Academic literature on the topic 'Evangelista Torricelli'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Evangelista Torricelli.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Evangelista Torricelli"

1

Robinson, Philip J. "Evangelista Torricelli." Mathematical Gazette 78, no. 481 (March 1994): 37. http://dx.doi.org/10.2307/3619429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BARONCELLI, GIOVANNA. "INTORNO ALL'INVENZIONE DELLA SPIRALE GEOMETRICA. UNA LETTERA INEDITA DI TORRICELLI A MICHELANGELO RICCI." Nuncius 8, no. 2 (1993): 14–606. http://dx.doi.org/10.1163/182539183x00721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bistafa, Sylvio R. "A lei de Torricelli v=√2gh." Revista Brasileira de História da Ciência 7, no. 1 (November 11, 2021): 110–19. http://dx.doi.org/10.53727/rbhc.v7i1.234.

Full text
Abstract:
Apresenta-se uma tradução comentada para o português do De Motu Aquarum (1644), em que Evangelista Torricelli apresenta os desenvolvimentos que ficaram consolidados na sua famosa lei v=√2gh que permite determinar a velocidade de efluxo v de um jato de líquido submetido à gravidade g, jorrando de um pequeno orifício do recipiente, para o qual a distância vertical até a superfície livre da água no recipiente é h.
APA, Harvard, Vancouver, ISO, and other styles
4

Leahy, Andrew. "Evangelista Torricelli and the “Common Bond of Truth” in Greek Mathematics." Mathematics Magazine 87, no. 3 (June 2014): 174–84. http://dx.doi.org/10.4169/math.mag.87.3.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Macêdo, Marcos Antonio Rodrigues. "A equação de Torricelli e o estudo do movimento retilíneo uniformemente variado (MRUV)." Revista Brasileira de Ensino de Física 32, no. 4 (December 2010): 4307–1. http://dx.doi.org/10.1590/s1806-11172010000400007.

Full text
Abstract:
Em primeiro lugar, este trabalho realiza uma tarefa de recuperar o papel histórico de Evangelista Torricelli, a fim de mostrar a sua importância para o estudo do movimento retilíneo uniformemente variado, mas também analisa a maneira de como a equação ν2 = ν²0 + 2aΔs é mostrada aos alunos do ensino médio no estudo deste movimento através de livros didáticos e do comportamento dos professores nesse sentido. Por último, mostra como a história da física pode contribuir para dar um sentido significativo para o estudo de determinados conceitos científicos.
APA, Harvard, Vancouver, ISO, and other styles
6

West, John B. "Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure." Physiology 28, no. 2 (March 2013): 66–73. http://dx.doi.org/10.1152/physiol.00053.2012.

Full text
Abstract:
The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.
APA, Harvard, Vancouver, ISO, and other styles
7

PATERNOSTER,, G., E. SCHETTINO, and R. RINZIVILLO,. "STUDIO DI UNA LENTE PER CANNOCCHIALE DI GRANDI DIMENSIONI LAVORATA DA EVANGELISTA TORRICELLI." Nuncius 11, no. 1 (January 1, 1996): 123–34. http://dx.doi.org/10.1163/221058796x00848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carolina Sparavigna, Amelia. "Teaching Physics during the 17th Century: Some Examples from the Works of Evangelista Torricelli." International Journal of Sciences 1, no. 04 (2015): 50–58. http://dx.doi.org/10.18483/ijsci.694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De Villiers, Michael. "From the Fermat points to the De Villiers3 points of a triangle." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 29, no. 3 (January 13, 2010): 119–29. http://dx.doi.org/10.4102/satnt.v29i3.16.

