To see the other types of publications on this topic, follow the link: Exhaust gas recirculation.

Journal articles on the topic 'Exhaust gas recirculation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Exhaust gas recirculation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Eitel, Jochen, Wolfgang Kramer, and Rainer Lutz. "Exhaust gas recirculation." ATZ worldwide 105, no. 9 (September 2003): 25–26. http://dx.doi.org/10.1007/bf03224626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lapuerta, Magín, Ángel Ramos, David Fernández-Rodríguez, and Inmaculada González-García. "High-pressure versus low-pressure exhaust gas recirculation in a Euro 6 diesel engine with lean-NOx trap: Effectiveness to reduce NOx emissions." International Journal of Engine Research 20, no. 1 (December 16, 2018): 155–63. http://dx.doi.org/10.1177/1468087418817447.

Full text
Abstract:
Exhaust gas recirculation can be achieved by means of two different routes: the high-pressure route (high-pressure exhaust gas recirculation), where exhaust gas is conducted from upstream of the turbine to downstream of the compressor, and the low-pressure one (low-pressure exhaust gas recirculation), where exhaust gas is recirculated from downstream of the turbine and of the aftertreatment system to upstream of the compressor. In this study, the effectiveness of both exhaust gas recirculation systems on the improvement of the NOx-particulate matter emission trade-off has been compared on a Euro 6 turbocharged diesel engine equipped with a diesel oxidation catalyst, a lean-NOx trap, and a diesel particulate filter. Emissions were measured both upstream and downstream of the aftertreatment system, at different combinations of engine speed and torque (corresponding to different vehicle speeds), at transient and steady conditions, and at different coolant temperatures as switch points to change from high-pressure exhaust gas recirculation to low-pressure exhaust gas recirculation. It was shown that low-pressure exhaust gas recirculation was more efficient than high-pressure exhaust gas recirculation to reduce NOx emissions, mainly due to the higher recirculation potential and the lower temperature of the recirculated gas. However, such a differential benefit decreased as the coolant temperature decreased, which suggests the use of high-pressure exhaust gas recirculation during the engine warm-up. It was also shown that the lean-NOx trap storage efficiency decreased more rapidly at high engine load than at medium load and that such reduction in efficiency was much faster when high-pressure exhaust gas recirculation was used than when low-pressure exhaust gas recirculation was used.
APA, Harvard, Vancouver, ISO, and other styles
3

Dimitriou, Pavlos, James Turner, Richard Burke, and Colin Copeland. "The benefits of a mid-route exhaust gas recirculation system for two-stage boosted engines." International Journal of Engine Research 19, no. 5 (August 10, 2017): 553–69. http://dx.doi.org/10.1177/1468087417723782.

Full text
Abstract:
Exhaust gas recirculation is a widely known technique applied in internal combustion engines for controlling the combustion process and harmful emissions. The recirculation of gases can be achieved either by delivering burnt gases from upstream of the turbine to downstream of the compressor (short-route) or by taking the exhaust gas from downstream of the turbine and deliver to upstream of the compressor (long-route). Although long-route system is preferred for highly boosted engines due to the higher exhaust gas recirculation availability at low engine speeds, it lacks a fast response time during transient performance compared to the short-route system. This article examines the potentials of introducing an alternative exhaust gas recirculation route which can be applied in two-stage boosted engines. The proposed mid-route exhaust gas recirculation system, applied in a gasoline engine, combines the benefits of the long routes and short routes. The system provides high exhaust gas recirculation rates at all engine speeds while the transport delay in the case of transient operation is relatively short. The potential of a hybrid exhaust gas recirculation system combining mid-route and long-route exhaust gas recirculation is examined and various components’ (i.e. compressor, turbine and coolers) sizing and transient performance studies are performed to understand the trade-offs of the system. It was demonstrated that mid-route could provide high exhaust gas recirculation particularly at high- and low engine speeds. A combination of mid-route and long-route exhaust gas recirculation can provide maximum exhaust gas recirculation rates at all speeds with a maximum fuel consumption penalty of 1.4% at engine speeds below 2500 r/min. The reduction in exhaust gas recirculation response time was of the magnitude of 50%, while the faster exhaust gas recirculation purging time combined with the smaller turbine implemented dropped the load tip-in response time by 25%. The coolers’ sizing study revealed that a long-route exhaust gas recirculation cooler is unnecessary, whereas the mid-route exhaust gas recirculation cooler can also be omitted when the flow is delivered prior an intercooler with a 25% larger cooling capacity than of the baseline engine.
APA, Harvard, Vancouver, ISO, and other styles
4

Papaioannou, Nick, Felix CP Leach, Martin H. Davy, Adam Weall, and Brian Cooper. "Evaluation of exhaust gas recirculation techniques on a high-speed direct injection diesel engine using first law analysis." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 3 (January 23, 2018): 710–26. http://dx.doi.org/10.1177/0954407017749110.

Full text
Abstract:
The effects of different exhaust gas recirculation (EGR) strategies on engine efficiency and the resulting energy flows at two speed/load conditions (1500 r/min/6.8 bar net indicated mean effective pressure (nIMEP) and 1750 r/min/13.5 bar nIMEP) were studied using a first law analysis approach. The EGR strategies tested were as follows: cooled high-pressure exhaust gas recirculation (baseline), the application of exhaust gas recirculation with the swirl flap closed and the use of exhaust gas recirculation under constant λ conditions. The closed swirl flap exhaust gas recirculation strategy reduced brake efficiency under high load conditions and increased heat transfer to the coolant for both load cases. Soot and CO emissions increased at high load, however, with an increase in NOx relative to the baseline case. The constant λ exhaust gas recirculation strategy reduced brake efficiency under low load, as well as the heat flow to the coolant for both load cases. The constant λ exhaust gas recirculation strategy benefited smoke emissions and increased combustion exhaust gas recirculation tolerance, albeit with a penalty in NOx emission.
APA, Harvard, Vancouver, ISO, and other styles
5

Lopatin, O. P. "Gas-diesel engine exhaust gas recirculation." IOP Conference Series: Earth and Environmental Science 548 (September 2, 2020): 062023. http://dx.doi.org/10.1088/1755-1315/548/6/062023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Jaeheun, and Choongsik Bae. "Emission reduction through internal and low-pressure loop exhaust gas recirculation configuration with negative valve overlap and late intake valve closing strategy in a compression ignition engine." International Journal of Engine Research 18, no. 10 (February 1, 2017): 973–90. http://dx.doi.org/10.1177/1468087417692680.

