Journal articles on the topic 'Excitonic transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Excitonic transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
MATSUI, A. H., M. TAKESHIMA, K. MIZUNO, and T. AOKI-MATSUMOTO. "PHOTOPHYSICAL OVERVIEW OF EXCITATION ENERGY TRANSFER IN ORGANIC MOLECULAR ASSEMBLIES — A ROUTE TO STUDY BIO-MOLECULAR ARRAYS —." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3857–60. http://dx.doi.org/10.1142/s0217979201008846.
Full textFortin, E., S. Fafard, and André Mysyrowicz. "Exciton transport inCu2O: Evidence for excitonic superfluidity?" Physical Review Letters 70, no. 25 (June 21, 1993): 3951–54. http://dx.doi.org/10.1103/physrevlett.70.3951.
Full textNoltemeyer, Martin, Frank Bertram, Thomas Hempel, Barbara Bastek, Andrey Polyakov, Juergen Christen, Matthias Brandt, Michael Lorenz, and Marius Grundmann. "Excitonic transport in ZnO." Journal of Materials Research 27, no. 17 (June 14, 2012): 2225–31. http://dx.doi.org/10.1557/jmr.2012.139.
Full textAbramavicius, Darius, Vladimir Chorošajev, and Leonas Valkunas. "Tracing feed-back driven exciton dynamics in molecular aggregates." Physical Chemistry Chemical Physics 20, no. 33 (2018): 21225–40. http://dx.doi.org/10.1039/c8cp00682b.
Full textScholak, Torsten, Thomas Wellens, and Andreas Buchleitner. "Optimal networks for excitonic energy transport." Journal of Physics B: Atomic, Molecular and Optical Physics 44, no. 18 (September 14, 2011): 184012. http://dx.doi.org/10.1088/0953-4075/44/18/184012.
Full textWolfe, J. P. "Imaging of excitonic transport in semiconductors." Journal of Luminescence 53, no. 1-6 (July 1992): 327–34. http://dx.doi.org/10.1016/0022-2313(92)90166-7.
Full textBenson, E., E. Fortin, and A. Mysyrowicz. "Anomalous exciton transport in Cu2O: Excitonic superfluidity or phonon-wind effect?" Solid State Communications 101, no. 5 (February 1997): 313–17. http://dx.doi.org/10.1016/s0038-1098(96)00600-x.
Full textBenson, E., E. Fortin, and A. Mysyrowicz. "Study of Anomalous Excitonic Transport in Cu2O." physica status solidi (b) 191, no. 2 (October 1, 1995): 345–67. http://dx.doi.org/10.1002/pssb.2221910211.
Full textZhao, Hui, B. Dal Don, S. Moehl, and H. Kalt. "Non-classical excitonic transport in quantum wells." physica status solidi (b) 238, no. 3 (August 2003): 529–32. http://dx.doi.org/10.1002/pssb.200303181.
Full textKrasnok, Alexander, and Andrea Alù. "Valley-Selective Response of Nanostructures Coupled to 2D Transition-Metal Dichalcogenides." Applied Sciences 8, no. 7 (July 17, 2018): 1157. http://dx.doi.org/10.3390/app8071157.
Full textWiersma, R. D., J. G. S. Lok, L. Tiemann, W. Dietsche, K. von Klitzing, W. Wegscheider, and D. Schuh. "Investigations of the νT=1 Exciton Condensate." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1256–65. http://dx.doi.org/10.1142/s0217979207042719.
Full textVercik, A., Y. Galvão Gobato, and M. J. S. P. Brasil. "Transport via excitonic complexes in resonant tunneling structures." Materials Science and Engineering: B 112, no. 2-3 (September 2004): 128–30. http://dx.doi.org/10.1016/j.mseb.2004.05.018.
Full textRatner, M., A. Ratner, and T. Hryn’ova. "Excitonic energy transport in wide-band inorganic scintillators." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 486, no. 1-2 (June 2002): 463–70. http://dx.doi.org/10.1016/s0168-9002(02)00754-4.
