Journal articles on the topic 'Exciton wannier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Exciton wannier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gunlycke, Daniel, and Frank Tseng. "Triangular lattice exciton model." Physical Chemistry Chemical Physics 18, no. 12 (2016): 8579–86. http://dx.doi.org/10.1039/c6cp00205f.
Full textKayanuma, Y. "Wannier exciton in microcrystals." Solid State Communications 59, no. 6 (August 1986): 405–8. http://dx.doi.org/10.1016/0038-1098(86)90573-9.
Full textСемина, М. А. "Тонкая структура ридберговских экситонов в закиси меди." Физика твердого тела 60, no. 8 (2018): 1515. http://dx.doi.org/10.21883/ftt.2018.08.46238.05gr.
Full textMavroyannis, Constantine. "Charge transfer electron–exciton complexes in single crystals." Canadian Journal of Chemistry 63, no. 7 (July 1, 1985): 1345–48. http://dx.doi.org/10.1139/v85-229.
Full textHE, MENG-DONG, LING-LING WANG, WEI-QING HUANG, BING-SOU ZOU, and KE-QIU CHEN. "LOCALIZED WANNIER EXCITON IN DEFECT LAYER EMBEDDED BETWEEN TWO SEMI-INFINITE SUPERLATTICES." International Journal of Modern Physics B 24, no. 18 (July 20, 2010): 3501–11. http://dx.doi.org/10.1142/s0217979210052520.
Full textPostorino, Sara, Jianbo Sun, Saskia Fiedler, Laurent O. Lee Cheong Lem, Maurizia Palummo, and Luca Camilli. "Interlayer Bound Wannier Excitons in Germanium Sulfide." Materials 13, no. 16 (August 12, 2020): 3568. http://dx.doi.org/10.3390/ma13163568.
Full textKhurgin, Jacob B. "Pliable polaritons: Wannier exciton-plasmon coupling in metal-semiconductor structures." Nanophotonics 8, no. 4 (November 20, 2018): 629–39. http://dx.doi.org/10.1515/nanoph-2018-0166.
Full textGÖPPERT, M., R. BECKER, C. MAIER, M. JÖRGER, A. JOLK, and C. KLINGSHIRN. "INFRARED ABSORPTION BY EXCITONS IN CUPROUS OXIDE." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3615–18. http://dx.doi.org/10.1142/s0217979201008275.
Full textFAN, HONG-YI, HUI ZOU, YUE FAN, and QIU-YU LIU. "ENERGY SPECTRUM OF MOTT–WANNIER EXCITON STUDIED BY VIRTUE OF THE EXCITON ENTANGLED STATE REPRESENTATION INSTEAD OF K·P PERTURBATION THEORY." Modern Physics Letters B 19, no. 13n14 (June 20, 2005): 637–42. http://dx.doi.org/10.1142/s0217984905008645.
Full textRidene, Rym, Nouha Mastrour, Dhouha Gamra, and Habib Bouchriha. "Energetic behavior of excitons in hybrid organic–inorganic parabolic quantum dots and its electric field dependence." International Journal of Modern Physics B 29, no. 30 (November 18, 2015): 1550211. http://dx.doi.org/10.1142/s0217979215502112.
Full textSchwermann, Christian, and Nikos L. Doltsinis. "Exciton transfer free energy from Car–Parrinello molecular dynamics." Physical Chemistry Chemical Physics 22, no. 19 (2020): 10526–35. http://dx.doi.org/10.1039/c9cp06419b.
Full textBjörk, Gunnar, Stanley Pau, Joseph Jacobson, and Yoshihisa Yamamoto. "Wannier exciton superradiance in a quantum-well microcavity." Physical Review B 50, no. 23 (December 15, 1994): 17336–48. http://dx.doi.org/10.1103/physrevb.50.17336.
Full textКоролькова, К. А., В. Р. Новак, and А. В. Селькин. "Локализация экситона Ванье-Мотта на органополупроводниковом интерфейсе ленгмюровская пленка / CdS"." Физика твердого тела 61, no. 7 (2019): 1362. http://dx.doi.org/10.21883/ftt.2019.07.47852.390.