Full text
Abstract:
An investigation was carried out to examine the feasibility of replacing the conventional high-pressure loop/low-pressure loop exhaust gas recirculation with a combination of internal and low-pressure loop exhaust gas recirculation. The main objective of this alternative exhaust gas recirculation path configuration is to extend the limits of the late intake valve closing strategy, without the concern of backpressure caused by the high-pressure loop exhaust gas recirculation. The late intake valve closing strategy improved the conventional trade-off relation between nitrogen oxides and smoke emissions. The gross indicated mean effective pressure was maintained at a similar level, as long as the intake boosting pressure kept changing with respect to the intake valve closing timing. Applying the high-pressure loop exhaust gas recirculation in the boosted conditions yielded concern of the exhaust backpressure increase. The presence of high-pressure loop exhaust gas recirculation limited further intake valve closing retardation when the negative effect of increased pumping work cancelled out the positive effect of improving the emissions’ trade-off. Replacing high-pressure loop exhaust gas recirculation with internal exhaust gas recirculation reduced the burden of such exhaust backpressure and the pumping loss. However, a simple feasibility analysis indicated that a high-efficiency turbocharger was required to make the pumping work close to zero. The internal exhaust gas recirculation strategy was able to control the nitrogen oxides emissions at a low level with much lower O2 concentration, even though the initial in-cylinder temperature was high due to hot residual gas. Retardation of intake valve closing timing and intake boosting contributed to increasing the charge density; therefore, the smoke emission reduced due to the higher air–fuel ratio value exceeding 25. The combination of internal and low pressure loop loop exhaust gas recirculation with late intake valve closing strategy exhibited an improvement on the trade-off relation between nitrogen oxides and smoke emissions, while maintaining the gross indicated mean effective pressure at a comparable level with that of the high-pressure loop exhaust gas recirculation configuration.
APA, Harvard, Vancouver, ISO, and other styles
7

Marsh, David K., and Alexander K. Voice. "Quantification of knock benefits from reformate and cooled exhaust gas recirculation using a Livengood–Wu approach with detailed chemical kinetics." International Journal of Engine Research 18, no. 7 (September 5, 2016): 717–31. http://dx.doi.org/10.1177/1468087416666728.

Full text
Abstract:
In this work, a simple methodology was implemented to predict the onset of knock in spark-ignition engines and quantify the benefits of two practical knock mitigation strategies: cooled exhaust gas recirculation and syngas blending. Based on the results of this study, both cooled exhaust gas recirculation and the presence of syngas constituents in the end-gas substantially improved the knock-limited compression ratio of the engine. At constant load, 25% exhaust gas recirculation increased the knock-limited compression ratio from 9.0 to 10.8:1 (0.07 compression ratio per 1% exhaust gas recirculation) due to lower end-gas temperature and reactant (fuel and oxygen) concentrations. At exhaust gas recirculation rates above 43%, higher intake temperature outweighed the benefits of lower end-gas reactant concentration. At constant intake temperature, cooled exhaust gas recirculation was significantly more effective at all exhaust gas recirculation rates (0.10 compression ratio per 1% exhaust gas recirculation), and no diminishing returns or optimum was observed. Both hydrogen and carbon monoxide were also predicted to improve knock by reducing end-gas reactivity, likely through the conversion of high-reactivity hydroxy-radicals to less reactive peroxy-radicals. Hydrogen increased the knock-limited compression ratio by 1.1 per volume percent added at constant energy content. Carbon monoxide was less effective, increasing the knock-limited compression ratio by 0.38 per volume percent added. Combining 25% cooled exhaust gas recirculation with reformate produced from rich combustion at an equivalence ratio of 1.3 resulted in a predicted increase in the knock-limited compression ratio of 3.5, which agreed well with the published experimental engine data. The results show the extent to which syngas blending and cooled exhaust gas recirculation each contribute separately to knock mitigation and demonstrate that both can be effective knock mitigation strategies. Together, these solutions have the potential to increase the compression ratio and efficiency of spark-ignition engines.
APA, Harvard, Vancouver, ISO, and other styles
8

Song, Kang, Devesh Upadhyay, and Hui Xie. "An assessment of the impacts of low-pressure exhaust gas recirculation on the air path of a diesel engine equipped with electrically assisted turbochargers." International Journal of Engine Research 22, no. 1 (June 6, 2019): 3–21. http://dx.doi.org/10.1177/1468087419854294.

Full text
Abstract:
The impact of assisted boosting technologies on the ability to maintain desired exhaust gas recirculation is investigated. Regenerative electrically assisted turbocharging is a promising technique for significantly reducing turbo lag. In addition to mitigating turbo lag, assisted boosting systems also allow fuel economy benefits through reduced pumping losses. Pumping loss reduction is achieved through optimally managing the exhaust pressure via vane position (for a variable geometry turbocharger) or waste gate position (for a waste-gated fixed geometry turbocharger). The consequent loss in exhaust turbine power, from reduced exhaust pressure, is supplemented by electrical assist power. Reduced exhaust pressure and a rapid increase in intake pressure results in a pressure differential across the high-pressure exhaust gas recirculation valve that may not support exhaust gas recirculation flow demands. Hence, a natural trade-off exists between the reduction of pumping loss and the ability to meet exhaust gas recirculation demand, as dictated by prescribed constraints on engine-out emissions. Low-pressure exhaust gas recirculation offers a potential solution that may allow the desired fuel economy improvements without sacrificing the desired exhaust gas recirculation fractions in the intake charge. In this article, we consider this problem and investigate the potential benefits of using low-pressure exhaust gas recirculation for assisted boosted systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Xianqing, Kai Shen, and Zhendong Zhang. "Experimental study on the effect of high-pressure and low-pressure exhaust gas recirculation on gasoline engine and turbocharger." Advances in Mechanical Engineering 10, no. 11 (November 2018): 168781401880960. http://dx.doi.org/10.1177/1687814018809607.

Full text
Abstract:
The effects of high-pressure and low-pressure exhaust gas recirculation on engine and turbocharger performance were investigated in a turbocharged gasoline direct injection engine. Some performances, such as engine combustion, fuel consumption, intake and exhaust, and turbocharger operating conditions, were compared at wide open throttle and partial load with the high-pressure and low-pressure exhaust gas recirculation systems. The reasons for these changes are analyzed. The results showed EGR system of gasoline engine could optimize the cylinder combustion, reduce pumping mean effective pressure and lower fuel consumption. Low-pressure exhaust gas recirculation system has higher thermal efficiency than high-pressure exhaust gas recirculation, especially on partial load condition. The main reasons are as follows: more exhaust energy is used by the turbocharger with low-pressure exhaust gas recirculation system, and the lower exhaust gas temperature of engine would optimize the combustion in cylinder.
APA, Harvard, Vancouver, ISO, and other styles
10

André, Mathieu, Bruno Walter, Gilles Bruneaux, Fabrice Foucher, and Christine Mounaïm–Rousselle. "Exhaust gas recirculation stratification to control diesel homogeneous charge compression ignition combustion." International Journal of Engine Research 13, no. 5 (March 27, 2012): 429–47. http://dx.doi.org/10.1177/1468087412438338.