Full textPark, Heechul, Nimrod Heldman, Patrick Rebentrost, Luigi Abbondanza, Alessandro Iagatti, Andrea Alessi, Barbara Patrizi, et al. "Enhanced energy transport in genetically engineered excitonic networks." Nature Materials 15, no. 2 (October 12, 2015): 211–16. http://dx.doi.org/10.1038/nmat4448.
Full textGoldberg, Omer, Yigal Meir, and Yonatan Dubi. "Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport." Journal of Physical Chemistry Letters 9, no. 11 (May 23, 2018): 3143–48. http://dx.doi.org/10.1021/acs.jpclett.8b00995.
Full textDumcenco, Dumitru O., Ying Sheng Huang, Kwong Kau Tiong, Andrei Colev, Corneliu Gherman, and Leonid Kulyuk. "High-Temperature Optical Characterization of Transition Metal Dichalcogenides by Piezoreflectance Measurements." Solid State Phenomena 194 (November 2012): 158–61. http://dx.doi.org/10.4028/www.scientific.net/ssp.194.158.
Full textLi, Taotao, Yufeng Pan, Ze Wang, Yingdong Xia, Yonghua Chen, and Wei Huang. "Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives." Journal of Materials Chemistry A 5, no. 25 (2017): 12602–52. http://dx.doi.org/10.1039/c7ta01798g.
Full textSo, Monica C., Gary P. Wiederrecht, Joseph E. Mondloch, Joseph T. Hupp, and Omar K. Farha. "Metal–organic framework materials for light-harvesting and energy transfer." Chemical Communications 51, no. 17 (2015): 3501–10. http://dx.doi.org/10.1039/c4cc09596k.
Full textGoker, A., and H. Aksu. "Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer." Physical Chemistry Chemical Physics 18, no. 3 (2016): 1980–91. http://dx.doi.org/10.1039/c5cp06764b.
Full textIrgen-Gioro, Shawn, Karthik Gururangan, Rafael G. Saer, Robert E. Blankenship, and Elad Harel. "Electronic coherence lifetimes of the Fenna–Matthews–Olson complex and light harvesting complex II." Chemical Science 10, no. 45 (2019): 10503–9. http://dx.doi.org/10.1039/c9sc03501j.
Full textLin, Der-Yuh, Hung-Pin Hsu, Chi-Feng Tsai, Cheng-Wen Wang, and Yu-Tai Shih. "Temperature Dependent Excitonic Transition Energy and Enhanced Electron-Phonon Coupling in Layered Ternary SnS2-xSex Semiconductors with Fully Tunable Stoichiometry." Molecules 26, no. 8 (April 10, 2021): 2184. http://dx.doi.org/10.3390/molecules26082184.
Full textTang, Zhaojun, Tingting Xu, Sen Li, Zhifeng Shi, and Xinjian Li. "Room-temperature excitonic emission with a phonon replica from graphene nanosheets deposited on Ni-nanocrystallites/Si-nanoporous pillar array." Royal Society Open Science 5, no. 8 (August 2018): 172238. http://dx.doi.org/10.1098/rsos.172238.
Full textLEE, Hyun Seok. "Defects and Optoelectronic Properties in 2D Semiconductors." Physics and High Technology 29, no. 9 (September 30, 2020): 11–14. http://dx.doi.org/10.3938/phit.29.031.
Full textBoev, M. V., L. S. Braginskii, V. M. Kovalev, L. I. Magarill, M. M. Mahmoodian, and M. V. Entin. "Transport Properties of Two-Dimensional Topological Insulators and Excitonic Condensates." Optoelectronics, Instrumentation and Data Processing 56, no. 5 (September 2020): 545–52. http://dx.doi.org/10.3103/s8756699020050027.
Full textFadil, Dalal, Ridwan F. Hossain, Gustavo A. Saenz, and Anupama B. Kaul. "On the chemically-assisted excitonic enhancement in environmentally-friendly solution dispersions of two-dimensional MoS2 and WS2." Journal of Materials Chemistry C 5, no. 22 (2017): 5323–33. http://dx.doi.org/10.1039/c7tc01001j.
