluation On Direct Solutions Of The Euler Equations." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/1098268/index.pdf.
Full text#8217
s Method. Both analytical and numerical methods are used for Jacobian calculations. Numerical method has the advantage of keeping the Jacobian consistent with the numerical flux vector without extremely complex or impractical analytical differentiations. However, numerical method may have accuracy problem and may need longer execution time. In order to improve the accuracy of numerical method detailed error analyses were performed. It was demonstrated that the finite-difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A relation was developed for optimum perturbation magnitude that can minimize the error in numerical Jacobians. Results show that very accurate numerical Jacobians can be calculated with optimum perturbation magnitude. The effects of the accuracy of numerical Jacobians on the convergence of flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated for only related cells. A sparse matrix solver based on LU factorization is used for the solution, and to improve the Jacobian matrix solution some strategies are considered. Effects of different flux splitting methods, higher-order discretizations and several parameters on the performance of the solver are analyzed.
Morrelll, J. M. "A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations." Thesis, University of Reading, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440088.
Full textHu, Guanghui. "Numerical simulations of the steady Euler equations on unstructured grids." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1106.
Full textSHELLEY, MICHAEL JOHN. "THE APPLICATION OF BOUNDARY INTEGRAL TECHNIQUES TO MULTIPLY CONNECTED DOMAINS (VORTEX METHODS, EULER EQUATIONS, FLUID MECHANICS)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/188100.
Full textBright, Theresa Ann. "New solutions to the euler equations using lie group analysis and high order numerical techniques." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/29990.
Full textWilliams, Rhys L. "Exact, asymptotic and numerical solutions to certain steady, axisymmetric, ideal fluid flow problems in IR³." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299262.
Full textPaillere, Henri J. "Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids." Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212553.
Full textUne approche multidimensionelle pour la résolution numérique des équations d'Euler et de Navier-Stokes sur maillages non-structurés est proposée. Dans une première partie, un exposé complet des schémas de distribution, dits de "fluctuation-splitting" ,est décrit, comprenant une étude comparative des schémas décentrés, positifs et de 2ème ordre, pour résoudre l'équation de convection à coefficients constants, ainsi qu'une étude théorique et numérique de la précision des schémas sur maillages réguliers et distordus. L'extension à des lois de conservation non-linéaires est aussi abordée, et une attention particulière est portée au problème de la linéarisation conservative. Dans une deuxième partie, diverses discrétisations des termes visqueux pour l'équation de convection-diffusion sont développées, avec pour but de déterminer l'approche qui offre le meilleur compromis entre précision et coût. L'extension de la méthode aux systèmes des lois de conservation, et en particulier à celui des équations d'Euler de la dynamique des gaz, représente le noyau principal de la thèse, et est abordée dans la troisième partie. Contrairement aux schémas de distribution classiques, qui reposent sur une extension formelle du cas scalaire, l'approche développée ici repose sur une décomposition du résidu par élément en équations scalaires, modélisant le transport de variables caracteristiques. La difficulté vient du fait que les équations d'Euler instationnaires ne se diagonalisent pas, et admettent une infinité de solutions élémentaires (ondes simples) se propageant dans toutes les directions d'espace. En régime stationnaire, en revanche, les équations se diagonalisent complètement dans le cas des écoulements supersoniques, et partiellement dans le cas des écoulements subsoniques. Ainsi, les équations sous forme conservative peuvent être remplacées par un système équivalent comprenant deux équations totalement découplées, exprimant l'invariance de l'entropie et de l'enthalpie totale le long des lignes de courant, et deux autres équations, modélisant les effets purement acoustiques. En régime supersonique, celles-ci se découplent aussi, et expriment la convection le long des lignes de Mach d'invariants de Riemann généralisés. La discrétisation de ces équations par des schémas scalaires décentrés permet de simuler des écoulements continus et discontinus avec une grande précision et sans oscillations. Finalement, dans une dernière partie, l'extension aux équations de Navier-Stokes est abordée, et la discrétisation des termes visqueux par une approche éléments finis est proposée. Les résultats numériques confirment la précision et la robustesse de la méthode.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Books on the topic "Euler Equation - Numerical Solution"
Fuhrer, Claus. Formulation and numerical solution of the equations of constrained mechanical motion. Koln: DFLVR, 1989.