Full text
Abstract:
A single-cylinder diesel engine was used to investigate the potential of exhaust gas recirculation dilution stratification as a control technique for homogeneous charge compression ignition combustion with early direct injections. Experimental studies on both all-metal and optically accessible engines were performed to understand the processes involved when exhaust gas recirculation is introduced separately in the intake ports. Laser-induced fluorescence diagnostics were carried out in the optical engine in order to provide fuel and exhaust gas recirculation distributions. The results indicate that depending on the intake configuration, the exhaust gas recirculation stratification can be maintained until late timings corresponding to the combustion event, leading to decreased maxima of heat-release rates, as well as decreased combustion noise levels. This result suggests that exhaust gas recirculation stratification may be used as a control parameter for combustion speed and therefore may contribute to the extension of the homogeneous charge compression ignition operating range. However, although exhaust gas recirculation stratification appears to be an interesting new control technique for homogeneous charge compression ignition combustion, its effect on the combustion was shown to be very sensitive to parameters such as the intake system configuration or the exhaust gas recirculation composition, showing that industrial use of this control technique requires further understanding of the physical phenomena involved.
APA, Harvard, Vancouver, ISO, and other styles
11

Cheng, Li, Pavlos Dimitriou, William Wang, Jun Peng, and Abdel Aitouche. "A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine." International Journal of Engine Research 21, no. 8 (October 31, 2018): 1298–313. http://dx.doi.org/10.1177/1468087418809261.

Full text
Abstract:
Variable geometry turbocharger and exhaust gas recirculation valves are widely installed on diesel engines to allow optimized control of intake air mass flow and exhaust gas recirculation ratio. The positions of variable geometry turbocharger vanes and exhaust gas recirculation valve are predominantly regulated by dual-loop proportional–integral–derivative controllers to achieve predefined set-points of intake air pressure and exhaust gas recirculation mass flow. The set-points are determined by extensive mapping of the intake air pressure and exhaust gas recirculation mass flow against various engine speeds and loads concerning engine performance and emissions. However, due to the inherent nonlinearities of diesel engines and the strong interferences between variable geometry turbocharger and exhaust gas recirculation, an extensive map of gains for the P, I, and D terms of the proportional–integral–derivative controllers is required to achieve desired control performance. The present simulation study proposes a novel fuzzy logic control scheme to determine appropriate positions of variable geometry turbocharger vanes and exhaust gas recirculation valve in real-time. Once determined, the actual positions of the vanes and valve are regulated by two local proportional–integral–derivative controllers. The fuzzy logic control rules are derived based on an understanding of the interactions among the variable geometry turbocharger, exhaust gas recirculation, and diesel engine. The results obtained from an experimentally validated one-dimensional transient diesel engine model showed that the proposed fuzzy logic control scheme is capable of efficiently optimizing variable geometry turbocharger and exhaust gas recirculation positions under transient engine operating conditions in real-time. Compared to the baseline proportional–integral–derivative controllers approach, both engine’s efficiency and total turbo efficiency have been improved by the proposed fuzzy logic control scheme while NOx and soot emissions have been significantly reduced by 34% and 82%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
12

Keller, Martin, Severin Geiger, Marco Günther, Stefan Pischinger, Dirk Abel, and Thivaharan Albin. "Model predictive air path control for a two-stage turbocharged spark-ignition engine with low pressure exhaust gas recirculation." International Journal of Engine Research 21, no. 10 (July 15, 2020): 1835–45. http://dx.doi.org/10.1177/1468087420936398.

Full text
Abstract:
Innovative air path concepts for turbocharged spark-ignition engines with exhaust gas recirculation impose high demands on the control due to nonlinearities and cross-couplings. This contribution investigates the control of the air and exhaust gas recirculation paths of a two-stage turbocharged spark-ignition engine with low pressure exhaust gas recirculation. Using exhaust gas recirculation at high loads, the in-cylinder temperature can be lowered, reducing the knock tendency, while at the same time preventing the need for the enrichment of the air/fuel ratio. Air and exhaust gas recirculation paths are cross-coupled and show different delay times. To tackle these challenges, a data-based two-stage model predictive controller is proposed: The target selector accounts for the overactuated system structure, while the dynamic controller adjusts the charging pressure and exhaust gas recirculation rate. The prediction model setup is based on a small amount of dyno-run measurement data. To ensure real-time capability, the model is kept as simple as possible. This allows for fast turnaround times of the algorithm, while maintaining the necessary accuracy in steady-state and transient operation. This study focuses on a two-stage control concept based on a target selector for optimal stationary control inputs and the dynamic controller considering the dynamic behavior of the air and exhaust gas recirculation paths. Subsequently, the control concept for the two-stage turbocharged spark-ignition engine with low pressure exhaust gas recirculation is validated via experimental tests under real-driving conditions on an automotive test track, using a prototype test vehicle. Results show that boost pressure as well as exhaust gas recirculation rate setpoints are met without overshoot and control deviation with settling times being close to the boundaries set by the hardware.
APA, Harvard, Vancouver, ISO, and other styles
13

Guan, Wei, Hua Zhao, Zhibo Ban, and Tiejian Lin. "Exploring alternative combustion control strategies for low-load exhaust gas temperature management of a heavy-duty diesel engine." International Journal of Engine Research 20, no. 4 (February 7, 2018): 381–92. http://dx.doi.org/10.1177/1468087418755586.

Full text
Abstract:
The employment of aftertreatment systems in modern diesel engines has become indispensable to meet the stringent emissions regulations. However, a minimum exhaust gas temperature of approximately 200 °C must be reached to initiate the emissions control operations. Low-load engine operations usually result in relatively low exhaust gas temperature, which lead to reduced or no exhaust emissions conversion. In this context, this study investigated the use of different combustion control strategies to explore the trade-off between exhaust gas temperature, fuel efficiency, and exhaust emissions. The experiments were performed on a single-cylinder heavy-duty diesel engine at a light load of 2.2 bar indicated mean effective pressure. Strategies including the late intake valve closing timing, intake throttling, late injection timing (Tinj), lower injection pressure (Pinj), and internal exhaust gas recirculation and external exhaust gas recirculation were investigated. The results showed that the use of external exhaust gas recirculation and lower Pinj was not effective in increasing exhaust gas temperature. Although the use of late Tinj could result in higher exhaust gas temperature, the delayed combustion phase led to the highest fuel efficiency penalty. Intake throttling and internal exhaust gas recirculation allowed for an increase in exhaust gas temperature at the expense of higher fuel consumption. In comparison, late intake valve closure strategy achieved the best trade-off between exhaust gas temperature and net indicated specific fuel consumption, increasing the exhaust gas temperature by 52 °C and the fuel consumption penalty by 5.3% while reducing nitrogen oxide and soot emissions simultaneously. When the intake valve closing timing was delayed to after −107 crank angle degree after top dead centre, however, the combustion efficiency deteriorated and the HC and CO emissions were significantly increased. This could be overcome by combining internal exhaust gas recirculation with late intake valve closure to increase the in-cylinder combustion temperature for a more complete combustion. The results demonstrated that the ‘late intake valve closure + internal exhaust gas recirculation’ strategy can be the most effective means, increasing the exhaust gas temperature by 62 °C with 4.6% fuel consumption penalty. Meanwhile, maintaining high combustion efficiency as well as low HC and CO emissions of diesel engines.
APA, Harvard, Vancouver, ISO, and other styles
14

He, Yongsheng, Jim Liu, Bin Zhu, and David Sun. "Development of a Miller cycle engine with single-stage boosting and cooled external exhaust gas recirculation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 6 (August 24, 2016): 766–80. http://dx.doi.org/10.1177/0954407016662567.