Full textBretscher, Hope M., Paolo Andrich, Yuta Murakami, Denis Golež, Benjamin Remez, Prachi Telang, Anupam Singh, et al. "Imaging the coherent propagation of collective modes in the excitonic insulator Ta2NiSe5 at room temperature." Science Advances 7, no. 28 (July 2021): eabd6147. http://dx.doi.org/10.1126/sciadv.abd6147.
Full textZhang, Yang, Shulin Gu, Kun Tang, Jiandong Ye, Haixiong Ge, Zhengrong Yao, Shunming Zhu, and Youdou Zheng. "Fabrication and Characterization of Highly Oriented N-Doped ZnO Nanorods by Selective Area Epitaxy." Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/854074.
Full textBondkowski, J., I. Bleyl, D. Haarer, and D. Adam. "Excitonic versus transport dominated charge injection at a dye photoconductor interface." Chemical Physics Letters 283, no. 3-4 (February 1998): 207–14. http://dx.doi.org/10.1016/s0009-2614(97)01349-3.
Full textSnoke, D., S. Denev, Y. Liu, L. Pfeiffer, and K. West. "Long-range transport in excitonic dark states in coupled quantum wells." Nature 418, no. 6899 (August 2002): 754–57. http://dx.doi.org/10.1038/nature00940.
Full textBouzrara, L., R. Ajjel, H. Mejri, M. A. Zaidi, S. Alaya, J. Mimila-Arroyo, and H. Maaref. "Excitonic recombination processes in GaAs grown by close-space vapour transport." Microelectronics Journal 35, no. 7 (July 2004): 577–80. http://dx.doi.org/10.1016/j.mejo.2004.03.002.
Full textMizeikis, V., V. G. Lyssenko, J. Erland, and J. M. Hvam. "Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe." Physical Review B 51, no. 23 (June 15, 1995): 16651–59. http://dx.doi.org/10.1103/physrevb.51.16651.
Full textKöse, Muhammet E. "Evaluation of Excitonic Coupling and Charge Transport Integrals in P3HT Nanocrystal." Journal of Physical Chemistry C 115, no. 26 (June 13, 2011): 13076–82. http://dx.doi.org/10.1021/jp203497e.
Full textSchaefer, A. C., J. Erland, and D. G. Steel. "Nondiffusive excitonic transport in GaAs and the effects of momentum scattering." Physical Review B 54, no. 16 (October 15, 1996): R11046—R11049. http://dx.doi.org/10.1103/physrevb.54.r11046.
Full textEisfeld, Alexander. "Phase directed excitonic transport and its limitations due to environmental influence." Chemical Physics 379, no. 1-3 (January 2011): 33–38. http://dx.doi.org/10.1016/j.chemphys.2010.10.013.
Full textChoi, M. Y., and M. Lee. "Phase transition and persistent current via excitonic transport in coupled Josephson necklaces." Current Applied Physics 2, no. 1 (February 2002): 11–16. http://dx.doi.org/10.1016/s1567-1739(01)00097-9.
Full textKorsakas, S., J. Bučinskas, and D. Abramavicius. "Long memory effects in excitonic systems dynamics: Spectral relations and excitation transport." Journal of Chemical Physics 152, no. 24 (June 28, 2020): 244114. http://dx.doi.org/10.1063/5.0009926.
Full textGuimarães, José Diogo, Carlos Tavares, Luís Soares Barbosa, and Mikhail I. Vasilevskiy. "Simulation of Nonradiative Energy Transfer in Photosynthetic Systems Using a Quantum Computer." Complexity 2020 (September 16, 2020): 1–12. http://dx.doi.org/10.1155/2020/3510676.
Full textWang, Qian, Liyuan Wu, Alexander Urban, Huawei Cao, and Pengfei Lu. "Anisotropic to Isotropic Transition in Monolayer Group-IV Tellurides." Materials 14, no. 16 (August 11, 2021): 4495. http://dx.doi.org/10.3390/ma14164495.
