To see the other types of publications on this topic, follow the link: Excitation-contraction coupling.

Journal articles on the topic 'Excitation-contraction coupling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Excitation-contraction coupling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wann, Samuel. "Contraction–excitation coupling?" Heart Rhythm 9, no. 1 (2012): 91. http://dx.doi.org/10.1016/j.hrthm.2011.08.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bers, Donald M. "Cardiac excitation–contraction coupling." Nature 415, no. 6868 (2002): 198–205. http://dx.doi.org/10.1038/415198a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamilton, Susan L., Irina Serysheva, and Gale M. Strasburg. "Calmodulin and Excitation-Contraction Coupling." Physiology 15, no. 6 (2000): 281–84. http://dx.doi.org/10.1152/physiologyonline.2000.15.6.281.

Full text
Abstract:
Excitation-contraction coupling in cardiac and skeletal muscle involves the transverse-tubule voltage-dependent Ca2+ channel and the sarcoplasmic reticulum Ca2+ release channel. Both of these ion channels bind and are modulated by calmodulin in both its Ca2+-bound and Ca2+-free forms. Calmodulin is, therefore, potentially an important regulator of excitation-contraction coupling. Its precise role, however, has not yet been defined.
APA, Harvard, Vancouver, ISO, and other styles
4

Kilfoil, Peter, Xin Yue, Rui Zhang, et al. "Excitation-Contraction Coupling in HFpEF." Biophysical Journal 114, no. 3 (2018): 291a. http://dx.doi.org/10.1016/j.bpj.2017.11.1664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

HAMADA, Tomoyo, Hiromi TERAMI, and Hiroaki KAGAWA. "Excitation-Contraction Coupling in Caenorhabditis elegans." Seibutsu Butsuri 40, no. 1 (2000): 13–19. http://dx.doi.org/10.2142/biophys.40.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marty, Isabelle, and Julien Fauré. "Excitation-Contraction Coupling Alterations in Myopathies." Journal of Neuromuscular Diseases 3, no. 4 (2016): 443–53. http://dx.doi.org/10.3233/jnd-160172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marban, E. "Excitation-contraction coupling in hibernating myocardium." Basic Research in Cardiology 90, no. 1 (1995): 19–22. http://dx.doi.org/10.1007/bf00795110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khairallah, Philip A., Mary K. Upsher, Kazunari Yoshida, Fetnat M. Fouad, and Mary K. Hanna. "Excitation-Contraction Coupling in Hypertrophied Myocardium." Journal of Cardiovascular Pharmacology 7 (1985): S13—S19. http://dx.doi.org/10.1097/00005344-198500076-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bose, D. "Cardiac excitation–contraction coupling: new developments." Canadian Journal of Physiology and Pharmacology 66, no. 9 (1988): 1217. http://dx.doi.org/10.1139/y88-200.

Full text
Abstract:
Over 100 years have elapsed since Sidney Ringer made the serendipitous discovery that calcium played a crucial role in amphibian cardiac contraction. Since then we have learned that this ion is an obligatory requirement for cardiac muscle of all species, and that the regulation of intracellular calcium levels is considerably more complex in the mammalian heart than previously thought. Part of this complexity is due to the involved design requirements of mammalian physiological processes. Another element of complexity is introduced by the quantitative differences in the involvement of various r
APA, Harvard, Vancouver, ISO, and other styles
10