Full textMyasnikov, E. N., A. E. Druzhinin, and A. P. Popov. "On participation of medium oscillations in wannier exciton motion." physica status solidi (b) 134, no. 2 (April 1, 1986): 651–58. http://dx.doi.org/10.1002/pssb.2221340224.
Full textPokatilov, E. P., S. I. Beril, V. M. Fomin, and G. A. Pogorilko. "Wannier-Mott Exciton States in Two-Layer Periodic Structures." physica status solidi (b) 130, no. 2 (August 1, 1985): 619–28. http://dx.doi.org/10.1002/pssb.2221300225.
Full textRAJASHABALA, S., S. S. KANMANI, and K. NAVANEETHAKRISHNAN. "LASER INDUCED METAL INSULATOR TRANSITION THROUGH EXCITON MECHANISM IN QUANTUM WELL SYSTEMS." Modern Physics Letters B 23, no. 09 (April 10, 2009): 1229–42. http://dx.doi.org/10.1142/s0217984909019223.
Full textDietrich, Christof P., Anja Steude, Laura Tropf, Marcel Schubert, Nils M. Kronenberg, Kai Ostermann, Sven Höfling, and Malte C. Gather. "An exciton-polariton laser based on biologically produced fluorescent protein." Science Advances 2, no. 8 (August 2016): e1600666. http://dx.doi.org/10.1126/sciadv.1600666.
Full textVragović, Igor, R. Scholz, and J. P. Šetrajčić. "Optical Properties of PTCDA Bulk Crystals and Ultrathin Films." Materials Science Forum 518 (July 2006): 41–46. http://dx.doi.org/10.4028/www.scientific.net/msf.518.41.
Full textSaito, Noriko, and Yosuke Kayanuma. "Resonant Tunneling of a Wannier Exciton through a Single Heterobarrier." Japanese Journal of Applied Physics 34, S1 (January 1, 1995): 77. http://dx.doi.org/10.7567/jjaps.34s1.77.
Full textPokutnyi, S. I., M. H. Tyc, W. Salejda, and J. Misiewicz. "Two-dimensional Wannier-Mott exciton in a uniform electric field." Physics of the Solid State 43, no. 5 (May 2001): 923–26. http://dx.doi.org/10.1134/1.1371378.
Full textChen, Y. N., and D. S. Chuu. "Decay rate of a Wannier exciton in low-dimensional systems." Europhysics Letters (EPL) 54, no. 3 (May 2001): 366–72. http://dx.doi.org/10.1209/epl/i2001-00251-7.
Full textBirman, Joseph L., and Nguyen Que Huong. "Wannier–Frenkel hybrid exciton in organic–semiconductor quantum dot heterostructures." Journal of Luminescence 125, no. 1-2 (July 2007): 196–200. http://dx.doi.org/10.1016/j.jlumin.2006.08.030.
Full textLu, N. H., P. M. Hui, and T. M. Hsu. "Wannier exciton binding energies in GaAs/AlxGa1-xAs quantum wells." Solid State Communications 78, no. 2 (April 1991): 145–48. http://dx.doi.org/10.1016/0038-1098(91)90271-v.
Full textErcelebi, A., and U. Ozdincer. "Polaron properties of the Wannier exciton in a quantum well confinement." Journal of Physics: Condensed Matter 1, no. 11 (March 20, 1989): 1999–2007. http://dx.doi.org/10.1088/0953-8984/1/11/007.
Full textBoichuk, V. I., and I. V. Bilynskii. "Bound energy of the Wannier exciton in similar heterogeneous double structures." physica status solidi (b) 174, no. 2 (December 1, 1992): 463–70. http://dx.doi.org/10.1002/pssb.2221740215.
Full textSaito, Noriko, and Yosuke Kayanuma. "Resonant tunneling of a Wannier exciton through a single-barrier heterostructure." Physical Review B 51, no. 8 (February 15, 1995): 5453–56. http://dx.doi.org/10.1103/physrevb.51.5453.