Full textShen, J. X., Y. Oka, W. Ossau, G. Landwehr, K. J. Friedland, R. Hey, K. Ploog, and G. Weimann. "Vertical transport of photo-excited carriers for excitonic recombinations in modulation doped heterojunctions." Solid State Communications 106, no. 8 (May 1998): 495–99. http://dx.doi.org/10.1016/s0038-1098(98)00092-1.
Full textTiemann, L., J. G. S. Lok, W. Dietsche, K. von Klitzing, K. Muraki, D. Schuh, and W. Wegscheider. "Investigating the transport properties of the excitonic state in quasi-Corbino electron bilayers." Physica E: Low-dimensional Systems and Nanostructures 40, no. 5 (March 2008): 1034–37. http://dx.doi.org/10.1016/j.physe.2007.09.148.
Full textCollins, R. T., L. Viña, W. I. Wang, K. v. Klitzing, and K. Ploog. "Excitonic transitions and optically excited transport in quantum wells in an electric field." Superlattices and Microstructures 3, no. 3 (January 1987): 291–93. http://dx.doi.org/10.1016/0749-6036(87)90075-9.
Full textМуслимов, А. Э., И. Д. Веневцев, Л. А. Задорожная, П. А. Родный, and В. М. Каневский. "Рентгенолюминесценция нитевидных микроструктур ZnO." Письма в журнал технической физики 46, no. 14 (2020): 43. http://dx.doi.org/10.21883/pjtf.2020.14.49667.18159.
Full textOzaki, Shunji, and Kazuya Matsumoto. "Growth of ZnSe Nanowires and their Photoluminescence Spectra." Key Engineering Materials 790 (November 2018): 55–59. http://dx.doi.org/10.4028/www.scientific.net/kem.790.55.
Full textPORTUGALL, OLIVER. "GENERAL OVERVIEW OVER INVESTIGATIONS ON LOW-DIMENSIONAL CARBON-BASED MATERIALS IN MAGNETIC FIELDS ABOVE 50 T." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2777–78. http://dx.doi.org/10.1142/s0217979209062359.
Full textKurian, P., T. O. Obisesan, and T. J. A. Craddock. "Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease." Journal of Photochemistry and Photobiology B: Biology 175 (October 2017): 109–24. http://dx.doi.org/10.1016/j.jphotobiol.2017.08.033.
Full textMarcus, Max, George C. Knee, and Animesh Datta. "Towards a spectroscopic protocol for unambiguous detection of quantum coherence in excitonic energy transport." Faraday Discussions 221 (2020): 110–32. http://dx.doi.org/10.1039/c9fd00068b.
Full textShahini, Ali. "An organic solar cell theoretical model with two concepts of excitonic and bipolar transport." Asia-Pacific Journal of Chemical Engineering 8, no. 1 (February 28, 2012): 59–68. http://dx.doi.org/10.1002/apj.1624.
Full textGilliland, G. D., M. S. Petrovic, H. P. Hjalmarson, D. J. Wolford, G. A. Northrop, T. F. Kuech, L. M. Smith, and J. A. Bradley. "Time-dependent heterointerfacial band bending and quasi-two-dimensional excitonic transport in GaAs structures." Physical Review B 58, no. 8 (August 15, 1998): 4728–32. http://dx.doi.org/10.1103/physrevb.58.4728.
Full textMovaghar, B. "Physics of microstructures." Canadian Journal of Physics 67, no. 4 (April 1, 1989): 304–10. http://dx.doi.org/10.1139/p89-053.
Full textHsu, Hung-Pin, Der-Yuh Lin, Jhin-Jhong Jheng, Pin-Cheng Lin, and Tsung-Shine Ko. "High Optical Response of Niobium-Doped WSe2-Layered Crystals." Materials 12, no. 7 (April 10, 2019): 1161. http://dx.doi.org/10.3390/ma12071161.
Full text