LEDERER, W. J., J. R. BERLIN, N. M. COHEN, R. W. HADLEY, D. M. BERS, and M. B. CANNELL. "Excitation-Contraction Coupling in Heart Cells." Annals of the New York Academy of Sciences 588, no. 1 Embryonic Ori (1990): 190–206. http://dx.doi.org/10.1111/j.1749-6632.1990.tb13210.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Numa, S., T. Tanabe, H. Takeshima, et al. "Molecular Insights into Excitation-Contraction Coupling." Cold Spring Harbor Symposia on Quantitative Biology 55 (January 1, 1990): 1–7. http://dx.doi.org/10.1101/sqb.1990.055.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Balke, C. William, and L. Goldman. "Excitation Contraction Coupling in Cardiac Muscle." Journal of General Physiology 121, no. 5 (2003): 349–52. http://dx.doi.org/10.1085/jgp.200308841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lakatta, Edward G. "Excitation-Contraction Coupling in Heart Failure." Hospital Practice 26, no. 7 (1991): 85–98. http://dx.doi.org/10.1080/21548331.1991.11704209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Niggli, Ernst. "Basic mechanisms of excitation/contraction coupling." Journal of Molecular and Cellular Cardiology 40, no. 6 (2006): 923. http://dx.doi.org/10.1016/j.yjmcc.2006.03.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wallis, Helen L., Claire Sears, and Simon Bryant. "Regional Differences in Excitation-Contraction Coupling." Clinical Science 103, s47 (2002): 10P. http://dx.doi.org/10.1042/cs103010p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hare, J. "Nitric oxide and excitation–contraction coupling." Journal of Molecular and Cellular Cardiology 35, no. 7 (2003): 719–29. http://dx.doi.org/10.1016/s0022-2828(03)00143-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ashcroft, Frances M. "Ca2+ channels and excitation-contraction coupling." Current Opinion in Cell Biology 3, no. 4 (1991): 671–75. http://dx.doi.org/10.1016/0955-0674(91)90040-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ikemoto, Noriaki, Michel Ronjat, and L�szr� G. M�sz�ros. "Kinetic analysis of excitation-contraction coupling." Journal of Bioenergetics and Biomembranes 21, no. 2 (1989): 247–66. http://dx.doi.org/10.1007/bf00812071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Melzer, W., and B. Dietze. "Malignant hyperthermia and excitation-contraction coupling." Acta Physiologica Scandinavica 171, no. 3 (2001): 367–78. http://dx.doi.org/10.1046/j.1365-201x.2001.00840.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Caillé, J., M. Ildefonse, and O. Rougier. "Excitation-contraction coupling in skeletal muscle." Progress in Biophysics and Molecular Biology 46, no. 3 (1985): 185–239. http://dx.doi.org/10.1016/0079-6107(85)90009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Donaldson, Sue K., Esther M. Gallant, and Daniel A. Huetteman. "Skeletal muscle excitation-contraction coupling I." Pfl�gers Archiv European Journal of Physiology 414, no. 1 (1989): 15–23. http://dx.doi.org/10.1007/bf00585621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gallant, Esther M., and Sue K. Donaldson. "Skeletal muscle excitation-contraction coupling II." Pfl�gers Archiv European Journal of Physiology 414, no. 1 (1989): 24–30. http://dx.doi.org/10.1007/bf00585622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lamb, G. D. "DHP receptors and excitation-contraction coupling." Journal of Muscle Research and Cell Motility 13, no. 4 (1992): 394–405. http://dx.doi.org/10.1007/bf01738035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Maack, C., and B. O'Rourke. "Excitation-contraction coupling and mitochondrial energetics." Basic Research in Cardiology 102, no. 5 (2007): 369–92. http://dx.doi.org/10.1007/s00395-007-0666-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wray, Susan, Ursula Ravens, Alexei Verkhratsky, and David Eisner. "Two centuries of excitation–contraction coupling." Cell Calcium 35, no. 6 (2004): 485–89. http://dx.doi.org/10.1016/j.ceca.2004.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sanders, Kenton M., and Nelson G. Publicover. "Excitation-contraction coupling in gastric muscles." Digestive Diseases and Sciences 39, S12 (1994): 69S—72S. http://dx.doi.org/10.1007/bf02300375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ebashi, Setsuro. "Excitation-Contraction Coupling and the Mechanism of Muscle Contraction." Annual Review of Physiology 53, no. 1 (1991): 1–17. http://dx.doi.org/10.1146/annurev.ph.53.030191.000245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tao, Liang, Yu Huang, and Jean-Pierre Bourreau. "Control of the mode of excitation-contraction coupling by Ca2+ stores in bovine trachealis muscle." American Journal of Physiology-Lung Cellular and Molecular Physiology 279, no. 4 (2000): L722—L732. http://dx.doi.org/10.1152/ajplung.2000.279.4.l722.