Full textMollet, Christian, Angela Kunoth, and Torsten Meier. "Excitonic Eigenstates of Disordered Semiconductor Quantum Wires: Adaptive Wavelet Computation of Eigenvalues for the Electron-Hole Schrödinger Equation." Communications in Computational Physics 14, no. 1 (July 2013): 21–47. http://dx.doi.org/10.4208/cicp.081011.260712a.
Full textPlehn, Thomas, Dirk Ziemann, and Volkhard May. "Simulations of Frenkel to Wannier–Mott Exciton Transitions in a Nanohybrid System." Journal of Physical Chemistry C 122, no. 49 (November 14, 2018): 27925–34. http://dx.doi.org/10.1021/acs.jpcc.8b09697.
Full textChalbaud, E. R., and J. P. Gallinar. "Wannier Stark ladders in the optical absorption spectrum of a 'Hubbard exciton'." Journal of Physics: Condensed Matter 1, no. 21 (May 29, 1989): 3325–36. http://dx.doi.org/10.1088/0953-8984/1/21/003.
Full textChen, Yueh-Nan, and Der-San Chuu. "Renormalized frequency shift of a Wannier exciton in a one-dimensional system." Physics Letters A 324, no. 1 (April 2004): 86–90. http://dx.doi.org/10.1016/j.physleta.2004.02.054.
Full textTaguchi, Satoshi, Takenari Goto, Masayasu Takeda, and Giyuu Kido. "Magneto-Optical Effects of the Wannier Exciton in a Biaxial ZnP2Crystal. I." Journal of the Physical Society of Japan 57, no. 9 (September 15, 1988): 3256–61. http://dx.doi.org/10.1143/jpsj.57.3256.
Full textGoto, Takenari, Satoshi Taguchi, Yasushi Nagamune, Shojiro Takeyama, and Noboru Miura. "Magneto-Optical Effect of the Wannier Exciton in a Biaxial ZnP2Crystal. II." Journal of the Physical Society of Japan 58, no. 10 (October 15, 1989): 3822–27. http://dx.doi.org/10.1143/jpsj.58.3822.
Full textGoto, Takenari, Satoshi Taguchi, Kikuo Cho, Yasushi Nagamune, Shojiro Takeyama, and Noboru Miura. "Magneto-Optical Effect of the Wannier Exciton in a Biaxial ZnP2Crystal. III." Journal of the Physical Society of Japan 59, no. 2 (February 15, 1990): 773–78. http://dx.doi.org/10.1143/jpsj.59.773.
Full textVertsimakha, G. V. "Variational approach to the calculation of the lowest Wannier exciton state in wide type-II single semiconductor quantum wells." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 2 (July 6, 2016): 208–14. http://dx.doi.org/10.15407/spqeo19.02.208.
Full textReyes, J. A., and M. del Castillo-Mussot. "Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires." Physical Review B 57, no. 3 (January 15, 1998): 1690–97. http://dx.doi.org/10.1103/physrevb.57.1690.
Full textHino, Ken-ichi, and Nobuyuki Toshima. "Dimensionality transitions of exciton Fano resonance spectra in a semiconductor Wannier–Stark ladder." Solid State Communications 135, no. 1-2 (July 2005): 119–23. http://dx.doi.org/10.1016/j.ssc.2005.03.042.
Full textYu, Junhong, Songyan Hou, Manoj Sharma, Landobasa Y. M. Tobing, Zhigang Song, Savas Delikanli, Chathuranga Hettiarachchi, et al. "Strong Plasmon-Wannier Mott Exciton Interaction with High Aspect Ratio Colloidal Quantum Wells." Matter 2, no. 6 (June 2020): 1550–63. http://dx.doi.org/10.1016/j.matt.2020.03.013.
Full textPlekhanov, V. G. "Isotope-induced energy-spectrum renormalization of the Wannier-Mott exciton in LiH crystals." Physical Review B 54, no. 6 (August 1, 1996): 3869–77. http://dx.doi.org/10.1103/physrevb.54.3869.
Full textLo, C. F., and R. Sollie. "Mass dependence of ground-state properties of Wannier exciton in a quantum dot." Solid State Communications 79, no. 9 (September 1991): 775–78. http://dx.doi.org/10.1016/0038-1098(91)90794-v.
Full textKobayashi, Hajime, Shinnosuke Hattori, Raku Shirasawa, and Shigetaka Tomiya. "Wannier-Like Delocalized Exciton Generation in C60 Fullerene Clusters: A Density Functional Theory Study." Journal of Physical Chemistry C 124, no. 4 (January 6, 2020): 2379–87. http://dx.doi.org/10.1021/acs.jpcc.9b10703.
Full textHino, Ken-ichi, and Nobuyuki Toshima. "Anomalous variation of the exciton Fano-resonance spectra in strongly biased Wannier–Stark ladder." Solid State Communications 132, no. 7 (November 2004): 449–53. http://dx.doi.org/10.1016/j.ssc.2004.08.025.
Full textZhirko, Yu I. "On Wannier exciton 2D localization in hydrogen intercalated InSe and GaSe layered semiconductor crystals." Semiconductor Physics, Quantum Electronics and Optoelectronics 7, no. 4 (December 16, 2004): 404–10. http://dx.doi.org/10.15407/spqeo7.04.404.
Full textPokatilov, E. P., S. I. Beril, V. M. Fomin, V. G. Litovchenko, D. V. Korbutyak, E. G. Lashkevich, and E. V. Mikhailovskaya. "The Size-Quantized States of the Wannier-Mott Exciton in Structures with Superthin Films." physica status solidi (b) 145, no. 2 (February 1, 1988): 535–44. http://dx.doi.org/10.1002/pssb.2221450219.
Full textKorolkova, K. A., V. R. Novak, and A. V. Sel’kin. "Localization of the Wannier–Mott Exciton on a Langmuir-Film/CdS Organic Semiconductor Interface." Physics of the Solid State 61, no. 7 (July 2019): 1304–9. http://dx.doi.org/10.1134/s1063783419070175.
Full textDeng, Zhen-Yan. "Binding energies of a hydrogenic impurity and of a Wannier exciton in an arbitrary corner structure." Journal of Physics: Condensed Matter 8, no. 40 (September 30, 1996): 7443–51. http://dx.doi.org/10.1088/0953-8984/8/40/009.
Full textPokatilov, E. P., S. I. Beril, V. M. Fomin, and V. V. Kalinovskii. "The Size-Quantized States of the Wannier-Mott Exciton in Structures with Superthin Films of CdTe." physica status solidi (b) 161, no. 2 (October 1, 1990): 603–12. http://dx.doi.org/10.1002/pssb.2221610215.
Full textRosam, B., K. Leo, L. Yang, and M. M. Dignam. "Terahertz generation by difference-frequency mixing of exciton Wannier–Stark ladder states in biased semiconductor superlattices." Applied Physics Letters 85, no. 20 (November 15, 2004): 4612–14. http://dx.doi.org/10.1063/1.1819508.
Full textGerlach, B., and H. Löwen. "Analytical properties of a (Wannier) exciton-phonon system: On the exclusion of self-trapping and overscreening." Physical Review B 42, no. 6 (August 15, 1990): 3537–45. http://dx.doi.org/10.1103/physrevb.42.3537.
Full textLo, C. F., and R. Sollie. "The mass dependence of the ground-state properties of the Wannier exciton in a quantum box." Journal of Physics: Condensed Matter 5, no. 45 (November 8, 1993): 8587–94. http://dx.doi.org/10.1088/0953-8984/5/45/011.
Full textRomdhane, S., S. Jaziri, H. Bouchriha, and R. Bennaceur. "Frenkel-Wannier-Mott Exciton States in Organic–Inorganic Semiconductor Quantum Wells Subjected to a Magnetic Field." physica status solidi (a) 164, no. 1 (November 1997): 335–38. http://dx.doi.org/10.1002/1521-396x(199711)164:1<335::aid-pssa335>3.0.co;2-x.
Full text