Full text
Abstract:
In this paper, the development of a Miller cycle gasoline engine which has a high compression ratio from 11.5:1 to 12.5:1, single-stage turbocharging and external cooled exhaust gas recirculation is described. The improvement in the fuel economy by adding external cooled exhaust gas recirculation to the Miller cycle engine at different geometric compression ratios were experimentally evaluated in part-load operating conditions. The potential of adding external cooled exhaust gas recirculation in full-load conditions to mitigate pre-ignition in order to allow higher geometric compression ratios to be utilized was also assessed. An average of 3.2% additional improvement in the fuel economy was achieved by adding external cooled exhaust gas recirculation to the Miller cycle engine at a geometric compression ratio of 11.5:1. It was also demonstrated that the fuel consumption of the engine with external cooled exhaust gas recirculation was reduced by 3–7% in a wide range of part-load operating conditions and that the engine output of the Miller cycle engine at a geometric compression ratio of 12.5:1 increased at 2000 r/min in the full-load condition. The Miller cycle engine with external cooled exhaust gas recirculation at a geometric compression ratio of 12.5:1 achieved a broad brake specific fuel consumption range of 220 g/kW h or lower, with the lowest brake specific fuel consumption of 215 g/kW h. While there are still challenges in implementing external cooled exhaust gas recirculation, the Miller cycle engine with single-stage turbocharging and external cooled exhaust gas recirculation showed its potential for substantial improvement in the fuel economy as one of the technical pathways to meet future requirements in reducing carbon dioxide emissions.
APA, Harvard, Vancouver, ISO, and other styles
15

Jatana, Gurneesh S., and Brian C. Kaul. "Characterization of temporal variations and feedback timescales of exhaust gas recirculation gas properties using high-speed diode laser absorption spectroscopy for next-cycle control of cyclic variability." International Journal of Engine Research 20, no. 8-9 (October 11, 2018): 945–52. http://dx.doi.org/10.1177/1468087418805654.

Full text
Abstract:
Dilute combustion offers efficiency gains in boosted gasoline direct injection engines both through knock-limit extension and thermodynamic advantages (i.e. the effect of γ on cycle efficiency), but is limited by cyclic variability at high dilution levels. Past studies have shown that the cycle-to-cycle dynamics are a combination of deterministic and stochastic effects. The deterministic causes of cyclic variations, which arise from feedback due to exhaust gas recirculation, imply the possibility of using active control strategies for dilution limit extension. While internal exhaust gas recirculation will largely provide a next-cycle effect (short-timescale feedback), the feedback of external exhaust gas recirculation will have an effect after a delay of several cycles (long timescale). Therefore, control strategies aiming to improve engine stability at dilution limit may have to account for both short- and long-timescale feedback pathways. This study shows the results of a study examining the extent to which variations in exhaust gas recirculation composition are preserved along the exhaust gas recirculation flow path and thus the relative importance and information content of the long-timescale feedback pathway. To characterize the filtering or retention of cycle-resolved feedback information, high-speed (1–5 kHz) CO2 concentration measurements were performed simultaneously at three different locations along the low-pressure external exhaust gas recirculation loop of a four-cylinder General Motors gasoline direct injection engine using a multiplexed two-color diode laser absorption spectroscopy sensor system during steady-state and transient engine operation at various exhaust gas recirculation levels. It was determined that cycle-resolved feedback propagates through internal residual gases but is filtered out by the low-pressure exhaust gas recirculation flow system and do not reach the intake manifold. Intermediate variations driven by flow rate and compositional changes are also distinguished and identified.
APA, Harvard, Vancouver, ISO, and other styles
16

Gong, Jing, Yingjia Zhang, Chenglong Tang, and Zuohua Huang. "Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation." Thermal Science 18, no. 1 (2014): 269–77. http://dx.doi.org/10.2298/tsci130131086g.

Full text
Abstract:
Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx) and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.
APA, Harvard, Vancouver, ISO, and other styles
17

Zaripov, R. E. H., V. N. Nikishin, and A. S. Kulikov. "Analysis and development of the heat exchanger for the exhaust gas recirculation system of the transport diesel engine." Traktory i sel hozmashiny 85, no. 4 (August 15, 2018): 11–17. http://dx.doi.org/10.17816/0321-4443-66364.

Full text
Abstract:
Nowadays one of the most urgent problems of creating modern combustion engines (ICE) is the problem of ecology. Ensuring environmental requirements is usually associated with the introduction of new structural elements or the modernization of existing structures, since practice shows that the use of traditional methods to reduce the toxicity of exhaust gases, leads to a gradual deterioration in the fuel economy of the engine. This article discusses the use and development of an exhaust gas recirculation system for a transport diesel as the most effective means of reducing NOx emissions into the environment. On the example of expert data, the experience of using exhaust gas recirculation systems in diesel engines is considered, and their main advantages and disadvantages are given. The use of «cooled» exhaust gas recirculation is more preferable than «uncooled», since the filling of the cylinders with an air charge improves, and lower gas temperatures during the combustion period are provided, thereby reducing the amount of NOx generators. It is also noted in the work that when a cooled exhaust gas recirculation system is used in conjunction with optimization of engine design and adjustment parameters, NOx emissions are reduced with minimal deterioration of the engine's power and economic parameters. On the example of research and simulations on the testbench of the transport engine 8ChN 12/13, the efficiency of the exhaust gas recirculation system on diesel has been estimated and all the necessary data was provided. Due to the optimization of the adjusting parameters and the developed model of the exhaust gas recirculation system, it was possible to achieve 46 % reduction in NOx emissions. It has been shown experimentally that the use in a diesel engine of a theoretically developed organization of working processes with the use of recirculation of exhaust gases and the characteristics of controlling the main adjustments of the combustion process is advisable.
APA, Harvard, Vancouver, ISO, and other styles
18

Tschalamoff, Titus. "Exhaust gas recirculation in medium speed gas engines." MTZ worldwide 65, no. 11 (November 2004): 30–32. http://dx.doi.org/10.1007/bf03227716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wienand, Karlheinz. "New Gas Flow Sensor for Exhaust Gas Recirculation." ATZautotechnology 3, no. 4 (July 2003): 83–86. http://dx.doi.org/10.1007/bf03246786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zu, Xiang-huan, Chuan-lei Yang, He-Chun Wang, and Yin-yan Wang. "Experimental study on diesel engine exhaust gas recirculation performance and optimum exhaust gas recirculation rate determination method." Royal Society Open Science 6, no. 6 (June 2019): 181907. http://dx.doi.org/10.1098/rsos.181907.