Full text
Abstract:
The article starts with a problem of finding a point that minimizes the sum of the distances to the vertices of an acute-angled triangle, a problem originally posed by Fermat in the 1600’s, and apparently first solved by the Italian mathematician and scientist Evangelista Torricelli. This point of optimization is therefore usually called the inner Fermat or Fermat-Torricelli point of a triangle. The transformation proof presented in the article was more recently invented in 1929 by the German mathematician J. Hoffman. After reviewing the centroid and medians of a triangle, these are generalized to Ceva’s theorem, which is then used to prove the following generalization of the Fermat-Torricelli point from [3]: “If triangles DBA, ECB and FAC are constructed outwardly (or inwardly) on the sides of any ∆ABC so that ∠DAB =∠CAF , ∠ DBA = ∠ CBE and ∠ ECB = ∠ ACF then DC, EA and FB are concurrent.”However, this generalization is not new, and the earliest proof the author could trace is from 1936 by W. Hoffer in [1], though the presented proof is distinctly different. Of practical relevance is the fact that this Fermat-Torricelli generalization can be used to solve a “weighted” airport problem, for example, when the populations in the three cities are of different size. The author was also contacted via e-mail in July 2008 by Stephen Doro from the College of Physicians and Surgeons, Columbia University, USA, who was considering its possible application in the branching of larger arteries and veins in the human body into smaller and smaller ones. On the basis of an often-observed (but not generally true) duality between circumcentres and in centres, it was conjectured in 1996 [see 4] that the following might be true from a similar result for circumcentres (Kosnita’s theorem), namely: The lines joining the vertices A, B, and C of a given triangle ABC with the incentres of the triangles BCO, CAO, and ABO (O is the incentre of ∆ABC), respectively, are concurrent (in what is now called the inner De Villiers point). Investigation on the dynamic geometry program Sketchpad quickly confi rmed that the conjecture was indeed true. (For an interactive sketch online, see [7]). Using the aforementioned generalization of the Fermat-Torricelli point, it was now also very easy to prove this result. The outer De Villiers point is similarly obtained when the excircles are constructed for a given triangle ABC, in which case the lines joining the vertices A, B, and C of a given triangle ABC with the incentres of the triangles BCI1, CAI2, and ABI3 (Ii are the excentres of ∆ABC), are concurrent. The proof follows similarly from the Fermat-Torricelli generalization.
APA, Harvard, Vancouver, ISO, and other styles
10

Pedroza González, Edmundo, Josefina Ortiz Medel, and Francisco Martínez González. "Historia del Teorema de Bernoulli." Acta Universitaria 17, no. 1 (April 1, 2007): 39–45. http://dx.doi.org/10.15174/au.2007.166.

Full text
Abstract:
La historia comienza en 1598 cuando Benedetto Castelli refutó la forma de medir el flujo en los ríos por parte de Giovanni Fontana, afirmando tomar en cuenta la sección y la velocidad. También aclaró que en la medición en orificios, debía considerarse la carga y el tamaño del orificio. En 1625, Castelli estableció la ecuación que lleva su nombre (Q = AV). Galileo Galilei (1638), propuso que los cuerpos experimentan una aceleración uniforme alcaer en el vacío. En 1641, Evangelista Torricelli demostró que la forma de un chorro al salirde un orificio es una hipérbola de 4º orden. Isaac Newton (1686), argumentó que el agua tiene una caída efectiva en el interior de un tanque y que el orificio tiene encima una carga real del doble de la altura del tanque. Daniel Bernoulli (1738), aclaró el enigma de la doble columna y finalmente Johann Bernoulli, basado en los trabajos de su hijo Daniel, presentóuna mejor explicación del escurrimiento en un orificio y logró una clara deducción de la ecuación de una línea de corriente.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Evangelista Torricelli"

1

Pinheiro, Maciel. "Argumentos a favor do peso do ar: o experimento barométrico de Evangelista Torricelli (1608-1647)." Pontifícia Universidade Católica de São Paulo, 2014. https://tede2.pucsp.br/handle/handle/13290.

Full text
Abstract:
Made available in DSpace on 2016-04-28T14:16:18Z (GMT). No. of bitstreams: 1 Maciel Pinheiro.pdf: 518819 bytes, checksum: ddf0bcd1877d0d3003fc41d8196b3c73 (MD5) Previous issue date: 2014-03-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The aim of this dissertation is to approach several arguments by Evangelista Torricelli (1608-1647) for the weight of air being the cause that explains the effects observed in his barometric experiment. To this end, we analyse a letter by Torricelli to Michelangelo Ricci (1619-1682) dated the 11th of June of 1644, which reports the experiment. The analysis revealed that, in order to understand Torricelli s interpretation of the experiment, we must take into account the intellectual context of that time. At first sight the experiment seems only to point to the evidence that vacuum can be generated in nature, since the phenomenon can be attributed to the weight of air. However, it reveals other aspects that were very important to the origins of modern science
Esta dissertação tem por finalidade abordar alguns argumentos apresentados por Evangelista Torricelli (1608-1647) a favor do peso do ar como causa para explicar os efeitos observados em seu experimento barométrico. Para tanto, analisamos uma carta encaminhada por Torricelli a Michelangelo Riccci (1619-1682) em 11 de junho de 1644 em que o experimento é relatado. A análise nos revelou que para compreender a interpretação dada por Torricelli ao experimento é preciso considerar o contexto intelectual daquela época. O experimento que, à primeira vista parece apenas apontar para a evidência de que era possível produzir vácuo na natureza, visto que o fenômeno poderia ser atribuído ao peso do ar, revela outros aspectos que foram importantes na origem da ciência moderna
APA, Harvard, Vancouver, ISO, and other styles
2

Delgado, Héctor Manuel. "Indivisibles, correspondances et controverses : Cavalieri, Galilée, Toricelli, Guldin." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAP002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Evangelista Torricelli"

1

L'erede di Galileo: Vita breve e mirabile di Evangelista Torricelli. Milano (Italy): Sironi, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Toscano, Fabio. L'erede di Galileo: Vita breve e mirabile di Evangelista Torricelli. Milano (Italy): Sironi, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Acampora, Renato. Evangelista Torricelli: Mathematiker des Großherzogs Ferdinand II. der Toskana. Springer Berlin / Heidelberg, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grave, Patricia Radelet De, Jean Dhombres, Paolo Bussotti, and Raffaele Pisano. Homage to Evangelista Torricelli's Opera Geometrica 1644-2022: Text, Transcription, Commentaries and Selected Essays As New Historical Insights. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Evangelista Torricelli"

1

Vesel, Živa, Leonardo Gariboldi, Steven L. Renshaw, Saori Ihara, İhsan Fazlıoğlu, Voula Saridakis, Michael Fosmire, et al. "Torricelli, Evangelista." In The Biographical Encyclopedia of Astronomers, 1146–47. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_1390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hack, Margherita. "Torricelli, Evangelista." In Biographical Encyclopedia of Astronomers, 2168–69. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_1390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duhem, Pierre. "The Mechanical Properties of the Center of Gravity from Albert of Saxony to Evangelista Torricelli." In The Origins of Statics, 261–356. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3730-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jesseph, Douglas M. "The Indivisibles of the Continuum." In The History of Continua, 104–22. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198809647.003.0006.

Full text
Abstract:
This chapter considers some significant developments in seventeenth-century mathematics which are part of the pre-history of the infinitesimal calculus. In particular, I examine the “method of indivisibles” proposed by Bonaventura Cavalieri and various developments of this method by Evangelista Torricelli, Gilles Personne de Roberval, and John Wallis. From the beginning, the method of indivisibles faced objections that aimed to show that it was either conceptually ill-founded (in supposing that the continuum could be composed of dimensionless points) or that its application would lead to error. I show that Cavalieri’s original formulation of the method attempted to sidestep the question of whether a continuous magnitude could be composed of indivisibles, while Torricelli proposed to avoid paradox by taking indivisibles to have both non-zero (yet infinitesimal) magnitude and internal structure. In contrast, Roberval and Wallis showed significantly less interest in addressing foundational issues and were content to maintain that the method could (at least in principle) be reduced to Archimedean exhaustion techniques.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography