Academic literature on the topic 'Eulerian graph theory. Hamiltonian graph theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eulerian graph theory. Hamiltonian graph theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Eulerian graph theory. Hamiltonian graph theory"
Tamizh Chelvam, T., and S. Anukumar Kathirvel. "Generalized unit and unitary Cayley graphs of finite rings." Journal of Algebra and Its Applications 18, no. 01 (January 2019): 1950006. http://dx.doi.org/10.1142/s0219498819500063.
Full textMedvedev, Paul, and Mihai Pop. "What do Eulerian and Hamiltonian cycles have to do with genome assembly?" PLOS Computational Biology 17, no. 5 (May 20, 2021): e1008928. http://dx.doi.org/10.1371/journal.pcbi.1008928.
Full textMetsidik, Metrose. "Eulerian and Even-Face Graph Partial Duals." Symmetry 13, no. 8 (August 11, 2021): 1475. http://dx.doi.org/10.3390/sym13081475.
Full textBroersma, H. J. "A note on K4-closures in hamiltonian graph theory." Discrete Mathematics 121, no. 1-3 (October 1993): 19–23. http://dx.doi.org/10.1016/0012-365x(93)90533-y.
Full textBroersma, H. J. "On some intriguing problems in hamiltonian graph theory—a survey." Discrete Mathematics 251, no. 1-3 (May 2002): 47–69. http://dx.doi.org/10.1016/s0012-365x(01)00325-9.
Full textLi, Hao. "Generalizations of Dirac’s theorem in Hamiltonian graph theory—A survey." Discrete Mathematics 313, no. 19 (October 2013): 2034–53. http://dx.doi.org/10.1016/j.disc.2012.11.025.
Full textCeulemans, A., E. Lijnen, P. W. Fowler, R. B. Mallion, and T. Pisanski. "Graph theory and the Jahn–Teller theorem." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2140 (November 30, 2011): 971–89. http://dx.doi.org/10.1098/rspa.2011.0508.
Full textBlanco, Rocío, and Melody García-Moya. "Graph Theory for Primary School Students with High Skills in Mathematics." Mathematics 9, no. 13 (July 3, 2021): 1567. http://dx.doi.org/10.3390/math9131567.
Full textThomassen, Carsten. "On the Number of Hamiltonian Cycles in Bipartite Graphs." Combinatorics, Probability and Computing 5, no. 4 (December 1996): 437–42. http://dx.doi.org/10.1017/s0963548300002182.
Full textHorák, Peter, Tomáš Kaiser, Moshe Rosenfeld, and Zdeněk Ryjáček. "The Prism Over the Middle-levels Graph is Hamiltonian." Order 22, no. 1 (February 2005): 73–81. http://dx.doi.org/10.1007/s11083-005-9008-7.
Full textDissertations / Theses on the topic "Eulerian graph theory. Hamiltonian graph theory"
Zhan, Mingquan. "Eulerian subgraphs and Hamiltonicity of claw-free graphs." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3024.
Full textTitle from document title page. Document formatted into pages; contains vi, 52 p. : ill. Includes abstract. Includes bibliographical references (p. 50-52).
Dey, Sanjoy. "Structural properties of visibility and weak visibility graphs." Virtual Press, 1997. http://liblink.bsu.edu/uhtbin/catkey/1048394.
Full textDepartment of Mathematical Sciences
Smithers, Dayna Brown. "Graph Theory for the Secondary School Classroom." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etd/1015.
Full textSteelman, Andrea Elizabeth. "Degree sum ensuring hamiltonicity." [Pensacola, Fla.] : University of West Florida, 2007. http://purl.fcla.edu/fcla/etd/WFE0000012.
Full textBajo, Calderon Erica. "An Exploration on the Hamiltonicity of Cayley Digraphs." Youngstown State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ysu161982054497591.
Full textVulcani, Renata de Lacerda Martins 1973. "Grafos eulerianos e aplicações." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306826.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T19:50:54Z (GMT). No. of bitstreams: 1 Vulcani_RenatadeLacerdaMartins_M.pdf: 2431212 bytes, checksum: 702947f1e783d410ef77eb0234852d6a (MD5) Previous issue date: 2015
Resumo: Neste trabalho apresentamos uma breve introdução à teoria dos grafos, elucidando alguns conceitos básicos e destacando grafos eulerianos. Usamos o conceito de grafos eulerianos para resolver alguns passatempos e jogos conhecidos. Finalizamos apresentando algumas aplicações que envolvem grafos que não são necessariamente eulerianos
Abstract: In this work we present a brief introduction to graph theory, explaining some basic concepts and highlighting eulerians graphs. We use the concept of eulerians graphs to solve some well known puzzles and games. We finalize by presenting some applications involving graphs that are not necessarily eulerians
Mestrado
Matemática em Rede Nacional
Mestra
Wang, Yinhua. "Fleet assignment, eulerian subtours and extended steiner trees." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/24922.
Full textFreeman, Andre. "Dual-Eulerian graphs with applications to VLSI design." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0430103-155731/.
Full textGhenciu, Petre Ion. "Hamiltonian cycles in subset and subspace graphs." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4662/.
Full textFernandes, Antonio M. "A study of nonlinear physical systems in generalized phase space." Virtual Press, 1996. http://liblink.bsu.edu/uhtbin/catkey/1020161.
Full textDepartment of Physics and Astronomy
Books on the topic "Eulerian graph theory. Hamiltonian graph theory"
Fleischner, Herbert. Eulerian graphs and related topics. Amsterdam: North-Holland, 1990.
Find full textSchaar, Günter. Hamiltonian properties of products of graphs and digraphs. Leipzig: Teubner, 1988.
Find full textKyaw, Shwe. A Dirac-type criterion for hamiltonicity. Berlin: Verlag Köster, 1994.
Find full textReggini, Horacio C. Regular polyhedra: Random generation, Hamiltonian paths, and single chain nets. Buenos Aires: Academia Nacional de Ciencias Exactas, Físicas y Naturales, 1991.
Find full textNing, Xuanxi. The blocking flow theory and its application to Hamiltonian graph problems. Aachen: Shaker Verlag, 2006.
Find full textFreĭdlin, M. I. Random perturbations of Hamiltonian systems. Providence, R.I: American Mathematical Society, 1994.
Find full textFilar, Jerzy A. Controlled markov chains, graphs and hamiltonicity. Hanover, Mass: Now Publishers, 2007.
Find full textFleischner, Herbert. Eulerian Graphs and Related Topics : Eulerian Graphs and Related Topics. North-Holland, 1991.
Find full textBook chapters on the topic "Eulerian graph theory. Hamiltonian graph theory"
Balakrishnan, R., and K. Ranganathan. "Eulerian and Hamiltonian Graphs." In A Textbook of Graph Theory, 117–42. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4529-6_6.
Full textBalakrishnan, R., and K. Ranganathan. "Eulerian and Hamiltonian Graphs." In A Textbook of Graph Theory, 102–27. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4419-8505-7_6.
Full textZhang, Ping. "Hamiltonian Extension." In Graph Theory, 17–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31940-7_2.
Full textBantva, Devsi, and S. K. Vaidya. "Hamiltonian Chromatic Number of Trees." In Recent Advancements in Graph Theory, 339–52. Boca Raton : CRC Press, 2020. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781003038436-28.
Full textGolumbic, Martin Charles, and André Sainte-Laguë. "VII Hamiltonian graphs." In The Zeroth Book of Graph Theory, 51–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61420-1_8.
Full textThaithae, Sermsri, and Narong Punnim. "The Hamiltonian Number of Cubic Graphs." In Computational Geometry and Graph Theory, 213–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89550-3_23.
Full textMatsuda, Haruhide. "Regular Factors Containing a Given Hamiltonian Cycle." In Combinatorial Geometry and Graph Theory, 123–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30540-8_14.
Full textBauer, D., H. J. Broersma, and H. J. Veldman. "Around Three Lemmas in Hamiltonian Graph Theory." In Topics in Combinatorics and Graph Theory, 101–10. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-46908-4_12.
Full textRay, Saha. "Euler Graphs and Hamiltonian Graphs." In Graph Theory with Algorithms and its Applications, 25–34. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0750-4_3.
Full textMomège, Benjamin. "Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path." In SOFSEM 2017: Theory and Practice of Computer Science, 205–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51963-0_16.
Full textConference papers on the topic "Eulerian graph theory. Hamiltonian graph theory"
Vontobel, Pascal O. "A factor-graph approach to Lagrangian and Hamiltonian dynamics." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033945.
Full textOnete, Cristian E., and A. Maria Cristina C. Onete. "Finding spanning trees and Hamiltonian circuits in an un-oriented graph an algebraic approach." In 2011 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2011. http://dx.doi.org/10.1109/ecctd.2011.6043384.
Full textGasparetto, A., R. Vidoni, E. Saccavini, and D. Pillan. "Optimal Path Planning for Painting Robots." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24259.
Full text