Full text
Abstract:
In order to study the exhaust gas recirculation (EGR) performance of marine diesel engines, a venturi high-pressure EGR device was established to overcome the exhaust gas reflow problem based on a certain type of turbocharged diesel engine. The EGR performance test is accomplished and an optimal EGR decision-making optimization method based on grey correlation coefficient modified is proposed. The results show that the venturi tube EGR can basically meet the injection requirements of high-pressure exhaust gas and achieve good results. Through the venturi tube EGR, the NO X emissions reduce significantly with the maximum drop of 30.6%. The explosive pressure in cylinder reduces with the EGR rate increases and the cylinder pressure curve shows a single peak at low-speed conditions and double peaks at high-speed condition. However, the fuel consumption rate, NO X and smoke have been negatively affected. Due to small samples, the traditional evaluation method is difficult to determine the optimal EGR rate reasonably, while the proposed method can effectively solve this problem. It can weaken the shortcomings of subjective judgement and greatly improve the rationality of decision-making results.
APA, Harvard, Vancouver, ISO, and other styles
21

Maldonado, Bryan P., Nan Li, Ilya Kolmanovsky, and Anna G. Stefanopoulou. "Learning reference governor for cycle-to-cycle combustion control with misfire avoidance in spark-ignition engines at high exhaust gas recirculation–diluted conditions." International Journal of Engine Research 21, no. 10 (June 26, 2020): 1819–34. http://dx.doi.org/10.1177/1468087420929109.

Full text
Abstract:
Cycle-to-cycle feedback control is employed to achieve optimal combustion phasing while maintaining high levels of exhaust gas recirculation by adjusting the spark advance and the exhaust gas recirculation valve position. The control development is based on a control-oriented model that captures the effects of throttle position, exhaust gas recirculation valve position, and spark timing on the combustion phasing. Under the assumption that in-cylinder pressure information is available, an adaptive extended Kalman filter approach is used to estimate the exhaust gas recirculation rate into the intake manifold based on combustion phasing measurements. The estimation algorithm is adaptive since the cycle-to-cycle combustion variability (output covariance) is not known a priori and changes with operating conditions. A linear quadratic regulator controller is designed to maintain optimal combustion phasing while maximizing exhaust gas recirculation levels during load transients coming from throttle tip-in and tip-out commands from the driver. During throttle tip-outs, however, a combination of a high exhaust gas recirculation rate and an overly advanced spark, product of the dynamic response of the system, generates a sequence of misfire events. In this work, an explicit reference governor is used as an add-on scheme to the closed-loop system in order to avoid the violation of the misfire limit. The reference governor is enhanced with model-free learning which enables it to avoid misfires after a learning phase. Experimental results are reported which illustrate the potential of the proposed control strategy for achieving an optimal combustion process during highly diluted conditions for improving fuel efficiency.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhu, Dengting, Zhenzhong Sun, and Xinqian Zheng. "Turbocharging strategy among variable geometry turbine, two-stage turbine, and asymmetric two-scroll turbine for energy and emission in diesel engines." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, no. 7 (November 28, 2019): 900–914. http://dx.doi.org/10.1177/0957650919891355.

Full text
Abstract:
Energy saving and emission reduction are very urgent for internal combustion engines. Turbocharging and exhaust gas recirculation technologies are very significant for emissions and fuel economy of internal combustion engines. Various after-treatment technologies in internal combustion engines have different requirements for exhaust gas recirculation rates. However, it is not clear how to choose turbocharging technologies for different exhaust gas recirculation requirements. This work has indicated the direction to the turbocharging strategy among the variable geometry, two-stage, and asymmetric twin-scroll turbocharging for different exhaust gas recirculation rates. In the paper, a test bench engine experiment was presented to validate the numerical models of the three diesel engines employed with the asymmetric twin-scroll turbine, two-stage turbine, and variable geometry turbine. On the basis of the numerical models, the turbocharging routes among the three turbocharging approaches under different requirements for EGR rates are studied, and the other significant performances of the three turbines were also discussed. The results show that there is an inflection point in the relative advantages of asymmetric, variable geometry, and two-stage turbocharged engines. At the full engine load, when the EGR rate is lower than 29%, the two-stage turbocharging technology has the best performances. However, when the exhaust gas recirculation rate is higher than 29%, the asymmetric twin-scroll turbocharging is the best choice and more appropriate for driving high exhaust gas recirculation rates. The work may offer guidelines to choose the most suitable turbocharging technology for engine engineers and manufacturers to achieve further improvements in engine energy and emissions.
APA, Harvard, Vancouver, ISO, and other styles
23

IKEDA, Atsushi, Ryosuke MATAUMOTO, and Mamoru OZAWA. "B102 LOW NOx COMBUSTION OF DME BY EXHAUST GAS RECIRCULATION(Combustion-1)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–81_—_1–86_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-81_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vyatkin, A. A., S. S. Skachkova, E. G. Dmitrieva, R. N. Shumilov, and A. Yu Morozov. "Redesigning exhaust-gas recirculation systems in sintering." Steel in Translation 38, no. 5 (May 2008): 381–83. http://dx.doi.org/10.3103/s0967091208050094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Grande, José A., Manuel J. Dieguez, and Julio A. Carrera. "Compact Floating Core Exhaust Gas Recirculation Coolers." ATZoffhighway worldwide 11, no. 1 (March 2018): 28–31. http://dx.doi.org/10.1007/s41321-018-0002-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Klotzbach, Peter, Osman Sari, and Heinrich Dismon. "Innovative electronically controlled: Exhaust gas recirculation valve." MTZ worldwide 64, no. 9 (September 2003): 10–12. http://dx.doi.org/10.1007/bf03227609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wei, Haiqiao, Tianyu Zhu, Gequn Shu, Linlin Tan, and Yuesen Wang. "Gasoline engine exhaust gas recirculation – A review." Applied Energy 99 (November 2012): 534–44. http://dx.doi.org/10.1016/j.apenergy.2012.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Franken, Tim, Fabian Mauss, Lars Seidel, Maike Sophie Gern, Malte Kauf, Andrea Matrisciano, and Andre Casal Kulzer. "Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry." International Journal of Engine Research 21, no. 10 (July 4, 2020): 1857–77. http://dx.doi.org/10.1177/1468087420933124.

Full text
Abstract:
This work presents the assessment of direct water injection in spark-ignition engines using single cylinder experiments and tabulated chemistry-based simulations. In addition, direct water injection is compared with cooled low-pressure exhaust gas recirculation at full load operation. The analysis of the two knock suppressing and exhaust gas cooling methods is performed using the quasi-dimensional stochastic reactor model with a novel dual fuel tabulated chemistry model. To evaluate the characteristics of the autoignition in the end gas, the detonation diagram developed by Bradley and co-workers is applied. The single cylinder experiments with direct water injection outline the decreasing carbon monoxide emissions with increasing water content, while the nitrogen oxide emissions indicate only a minor decrease. The simulation results show that the engine can be operated at λ = 1 at full load using water–fuel ratios of up to 60% or cooled low-pressure exhaust gas recirculation rates of up to 30%. Both technologies enable the reduction of the knock probability and the decrease in the catalyst inlet temperature to protect the aftertreatment system components. The strongest exhaust temperature reduction is found with cooled low-pressure exhaust gas recirculation. With stoichiometric air–fuel ratio and water injection, the indicated efficiency is improved to 40% and the carbon monoxide emissions are reduced. The nitrogen oxide concentrations are increased compared to the fuel-rich base operating conditions and the nitrogen oxide emissions decrease with higher water content. With stoichiometric air–fuel ratio and exhaust gas recirculation, the indicated efficiency is improved to 43% and the carbon monoxide emissions are decreased. Increasing the exhaust gas recirculation rate to 30% drops the nitrogen oxide emissions below the concentrations of the fuel-rich base operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
29

Llamas, Xavier, and Lars Eriksson. "Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233, no. 2 (May 11, 2018): 551–74. http://dx.doi.org/10.1177/1475090218768992.