Full text
Abstract:
Full muscarinic stimulation in bovine tracheal smooth muscle caused a sustained contraction and increase in intracellular Ca2+concentration ([Ca2+]i) that was largely resistant to inhibition by nifedipine. Depletion of internal Ca2+ stores with cyclopiazonic acid resulted in an increased efficacy of nifedipine to inhibit this contraction and the associated increase in [Ca2+]i. Thus internal Ca2+ store depletion promoted electromechanical coupling between full muscarinic stimulation and muscle contraction to the detriment of pharmacomechanical coupling. A similar change in coupling mode was ind
APA, Harvard, Vancouver, ISO, and other styles
29

Leong, Peng, and David H. MacLennan. "Complex interactions between skeletal muscle ryanodine receptor and dihydropyridine receptor proteins." Biochemistry and Cell Biology 76, no. 5 (1998): 681–94. http://dx.doi.org/10.1139/o98-079.

Full text
Abstract:
Evidence for functional interactions between the Ca2+ release channel in the skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) and the L-type Ca2+ channel in the sarcolemma (the dihydropyridine receptor), leading to excitation-contraction coupling, is reviewed and experimental systems used to identify candidate sites of interaction are outlined.Key words: sarcoplasmic reticulum, excitation-contraction coupling.
APA, Harvard, Vancouver, ISO, and other styles
30

Jungbluth, Heinz, Susan Treves, Francesco Zorzato, et al. "Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction." Nature Reviews Neurology 14, no. 3 (2018): 151–67. http://dx.doi.org/10.1038/nrneurol.2017.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tohse, Noritsugu, Sumihiko Seki, Takeshi Kobayashi, Masaaki Tsutsuura, Masato Nagashima, and Yoichi Yamada. "Development of Excitation-Contraction Coupling in Cardiomyocytes." Japanese Journal of Physiology 54, no. 1 (2004): 1–6. http://dx.doi.org/10.2170/jjphysiol.54.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Altamirano, Julio, and Donald M. Bers. "Voltage Dependence of Cardiac Excitation–Contraction Coupling." Circulation Research 101, no. 6 (2007): 590–97. http://dx.doi.org/10.1161/circresaha.107.152322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lüllmann, Heinz, and Albrecht Ziegler. "Calcium, Cell Membrane, and Excitation-Contraction Coupling." Journal of Cardiovascular Pharmacology 10 (1987): S2—S8. http://dx.doi.org/10.1097/00005344-198710001-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Du, Wanglei, Timothy J. McMahon, Zhu-Shan Zhang, Jonathan A. Stiber, Gerhard Meissner, and Jerry P. Eu. "Excitation-Contraction Coupling in Airway Smooth Muscle." Journal of Biological Chemistry 281, no. 40 (2006): 30143–51. http://dx.doi.org/10.1074/jbc.m606541200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fleischer, S., and M. Inui. "Biochemistry and Biophysics of Excitation-Contraction Coupling." Annual Review of Biophysics and Biophysical Chemistry 18, no. 1 (1989): 333–64. http://dx.doi.org/10.1146/annurev.bb.18.060189.002001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Goldhaber, Joshua I., and Mohammed S. Qayyum. "Oxygen Free Radicals and Excitation-Contraction Coupling." Antioxidants & Redox Signaling 2, no. 1 (2000): 55–64. http://dx.doi.org/10.1089/ars.2000.2.1-55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

OGAWA, Y. "Ryanodine receptor isoforms in excitation-contraction coupling." Advances in Biophysics 36 (1999): 27–64. http://dx.doi.org/10.1016/s0065-227x(99)80004-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Callewaert, G. "Excitation-contraction coupling in mammalian cardiac cells." Cardiovascular Research 26, no. 10 (1992): 923–32. http://dx.doi.org/10.1093/cvr/26.10.923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

SHATTOCK, M. J. "Excitation-Contraction Coupling and Cardiac Contractile Force." Cardiovascular Research 26, no. 4 (1992): 430. http://dx.doi.org/10.1093/cvr/26.4.430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aronsen, J. M., F. Swift, and O. M. Sejersted. "Cardiac sodium transport and excitation–contraction coupling." Journal of Molecular and Cellular Cardiology 61 (August 2013): 11–19. http://dx.doi.org/10.1016/j.yjmcc.2013.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bers, Donald M., and Yujie Zhu. "Excitation-Contraction Coupling and Cardiac Contractile Force." Journal of Cardiovascular Disease Research 1, no. 1 (2010): 45. http://dx.doi.org/10.1016/s0975-3583(10)11011-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sipido, K. "Triggering controversy in cardiac excitation–contraction coupling." Journal of Molecular and Cellular Cardiology 35, no. 2 (2003): 133–35. http://dx.doi.org/10.1016/s0022-2828(02)00311-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Imai, Tomihiro. "122. Excitation–contraction coupling in the masseter." Clinical Neurophysiology 120, no. 5 (2009): e174-e175. http://dx.doi.org/10.1016/j.clinph.2009.02.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lee, K., H. Saito, and N. Matsuki. "Excitation-contraction coupling in suncus cardiac muscle." European Journal of Pharmacology 183, no. 4 (1990): 1224–25. http://dx.doi.org/10.1016/0014-2999(90)94322-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Baum, V. C., and T. Klitzner. "EXCITATION-CONTRACTION COUPLING IN NEONATAL RABBIT MYOCARDIUM." Anesthesia & Analgesia 70, Supplement (1990): S17. http://dx.doi.org/10.1213/00000539-199002001-00017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zucchi, Riccardo. "Effect of gallopamil on excitation-contraction coupling." General Pharmacology: The Vascular System 27, no. 5 (1996): 749–53. http://dx.doi.org/10.1016/0306-3623(95)02095-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Brunton, Laurence L. "Excitation-contraction coupling and cardiac contractile force." Trends in Pharmacological Sciences 13 (January 1992): 297. http://dx.doi.org/10.1016/0165-6147(92)90091-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ullrich, Nina D., Mohammed Fanchaouy, Konstantin Gusev, Natalia Shirokova, and Ernst Niggli. "Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes." American Journal of Physiology-Heart and Circulatory Physiology 297, no. 6 (2009): H1992—H2003. http://dx.doi.org/10.1152/ajpheart.00602.2009.

Full text
Abstract:
Duchenne muscular dystrophy represents a severe inherited disease of striated muscle. It is caused by a mutation of the dystrophin gene and characterized by a progressive loss of skeletal muscle function. Most patients also develop a dystrophic cardiomyopathy, resulting in dilated hypertrophy and heart failure, but the cellular mechanisms leading to the deterioration of cardiac function remain elusive. In the present study, we tested whether defective excitation-contraction (E-C) coupling contributes to impaired cardiac performance. “E-C coupling gain” was determined in cardiomyocytes from con
APA, Harvard, Vancouver, ISO, and other styles
49

Bandi, Elena, Marko Jevšek, Tomaz Mars, et al. "Neural agrin controls maturation of the excitation-contraction coupling mechanism in human myotubes developing in vitro." American Journal of Physiology-Cell Physiology 294, no. 1 (2008): C66—C73. http://dx.doi.org/10.1152/ajpcell.00248.2007.

Full text
Abstract:
The aim of this study was to elucidate the mechanisms responsible for the effects of innervation on the maturation of excitation-contraction coupling apparatus in human skeletal muscle. For this purpose, we compared the establishment of the excitation-contraction coupling mechanism in myotubes differentiated in four different experimental paradigms: 1) aneurally cultured, 2) cocultured with fetal rat spinal cord explants, 3) aneurally cultured in medium conditioned by cocultures, and 4) aneurally cultured in medium supplemented with purified recombinant chick neural agrin. Ca2+ imaging indicat
APA, Harvard, Vancouver, ISO, and other styles
50

Zhou, Yiqiu. "Excitation Contraction Coupling in Hypertrophy and Failing Heart Cells." E3S Web of Conferences 271 (2021): 03008. http://dx.doi.org/10.1051/e3sconf/202127103008.

Full text
Abstract:
The contraction of the heart is dependent on a process named the excitation-contraction coupling (E-C coupling). In hypertrophy and failing heart models, the expression, phosphorylation and function of key calcium handling proteins involved in E-C coupling are altered. It’s important to figure out the relationship changes between calcium channel activity and calcium release from sarcoplasmic reticulum (SR). This review will therefore focus on novel components of E-C coupling dysfunction in hypertrophy and failing heart, such as L-type Ca2+ channel (LCC), ryanodine receptor type-2 channel (RyR2
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!