Find full textAnderson, W. Kyle. Grid generation and flow solution method for Euler equations on unstructured grids. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Find full textK, Taylor Lafayette, and United States. National Aeronautics and Space Administration., eds. Numerical solution of the two-dimensional time-dependent incompressible Euler equations. Mississippi State, MS: Mississippi State University, Computational Fluid Dynamics Laboratory, NSF Engineering Research Center for Computational Field Simulation, 1994.
Find full textK, Taylor Lafayette, and United States. National Aeronautics and Space Administration., eds. Numerical solution of the two-dimensional time-dependent incompressible Euler equations. Mississippi State, MS: Mississippi State University, Computational Fluid Dynamics Laboratory, NSF Engineering Research Center for Computational Field Simulation, 1994.
Find full textPelant, Jaroslav. Numerical solution of flow of ideal fluid through cascade in a plane. Praha, Czechoslovakia: Information Centre for Aeronautics, 1987.
Find full textShapiro, Richard A. Adaptive finite element solution algorithm for the Euler equations. Braunschweig: Vieweg, 1991.
Find full textWilkinson, Andrew R. Numerical solution of the Euler equations for transonic airfoil flows using unstructured grids. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textDas, Arabindo. Numerical solution of flow fields around delta wings using Euler equation methods. Pt. II. Analysis of the results and comparison with experiments. Braunschweig: DFVLR, 1986.
Find full textFelici, Helene M. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textFelici, Helene M. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows. Cambridge, Mass: Gas Turbine Laboratory, Massachusetts Institute of Technology, 1992.
Find full textBook chapters on the topic "Euler Equation - Numerical Solution"
Quartapelle, L. "Incompressible Euler equations." In Numerical Solution of the Incompressible Navier-Stokes Equations, 209–42. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8579-9_8.
Full textKim, Kyu Hong, Chongam Kim, Oh-Hyun Rho, and Kyung-Tae Lee. "Uncertainty of Solution in Euler Equations and Numerical Instability." In Computational Fluid Dynamics 2002, 146–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_19.
Full textWesseling, Pieter. "Numerical solution of the Euler equations in general domains." In Principles of Computational Fluid Dynamics, 503–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05146-3_12.
Full textDrela, M., M. Giles, and W. T. Thompkins. "Newton Solution of Coupled Euler and Boundary-Layer Equations." In Numerical and Physical Aspects of Aerodynamic Flows III, 143–54. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4926-9_8.
Full textLynn, John F., Bram van Leer, and Dohyung Lee. "Multigrid solution of the euler equations with local preconditioning." In Fifteenth International Conference on Numerical Methods in Fluid Dynamics, 172–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0107097.
Full textVan den Abeele, Kris, Jan Ramboer, Ghader Ghorbaniasl, and Chris Lacor. "Numerical Solution of the Linearized Euler Equations Using Compact Schemes." In Computational Fluid Dynamics 2006, 837–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92779-2_132.
Full textOosterlee, C. W., H. Ritzdorf, A. Schüller, and B. Steckel. "Experiences with a parallel multiblock multigrid solution technique for the Euler equations." In Notes on Numerical Fluid Mechanics (NNFM), 192–203. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-663-14125-9_16.
Full textKoren, Barry, and Stefan Spekreijse. "Multigrid and Defect Correction for the Efficient Solution of the Steady Euler Equations." In Research in Numerical Fluid mechanics, 87–100. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-89729-9_7.
Full textShapiro, Richard A. "Prediction of Dispersive Errors in Numerical Solution of the Euler Equations." In Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications, 552–61. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-87869-4_54.
Full textBramkamp, F., and J. Ballmann. "Solution of the Euler Equations on Locally Adaptive B-Spline Grids." In New Results in Numerical and Experimental Fluid Mechanics III, 281–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-45466-3_34.
Full textConference papers on the topic "Euler Equation - Numerical Solution"
David, R., and J. Holman. "NUMERICAL SOLUTION OF EULER EQUATIONS USING ROTATED-HYBRID RIEMANN SOLVER." In Topical Problems of Fluid Mechanics 2019. Institute of Thermomechanics, AS CR, v.v.i., 2019. http://dx.doi.org/10.14311/tpfm.2019.009.
Full textDADONE, A., and B. GROSSMAN. "Surface boundary conditions for the numerical solution of the Euler equations." In 11th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3334.
Full textWiemann, D., F. Lehr, and D. Mewes. "Numerical Calculation of the Flow Field in Bubble Columns Using a Simplified Form of the Population Balance Equation." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31124.
Full textShieh, C. F., and R. A. Delaney. "An Accurate and Efficient Euler Solver for Three-Dimensional Turbomachinery Flows." In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-200.
Full textMOITRA, A. "Numerical solution of the Euler equations for high-speed, blended wing-body configurations." In 23rd Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-123.
Full textXu, Yufeng, and Om P. Agrawal. "Numerical Solutions of Generalized Oscillator Equations." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12705.
Full textJasim, Abdulghafoor, and Ali Asmael. "Studying Some Stochastic Differential Equations with trigonometric terms with Application." In 3rd International Conference of Mathematics and its Applications. Salahaddin University-Erbil, 2020. http://dx.doi.org/10.31972/ticma22.13.
Full textHe, L., and J. D. Denton. "Inviscid-Viscous Coupled Solution for Unsteady Flows Through Vibrating Blades: Part 1 — Description of the Method." In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-125.
Full textE, Qin, Fengwei Li, and Guowei Yang. "Numerical solution of the Euler equations for the transonic flow about the complete aircraft." In 14th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2406.
Full textYANG, J. "Numerical solution of the two-dimensional Euler equations by second-order upwind difference schemes." In 23rd Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-292.
Full textReports on the topic "Euler Equation - Numerical Solution"
Wang, C. Y., M. D. Carter, D. B. Batchelor, and E. F. Jaeger. Numerical solution of a tunneling equation. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10167991.
Full textKellogg, R. B. Numerical Solution of Convection Diffusion Equation. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada244563.
Full textHarvey, John V., JR Medina, and Richard L. Numerical Solution of the Extended Nonlinear Schrodinger Equation. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada463325.
Full textChao, E. H., S. F. Paul, R. C. Davidson, and K. S. Fine. Direct numerical solution of Poisson`s equation in cylindrical (r, z) coordinates. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/304205.
Full textMorgan, D. L. Jr. Numerical solution of the Schroedinger integral equation for dt. mu. Progress report. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/5167930.
Full textSamn, Sherwood. Numerical Solution of a Singular Integral Equation Arising from a Sequential Probability Ratio Test. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada293463.
Full textPOWELL, JENNIFER L. Finite Element Numerical Solution of a Self-Adjoint Transport Equation for Coupled Electron-Photon Problems. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/760742.
Full textHart, Carl, and Gregory Lyons. A tutorial on the rapid distortion theory model for unidirectional, plane shearing of homogeneous turbulence. Engineer Research and Development Center (U.S.), July 2022. http://dx.doi.org/10.21079/11681/44766.
Full textA numerical solution for the diffusion equation in hydrogeologic systems. US Geological Survey, 1989. http://dx.doi.org/10.3133/wri894027.
Full textHIGH PRECISION IDENTIFICATION METHOD OF MASS AND STIFFNESS MATRIX FOR SHEAR-TYPE FRAME TEST MODEL. The Hong Kong Institute of Steel Construction, June 2023. http://dx.doi.org/10.18057/ijasc.2023.19.2.6.
Full text