Full text
Abstract:
Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NO x emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NO x to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-oriented simulation models. Unfortunately, the same reasons that motivate the use of simulation models also hinder the capacity to obtain sufficient measurement data at different operating points for developing the models. A mean value engine model of a large two-stroke diesel with exhaust gas recirculation that can be simulated faster than real time is presented and validated. An analytic model for the cylinder pressure that captures the effects of changes in the fuel control inputs is also developed and validated with cylinder pressure measurements. A parameterization procedure that deals with the low number of measurement data available is proposed. After the parameterization, the model is shown to capture the stationary operation of the real engine well. The transient prediction capability of the model is also considered satisfactory which is important if the model is to be used for exhaust gas recirculation controller development during transients. Furthermore, the experience gathered while developing the model about essential signals to be measured is summarized, which can be very helpful for future applications of the model. Finally, models for the ship propeller and resistance are also investigated, showing good agreement with the measured ship sailing signals during maneuvers. These models give a complete vessel model and make it possible to simulate various maneuvering scenarios, giving different loading profiles that can be used to investigate the performance of exhaust gas recirculation and other controllers during transients.
APA, Harvard, Vancouver, ISO, and other styles
30

Khoa, Nguyen Xuan, and Ocktaeck Lim. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine." Energies 15, no. 3 (February 7, 2022): 1208. http://dx.doi.org/10.3390/en15031208.

Full text
Abstract:
Efficiency and emission reduction are the primary targets of internal combustion engine research due the large number of vehicles in operation and the impact of emissions-related pollution on human and ecosystem health. Harmful components of engine exhaust gases include nitrous oxides (NOx), carbon dioxide, hydrocarbons, and particulate matter. NOx emissions in particular are associated with significant health threats. The recirculation of exhaust gases can reduce NOx emissions and improve engine efficiency when combined with other advanced techniques. On the other hand, the residual exhaust gas also effects on the quality of lubricating engine oil and therefore causes an increase in engine piston ring wear. In this review paper, the effects of external and internal exhaust gas recirculation on the performance and emission characteristics of diesel, gasoline, and alternative fuel engines are summarized and discussed in detail. Because it is difficult to estimate the internal residual exhaust gas in the combustion engine by doing experiments. This review paper introduces control strategies and prediction methods for internal and external exhaust gas recirculation.
APA, Harvard, Vancouver, ISO, and other styles
31

Siokos, Konstantinos, Rohit Koli, and Robert Prucka. "Short-term and long-term adaptation algorithm for low-pressure exhaust gas recirculation estimation in spark-ignition engines." International Journal of Engine Research 20, no. 4 (March 4, 2018): 424–40. http://dx.doi.org/10.1177/1468087418758492.

Full text
Abstract:
Low-pressure exhaust gas recirculation systems are capable of increasing fuel efficiency of spark-ignition engines; however, they introduce control challenges. The low available pressure differential that drives exhaust gas recirculation flow, along with the significant pressure pulsations in the exhaust environment of a turbocharged engine hamper the accuracy of feed-forward estimation models. For that reason, feedback measurements are required in an effort to increase prediction accuracy. Additionally, the accumulation of deposits in the exhaust gas recirculation system and the aging of the valve, change the flow characteristics over time. Under these considerations, an adaptation algorithm is developed which handles both short-term (operating-point-dependent errors) and long-term (system aging) corrections for exhaust gas recirculation flow estimation. The algorithm is based on an extended Kalman filter for joint state and parameter estimation and uses the output of an intake oxygen sensor to adjust the feed-forward prediction by creating an online adaptation map. Two different exhaust gas recirculation estimation models are developed and coupled with the adaptation algorithm. The performance of the algorithm for both estimation models is evaluated in real-time through transient experiments with a turbocharged spark-ignition engine. It is demonstrated that this methodology is capable of creating an adaptation map which captures system aging, while also reduces the estimation bias by more than four times resulting in a prediction error of less than 1%. Finally, this approach proves to be a valuable tool that can significantly reduce offline calibration efforts for such models.
APA, Harvard, Vancouver, ISO, and other styles
32

Ramadhas, Arumugam Sakunthalai, Chandrasekaran Muraleedharan, and Simon Jayaraj. "Reduction in Exhaust Gas Temperature of Biodiesel Fueled Engine by Exhaust Gas Recirculation." CLEAN - Soil, Air, Water 36, no. 12 (December 2008): 978–83. http://dx.doi.org/10.1002/clen.200800108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Коновалов, Дмитро Вікторович. "ЗАСТОСУВАННЯ ГАЗОДИНАМІЧНОГО ОХОЛОДЖЕННЯ В СИСТЕМАХ РЕЦИРКУЛЯЦІЇ ВІДХІДНИХ ГАЗІВ СУДНОВИХ ДИЗЕЛІВ." Aerospace technic and technology, no. 7 (August 31, 2019): 81–86. http://dx.doi.org/10.32620/aktt.2019.7.11.

Full text
Abstract:
There are many ways and methods to reduce exhaust gases emissions on modern ships. One of the most effective ways to reduce NOx and SOx emissions is to use of exhaust gas recirculation (EGR technology). The EGR system disadvantage is an increase in back pressure through additional pressure losses in the scrubber and heat ex-changer, which entails an engine fuel efficiency deterioration. Creating a reliable and efficient heat exchanger for cooling recirculation gases is a complex task due to deposits and pollution emitted by these gases. In the pre-sent work, the jet apparatus effectiveness named aerothermopressor is analyzed in the scheme with exhaust gases recirculation of the ship low-speed two-stroke engine. Aerothermopressor is a two-phase jet for contact disperse cooling, in which by increasing the heat from the gas stream the gas pressure and cooling are increased. The calculation of the characteristics of the engine was carried out, both in nominal, and in operating modes and in all possible range of partial loads. The installation of the aerothermopressor before the scrubber is pro-posed, which allows reducing engine thermal load. Increasing the pressure in the aerothermopressor by 0.2-0.4 ∙ 105 Pa (6-12 %) allows reducing the back pressure in the gas exhaust system and thus reducing the load on the exhaust gas recirculation fan and when the engine load is higher than 75% in the cold zone, the fan is not need-ed, which additionally allows to reduce the specific fuel consumption. The parameters of the exhaust gases that are going to be recirculated and the processes of their gas-dynamic cooling in the aerothermopressor are based on the developed technique and program using the thermodynamic and gas dynamics equations. The proposed scheme-design solution allows at a high environmental friendliness of the existing exhaust gas recirculation sys-tem to provide a certain reduction in specific fuel consumption. It was determined that the engine specific fuel consumption has been decreasing when the aerothermopressor is used to Dge = 2.5-3.0 g/(kW·h) (1.5-1.7%).
APA, Harvard, Vancouver, ISO, and other styles
34

Saitoh, Keijiro, Eisaku Ito, Koichi Nishida, Satoshi Tanimura, and Keizo Tsukagoshi. "A105 DEVELOPMENT OF COMBUSTOR WITH EXHAUST GAS RECIRCULATION SYSTEM FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-2)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–47_—_1–52_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-47_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Guan, Wei, Vinícius B. Pedrozo, Hua Zhao, Zhibo Ban, and Tiejian Lin. "Variable valve actuation–based combustion control strategies for efficiency improvement and emissions control in a heavy-duty diesel engine." International Journal of Engine Research 21, no. 4 (April 26, 2019): 578–91. http://dx.doi.org/10.1177/1468087419846031.

Full text
Abstract:
High nitrogen oxide levels of the conventional diesel engine combustion often requires the introduction of exhaust gas recirculation at high engine loads. This can adversely affect the smoke emissions and fuel conversion efficiency associated with a reduction of the in-cylinder air-fuel ratio (lambda). In addition, low exhaust gas temperatures at low engine loads reduce the effectiveness of aftertreatment systems necessary to meet stringent emissions regulations. These are some of the main issues encountered by current heady-duty diesel engines. In this work, variable valve actuation–based advanced combustion control strategies have been researched as means of improving upon the engine exhaust temperature, emissions, and efficiency. Experimental analysis was carried out on a single-cylinder heady-duty diesel engine equipped with a high-pressure common-rail fuel injection system, a high-pressure loop cooled exhaust gas recirculation, and a variable valve actuation system. The variable valve actuation system enables a late intake valve closing and a second intake valve opening during the exhaust stroke. The results showed that Miller cycle was an effective technology for exhaust temperature management of low engine load operations, increasing the exhaust gas temperature by 40 °C and 75 °C when running engine at 2.2 and 6 bar net indicated mean effective pressure, respectively. However, Miller cycle adversely effected carbon monoxide and unburned hydrocarbon emissions at a light load of 2.2 bar indicated mean effective pressure. This could be overcome when combining Miller cycle with a second intake valve opening strategy due to the formation of a relatively hotter in-cylinder charge induced by the presence of internal exhaust gas recirculation. This strategy also led to a significant reduction in soot emissions by 82% when compared with the baseline engine operation. Alternatively, the use of external exhaust gas recirculation and post injection on a Miller cycle operation decreased high nitrogen oxide emissions by 67% at a part load of 6 bar indicated mean effective pressure. This contributed to a reduction of 2.2% in the total fluid consumption, which takes into account the urea consumption in aftertreatment system. At a high engine load of 17 bar indicated mean effective pressure, a highly boosted Miller cycle strategy with exhaust gas recirculation increased the fuel conversion efficiency by 1.5% while reducing the total fluid consumption by 5.4%. The overall results demonstrated that advanced variable valve actuation–based combustion control strategies can control the exhaust gas temperature and engine-out emissions at low engine loads as well as improve upon the fuel conversion efficiency and total fluid consumption at high engine loads, potentially reducing the engine operational costs.
APA, Harvard, Vancouver, ISO, and other styles
36

Ueda, Takashi, Kazuhisa Ito, and Naohiro Hiraoka. "Development of Low Pressure Exhaust Gas Recirculation System." Marine Engineering 52, no. 6 (2017): 773–77. http://dx.doi.org/10.5988/jime.52.773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Stöber-Schmidt, Claude-Pascal, Marko Püschel, and Martin Drescher. "Exhaust Gas Recirculation for Medium-Speed Diesel Engines." MTZ industrial 1, no. 1 (November 2011): 72–77. http://dx.doi.org/10.1365/s40353-011-0014-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rehan, Sooraj. "DEDICATED EXHAUST GAS RECIRCULATION IN SPARK IGNITION ENGINES." Advances in Science and Technology Research Journal 11, no. 2 (June 1, 2017): 44–50. http://dx.doi.org/10.12913/22998624/69339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

PRASAD, P., and S. MAHALINGAM. "EXHAUST GAS RECIRCULATION EFFECTS ON HYDROGEN-AIR COMBUSTION." Combustion Science and Technology 179, no. 6 (May 3, 2007): 1131–57. http://dx.doi.org/10.1080/00102200600970423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Münz, Stefan, Christiane Römuss, Peter Schmidt, Kai-Henning Brune, and Heinz-Peter Schiffer. "Diesel engines with low-pressure exhaust-gas recirculation." MTZ worldwide 69, no. 2 (February 2008): 20–26. http://dx.doi.org/10.1007/bf03226887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dingelstadt, René, Sebastian Ewert, Michael Werz, and Paul Tremble. "Potential of Exhaust Gas Recirculation in Gasoline Engines." MTZ worldwide 75, no. 9 (August 2014): 38–43. http://dx.doi.org/10.1007/s38313-014-0212-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Asad, Usman, and Ming Zheng. "Exhaust gas recirculation for advanced diesel combustion cycles." Applied Energy 123 (June 2014): 242–52. http://dx.doi.org/10.1016/j.apenergy.2014.02.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rosec, Žiga, Tomaž Katrašnik, Urban Žvar Baškovič, and Tine Seljak. "Exhaust gas recirculation with highly oxygenated fuels in gas turbines." Fuel 278 (October 2020): 118285. http://dx.doi.org/10.1016/j.fuel.2020.118285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Guan, Wei, Vinícius B. Pedrozo, Hua Zhao, Zhibo Ban, and Tiejian Lin. "Miller cycle combined with exhaust gas recirculation and post–fuel injection for emissions and exhaust gas temperature control of a heavy-duty diesel engine." International Journal of Engine Research 21, no. 8 (February 20, 2019): 1381–97. http://dx.doi.org/10.1177/1468087419830019.

Full text
Abstract:
Miller cycle has been shown as a promising engine strategy to reduce in-cylinder nitrogen oxide (NOx) formation during the combustion process and facilitate its removal in the aftertreatment systems by increasing the exhaust gas temperature. However, the level of NOx reduction and the increase in exhaust gas temperature achieved by Miller cycle alone is limited. Therefore, research was carried out to investigate the combined use of Miller cycle with other advanced combustion control strategies in order to minimise the NOx emissions and the total cost of ownership. In this article, the effects of Miller cycle, exhaust gas recirculation, and post-injection were studied and analysed on the performance and exhaust emissions of a single cylinder heavy-duty diesel engine. A cost–benefit analysis was carried out using the corrected total fluid efficiency, which includes the estimated urea solution consumption in the NOx aftertreatment system as well as the fuel consumption. The experiments were performed at a low load of 6 bar net indicated mean effective pressure. The results showed that the application of a Miller cycle–only strategy with a retarded intake valve closing at −95 crank angle degree after top dead centre decreased NOx emissions by 21% to 6.0 g/kW h and increased exhaust gas temperature by 30% to 633 K when compared to the baseline engine operation. This was attributed to a reduction in compressed gas temperature by the lower effective compression ratio and the in-cylinder mass trapped due to the retarded intake valve closing. These improvements, however, were accompanied by a fuel-efficiency penalty of 1%. A further reduction in the level of NOx from 6.0 to 3.0 g/kW h was achieved through the addition of exhaust gas recirculation, but soot emissions were more than doubled to 0.022 g/kW h. The introduction of a post-injection was found to counteract this effect, resulting in simultaneous low NOx and soot emissions of 2.5 and 0.012 g/kW h, respectively. When taking into account the urea consumption, the combined use of Miller cycle, exhaust gas recirculation, and post-injection combustion control strategies were found to have relatively higher corrected total fluid efficiency than the baseline case. Thus, the combined ‘Miller cycle + exhaust gas recirculation + post-injection’ strategy was the most effective means of achieving simultaneous low exhaust emissions, high exhaust gas temperature, and increased corrected total fluid efficiency.
APA, Harvard, Vancouver, ISO, and other styles
45

Vos, Kalen R., Gregory M. Shaver, Xueting Lu, Cody M. Allen, James McCarthy, and Lisa Farrell. "Improving diesel engine efficiency at high speeds and loads through improved breathing via delayed intake valve closure timing." International Journal of Engine Research 20, no. 2 (December 8, 2017): 194–202. http://dx.doi.org/10.1177/1468087417743157.

Full text
Abstract:
Valve train flexibility enables optimization of the cylinder-manifold gas exchange process across an engine’s torque/speed operating space. This study focuses on the diesel engine fuel economy improvements possible through delayed intake valve closure timing as a means to improve volumetric efficiency at elevated engine speeds via dynamic charging. It is experimentally and analytically demonstrated that intake valve modulation can be employed at high-speed (2200 r/min) and medium-to-high load conditions (12.7 and 7.6 bar brake mean effective pressure) to increase volumetric efficiency. The resulting increase in inducted charge enables higher exhaust gas recirculation fractions without penalizing the air-to-fuel ratio. Higher exhaust gas recirculation fractions allow efficiency improving injection advances without sacrificing NOx. Fuel savings of 1.2% and 1.9% are experimentally demonstrated at 2200 r/min for 12.7 and 7.6 bar brake mean effective pressure operating conditions via this combined strategy of delayed intake valve closure, higher exhaust gas recirculation fractions, and earlier injections.
APA, Harvard, Vancouver, ISO, and other styles
46

Andwari, Amin Mahmoudzadeh, Azhar Abdul Aziz, Mohd Farid Muhamad Said, and Zulkarnain Abdul Latiff. "A Converted Two-Stroke Cycle Engine for Compression Ignition Combustion." Applied Mechanics and Materials 663 (October 2014): 331–35. http://dx.doi.org/10.4028/www.scientific.net/amm.663.331.

Full text
Abstract:
A new kind of alternative combustion concept that has attracted attention intensively in recent years is called controlled auto-ignition (CAI) combustion. CAI combustion has been proposed and partially implemented with the aim of both improving the thermal efficiency of internal combustion engines, achieving cleaner exhaust emissions and lower cyclic variation. An experimental study is conducted through a CAI two-stroke cycle engine in order to investigate the influence of internal exhaust gas recirculation (In-EGR) and external exhaust gas recirculation (Ex-EGR) variation in relation to combustion cyclic variability and exhaust emissions characteristics. Results implied that cyclic variation of both combustion-related and pressure-related parameter is substantially improved. Furthermore remarkable decreased exhaust emissions, unburned hydrocarbon (uHC), carbon monoxide (CO) and nitric dioxide (NOX), was observed.
APA, Harvard, Vancouver, ISO, and other styles
47

PIETRAS, Dariusz, and Maciej SOBIESZCZAŃSKI. "Issues related to adjustment of a spark ignition engine with exhaust gas recirculation." Combustion Engines 119, no. 2 (November 1, 2004): 12–22. http://dx.doi.org/10.19206/ce-117414.

Full text
Abstract:
The article presents results of a spark ignition engine examination, which has been conducted to establish the influence of exhaust gases recirculation on the engine performance and the toxic content in exhaust gases. The research concentrated on identifying a range of recirculation levels, which enabled to eliminate its negative influence on the engine performance by means of selecting an appropriate angle of advance. Further, the article discusses the engine examination procedures involving different recirculation control algorithms in the ECM chip. Finally, the article presents EURO II and EURO III tests, conducted on a vehicle/engine controlled by the above-mentioned software.
APA, Harvard, Vancouver, ISO, and other styles
48

Likhanov, V. A., and O. P. Lopatin. "Improvement of environmental performance of tractor diesel by the use of compressed natural gas and exhaust gas recirculation, methanol and ethanol fuel emulsions." Traktory i sel hozmashiny 82, no. 3 (March 15, 2015): 3–6. http://dx.doi.org/10.17816/0321-4443-65392.

Full text
Abstract:
Possibility of improving environmental performance of diesel engine by the use of compressed natural gas and exhaust gas recirculation, methanol and ethanol fuel emulsions is determined. It allows to reduce nitrogen oxides level in exhaust gases, to save diesel fuel and to improve effective performance.
APA, Harvard, Vancouver, ISO, and other styles
49

BIENIEK, Andrzej, Jarosław MAMALA, Mariusz GRABA, and Krystian HENNEK. "Impact of EGR control at in-cylinder pressure and ecological properties of CI off-road vehicle engine." Combustion Engines 170, no. 3 (August 1, 2017): 88–95. http://dx.doi.org/10.19206/ce-2017-314.

Full text
Abstract:
An attempt has been made to clarify the effect of wide-ranging control of the exhaust gas recirculation system on the cylinder pressure and ecological engine performance. This publication contains the results of tests performed on the CI (compression ignition) engine of the off-road vehicle mounted on the test bench. The study was based on advanced EGR control with a proportional valve and a very efficient exhaust gases cooling system. Analysis of the test results is based on the cylinder pressure and the concentration of NOx and PM components at exhaust gases. The study included the influence of the exhaust gas recirculation system control on parameters such as differential pressure, MBF, and relative NOx and PM emissions. As demonstrated by the analysis conducted, the EGR valve control method and the exhaust gas cooling intensity significantly affect the cylinder pressure and its ecological performance.
APA, Harvard, Vancouver, ISO, and other styles
50

Likhanov, V. A., and O. P. Lopatin. "Application of natural gas and recirculation on 4Ч 11,0/12,5 tractor diesel." Traktory i sel hozmashiny 81, no. 6 (June 15, 2014): 7–9. http://dx.doi.org/10.17816/0321-4443-65546.

Full text
Abstract:
Experimental testing results of Д-240 diesel operating on compressed natural gas with exhaust gas recirculation are presented. Improvement opportunity of diesel ecological indicators, in particular decrease of nitrogen oxides level in exhaust gases, diesel fuel saving, rise of effective indices is determined.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography