Journal articles on the topic 'Exciton diffusion length'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Exciton diffusion length.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lincoln, Craig N., Matthias Block, Bastian Baudisch, Pavel Malevich, Hans von Berlepsch, Eberhard Riedle, and Jürgen Hauer. "Exciton-Exciton Annihilation as a Mechanism for Uphill Transfer in a Molecular Excitonic System." EPJ Web of Conferences 205 (2019): 06017. http://dx.doi.org/10.1051/epjconf/201920506017.
Full textSotome, Hikaru. "(Invited) Comprehensive Analysis of Exciton Diffusion with Time-Resolved Fluorescence Spectroscopy, Anisotropy and Imaging." ECS Meeting Abstracts MA2024-01, no. 13 (August 9, 2024): 1065. http://dx.doi.org/10.1149/ma2024-01131065mtgabs.
Full textShibu, Abhishek, Camilla Middleton, Carly O. Kwiatkowski, Meesha Kaushal, Jonathan H. Gillen, and Michael G. Walter. "Self-Assembly-Directed Exciton Diffusion in Solution-Processable Metalloporphyrin Thin Films." Molecules 27, no. 1 (December 22, 2021): 35. http://dx.doi.org/10.3390/molecules27010035.
Full textLuppi, Bruno T., Darren Majak, Manisha Gupta, Eric Rivard, and Karthik Shankar. "Triplet excitons: improving exciton diffusion length for enhanced organic photovoltaics." Journal of Materials Chemistry A 7, no. 6 (2019): 2445–63. http://dx.doi.org/10.1039/c8ta10037c.
Full textAbasto, D. F., M. Mohseni, S. Lloyd, and P. Zanardi. "Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1972 (August 13, 2012): 3750–70. http://dx.doi.org/10.1098/rsta.2011.0213.
Full textGuan, Xi, Shiyu Wang, Wenxing Liu, Dashan Qin, and Dayan Ban. "Determining the exciton diffusion length of copper phthalocyanine in operating planar-heterojunction organic solar cells." European Physical Journal Applied Physics 89, no. 3 (March 2020): 30201. http://dx.doi.org/10.1051/epjap/2020190322.
Full textNasr, Chouhaid, Toufik Taleb, Roger M. Leblanc, and Surat Hotchandani. "Exciton diffusion length in microcrystalline chlorophyll a." Applied Physics Letters 69, no. 13 (September 23, 1996): 1823–25. http://dx.doi.org/10.1063/1.117445.
Full textMikhnenko, Oleksandr V., Hamed Azimi, Markus Scharber, Mauro Morana, Paul W. M. Blom, and Maria Antonietta Loi. "Exciton diffusion length in narrow bandgap polymers." Energy & Environmental Science 5, no. 5 (2012): 6960. http://dx.doi.org/10.1039/c2ee03466b.
Full textOrtiz, Angy L., Graham S. Collier, Dawn M. Marin, Jennifer A. Kassel, Reynolds J. Ivins, Nicholas G. Grubich, and Michael G. Walter. "The effects of heavy atoms on the exciton diffusion properties in photoactive thin films of tetrakis(4-carbomethoxyphenyl)porphyrins." Journal of Materials Chemistry C 3, no. 6 (2015): 1243–49. http://dx.doi.org/10.1039/c4tc02232g.
Full textGommans, H., S. Schols, A. Kadashchuk, P. Heremans, and S. C. J. Meskers. "Exciton Diffusion Length and Lifetime in Subphthalocyanine Films." Journal of Physical Chemistry C 113, no. 7 (January 26, 2009): 2974–79. http://dx.doi.org/10.1021/jp809802q.
Full textKurrle, D., and J. Pflaum. "Exciton diffusion length in the organic semiconductor diindenoperylene." Applied Physics Letters 92, no. 13 (March 31, 2008): 133306. http://dx.doi.org/10.1063/1.2896654.
Full textde Sousa, Leonardo Evaristo, Fernando Teixeira Bueno, Geraldo Magela e Silva, Demétrio Antônio da Silva Filho, and Pedro Henrique de Oliveira Neto. "Fast predictions of exciton diffusion length in organic materials." Journal of Materials Chemistry C 7, no. 14 (2019): 4066–71. http://dx.doi.org/10.1039/c9tc00153k.
Full textLin, Jason D. A., Oleksandr V. Mikhnenko, Jingrun Chen, Zarifi Masri, Arvydas Ruseckas, Alexander Mikhailovsky, Reilly P. Raab, et al. "Systematic study of exciton diffusion length in organic semiconductors by six experimental methods." Mater. Horiz. 1, no. 2 (2014): 280–85. http://dx.doi.org/10.1039/c3mh00089c.
Full textDutta, Arin, Md Abu Zaman, and Fathema Farjana. "Simulation of the Electrical Characteristics and Photon Absorption Profile of P3HT/PCBM Planar Hetero-junction Photovoltaic Cell." Journal of Energy Technology Research 1, no. 2 (May 18, 2018): 45. http://dx.doi.org/10.22496/jetr.v1i2.103.
Full textRai, Deepesh, and Russell J. Holmes. "Measurement of the triplet exciton diffusion length in organic semiconductors." Journal of Materials Chemistry C 7, no. 19 (2019): 5695–701. http://dx.doi.org/10.1039/c9tc00686a.
Full textXu, Guangwei, Nianduan Lu, Wei Wang, Nan Gao, Zhuoyu Ji, Ling Li, and Ming Liu. "Universal description of exciton diffusion length in organic photovoltaic cell." Organic Electronics 23 (August 2015): 53–56. http://dx.doi.org/10.1016/j.orgel.2015.04.006.
Full textSajjad, Muhammad T., Arvydas Ruseckas, and Ifor D. W. Samuel. "Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics." Matter 3, no. 2 (August 2020): 341–54. http://dx.doi.org/10.1016/j.matt.2020.06.028.
Full textGülen, Demet. "Determination of the exciton diffusion length by surface quenching experiments." Journal of Luminescence 42, no. 4 (October 1988): 191–95. http://dx.doi.org/10.1016/0022-2313(88)90038-5.
Full textMullenbach, Tyler K., Kathryn A. McGarry, Wade A. Luhman, Christopher J. Douglas, and Russell J. Holmes. "Connecting Molecular Structure and Exciton Diffusion Length in Rubrene Derivatives." Advanced Materials 25, no. 27 (June 10, 2013): 3689–93. http://dx.doi.org/10.1002/adma.201300641.
Full textCao, Luye, Xiaoyang Du, Hui Lin, Caijun Zheng, Zhenhua Chen, and Silu Tao. "Delayed fluorescence material-assisted high performance ternary organic solar cells realized by prolonged exciton lifetime and diffusion length." Journal of Materials Chemistry C 8, no. 48 (2020): 17429–39. http://dx.doi.org/10.1039/d0tc04233a.
Full textde Sousa, Leonardo Evaristo, Laura Simonassi Raso de Paiva, Demétrio Antônio da Silva Filho, Gjergji Sini, and Pedro Henrique de Oliveira Neto. "Assessing the effects of increasing conjugation length on exciton diffusion: from small molecules to the polymeric limit." Physical Chemistry Chemical Physics 23, no. 29 (2021): 15635–44. http://dx.doi.org/10.1039/d1cp01263k.
Full textSajjad, Muhammad T., Arvydas Ruseckas, Lethy Krishnan Jagadamma, Yiwei Zhang, and Ifor D. W. Samuel. "Long-range exciton diffusion in non-fullerene acceptors and coarse bulk heterojunctions enable highly efficient organic photovoltaics." Journal of Materials Chemistry A 8, no. 31 (2020): 15687–94. http://dx.doi.org/10.1039/d0ta06017h.
Full textSajjad, Muhammad T., Oskar Blaszczyk, Lethy Krishnan Jagadamma, Thomas J. Roland, Mithun Chowdhury, Arvydas Ruseckas, and Ifor D. W. Samuel. "Engineered exciton diffusion length enhances device efficiency in small molecule photovoltaics." Journal of Materials Chemistry A 6, no. 20 (2018): 9445–50. http://dx.doi.org/10.1039/c8ta01226a.
Full textSim, Myungsun, Jisoo Shin, Chiyeoung Shim, Min Kim, Sae Byeok Jo, Joo-Hyun Kim, and Kilwon Cho. "Dependence of Exciton Diffusion Length on Crystalline Order in Conjugated Polymers." Journal of Physical Chemistry C 118, no. 2 (January 6, 2014): 760–66. http://dx.doi.org/10.1021/jp409776s.
Full textLondi, Giacomo, Rishat Dilmurat, Gabriele D’Avino, Vincent Lemaur, Yoann Olivier, and David Beljonne. "Comprehensive modelling study of singlet exciton diffusion in donor–acceptor dyads: when small changes in chemical structure matter." Physical Chemistry Chemical Physics 21, no. 45 (2019): 25023–34. http://dx.doi.org/10.1039/c9cp05201a.
Full textMatthew Menke, S., and Russell J. Holmes. "Evaluating the role of energetic disorder and thermal activation in exciton transport." Journal of Materials Chemistry C 4, no. 16 (2016): 3437–42. http://dx.doi.org/10.1039/c6tc00525j.
Full textChambon, Sylvain, Christophe Schatz, Vivien Sébire, Bertrand Pavageau, Guillaume Wantz, and Lionel Hirsch. "Organic semiconductor core–shell nanoparticles designed through successive solvent displacements." Mater. Horiz. 1, no. 4 (2014): 431–38. http://dx.doi.org/10.1039/c4mh00021h.
Full textKozub, Derek R., Kiarash Vakhshouri, Sameer Vajjala Kesava, Cheng Wang, Alexander Hexemer, and Enrique D. Gomez. "Direct measurements of exciton diffusion length limitations on organic solar cell performance." Chemical Communications 48, no. 47 (2012): 5859. http://dx.doi.org/10.1039/c2cc31925j.
Full textKozlov, Oleg V., Yuriy N. Luponosov, Alexander N. Solodukhin, Bruno Flament, Olivier Douhéret, Pascal Viville, David Beljonne, et al. "Simple donor-acceptor molecule with long exciton diffusion length for organic photovoltaics." Organic Electronics 53 (February 2018): 185–90. http://dx.doi.org/10.1016/j.orgel.2017.11.037.
Full textToušek, J., J. Toušková, Z. Remeš, J. Kousal, S. A. Gevorgyan, and F. C. Krebs. "Exciton diffusion length in some thermocleavable polythiophenes by the surface photovoltage method." Synthetic Metals 161, no. 23-24 (January 2012): 2727–31. http://dx.doi.org/10.1016/j.synthmet.2011.10.008.
Full textCurtin, Ian J., D. Wayne Blaylock, and Russell J. Holmes. "Role of impurities in determining the exciton diffusion length in organic semiconductors." Applied Physics Letters 108, no. 16 (April 18, 2016): 163301. http://dx.doi.org/10.1063/1.4945688.
Full textMorimoto, Hikaru, Yuji Hazama, Koichiro Tanaka, and Nobuko Naka. "Exciton lifetime and diffusion length in high-purity chemical-vapor-deposition diamond." Diamond and Related Materials 63 (March 2016): 47–50. http://dx.doi.org/10.1016/j.diamond.2015.11.010.
Full textLunt, Richard R., Jay B. Benziger, and Stephen R. Forrest. "Relationship between Crystalline Order and Exciton Diffusion Length in Molecular Organic Semiconductors." Advanced Materials 22, no. 11 (March 19, 2010): 1233–36. http://dx.doi.org/10.1002/adma.200902827.
Full textSiegmund, Bernhard, Muhammad T. Sajjad, Johannes Widmer, Debdutta Ray, Christian Koerner, Moritz Riede, Karl Leo, Ifor D. W. Samuel, and Koen Vandewal. "Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells." Advanced Materials 29, no. 12 (February 1, 2017): 1604424. http://dx.doi.org/10.1002/adma.201604424.
Full textNavozenko, O. M., V. M. Yashchuk, Yu P. Piryatinski, D. Gudeiko, A. P. Naumenko, and Yu L. Slominskii. "The Peculiarities of Singlet Electronic Excitation Energy Transfer Processes in Alq3 Films." Ukrainian Journal of Physics 65, no. 3 (March 26, 2020): 196. http://dx.doi.org/10.15407/ujpe65.3.196.
Full textŠčajev, Patrik. "Excitation and temperature dependent exciton-carrier transport in CVD diamond: Diffusion coefficient, recombination lifetime and diffusion length." Physica B: Condensed Matter 510 (April 2017): 92–98. http://dx.doi.org/10.1016/j.physb.2017.01.021.
Full textYeboah, Douglas, and Jai Singh. "Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells." Journal of Electronic Materials 46, no. 11 (July 19, 2017): 6451–60. http://dx.doi.org/10.1007/s11664-017-5679-2.
Full textFravventura, Maria C., Jaehyung Hwang, John W. A. Suijkerbuijk, Peter Erk, Laurens D. A. Siebbeles, and Tom J. Savenije. "Determination of Singlet Exciton Diffusion Length in Thin Evaporated C60 Films for Photovoltaics." Journal of Physical Chemistry Letters 3, no. 17 (August 14, 2012): 2367–73. http://dx.doi.org/10.1021/jz300820n.
Full textRim, Seung-Bum, Reinhold F. Fink, Jan C. Schöneboom, Peter Erk, and Peter Peumans. "Effect of molecular packing on the exciton diffusion length in organic solar cells." Applied Physics Letters 91, no. 17 (October 22, 2007): 173504. http://dx.doi.org/10.1063/1.2783202.
Full textRim, Seung-Bum, and Peter Peumans. "The effects of optical interference on exciton diffusion length measurements using photocurrent spectroscopy." Journal of Applied Physics 103, no. 12 (June 15, 2008): 124515. http://dx.doi.org/10.1063/1.2939071.
Full textde Sousa, Leonardo Evaristo, Fernando Teixeira Bueno, Luciano Ribeiro, Luiz Antônio Ribeiro Junior, Demétrio Antônio da Silva Filho, and Pedro Henrique de Oliveira Neto. "Role of Exciton Density in Organic Materials: Diffusion Length, Lifetime, and Quantum Efficiency." Chemistry of Materials 31, no. 17 (July 8, 2019): 6818–23. http://dx.doi.org/10.1021/acs.chemmater.9b01281.
Full textSousa, Leonardo Evaristo de, Ingrid Gomes Ribeiro, Fernando Marques Carvalho, and Pedro Henrique de Oliveira Neto. "Choice of Solubilizing Group Is Determinant for Exciton Diffusion Length in Organic Crystals." Journal of Physical Chemistry C 124, no. 10 (February 21, 2020): 5522–27. http://dx.doi.org/10.1021/acs.jpcc.9b10831.
Full textQin, Dashan, Peng Gu, Rudra Sankar Dhar, Seyed Ghasem Razavipour, and Dayan Ban. "Measuring the exciton diffusion length of C60 in organic planar heterojunction solar cells." physica status solidi (a) 208, no. 8 (March 29, 2011): 1967–71. http://dx.doi.org/10.1002/pssa.201026724.
Full textNogues, Gilles, Thomas Auzelle, Martien Den Hertog, Bruno Gayral, and Bruno Daudin. "Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires." Applied Physics Letters 104, no. 10 (March 10, 2014): 102102. http://dx.doi.org/10.1063/1.4868131.
Full textLuo, Yuqing, Shu Zhou, Zhiya Dang, and Pingqi Gao. "Probing the Exciton Diffusion Length of Short-Ligands Passivated Metal Halide Perovskite Nanocrystal Films." Journal of Physical Chemistry C 125, no. 50 (December 14, 2021): 27638–46. http://dx.doi.org/10.1021/acs.jpcc.1c07830.
Full textZhang, Yiwei, Muhammad T. Sajjad, Oskar Blaszczyk, Andrew J. Parnell, Arvydas Ruseckas, Luis A. Serrano, Graeme Cooke, and Ifor D. W. Samuel. "Large Crystalline Domains and an Enhanced Exciton Diffusion Length Enable Efficient Organic Solar Cells." Chemistry of Materials 31, no. 17 (April 2019): 6548–57. http://dx.doi.org/10.1021/acs.chemmater.8b05293.
Full textYang, Li-Gong, Hong-Zheng Chen, and Mang Wang. "Optimal film thickness for exciton diffusion length measurement by photocurrent response in organic heterostructures." Thin Solid Films 516, no. 21 (September 2008): 7701–7. http://dx.doi.org/10.1016/j.tsf.2008.03.027.
Full textToušek, Jiří, Jana Toušková, Ivo Křivka, Petra Pavlačková, Drahomír Výprachtický, and Věra Cimrová. "Surface photovoltage method for evaluation of exciton diffusion length in fluorene–thiophene based copolymers." Organic Electronics 11, no. 1 (January 2010): 50–56. http://dx.doi.org/10.1016/j.orgel.2009.09.025.
Full textZhao, Juan, Junsheng Yu, Zhu Ma, Lu Li, and Yadong Jiang. "Optimization of yellow phosphorescent organic light-emitting devices based on triplet exciton diffusion length." Synthetic Metals 161, no. 21-22 (November 2011): 2417–21. http://dx.doi.org/10.1016/j.synthmet.2011.09.018.
Full textBanerjee, Suman, Anukul Prasad Parhi, S. Sundar Kumar Iyer, and Satyendra Kumar. "Method of determining the exciton diffusion length using optical interference effect in Schottky diode." Applied Physics Letters 94, no. 22 (June 2009): 223303. http://dx.doi.org/10.1063/1.3142869.
Full text