Dissertations / Theses on the topic 'Existence et unicité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Existence et unicité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pellegrini, Clément. "Existence, unicité et approximation des équations de Schrödinger stochastiques." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00334668.
Full textHabituellement, les justifications mathématiques et physiques de ces modèles sont loin d'être intuitives et évidentes. Soit elles manquent de rigueur car basées sur des arguments heuristiques, soit elles uilisent des outils mathématiques lourds et très abstraits (Filtrage quantique, espérance conditionnelle dans les algèbres de Von Neumann...).
Dans cette thèse, on met en place un modèle discret de mesure en mécanique quantique. Ce modèle est basé sur celui des "interactions quantiques répétées" développé par Stéphane ATTAL et Yan PAUTRAT. Le cadre est le suivant. On considère un petit système en contact avec une chaine infinie de petits systèmes (tous notés H) identiques et indépedants entre eux. Chaque copie H interagit avec le petit système pendant un temps h. Après chaque interaction, on effectue une mesure sur H. Cette série de mesures entraine une série de modifications aléatoires de l'état du petit système. Cette série de modifications est alors décrite à l'aide d'une chaine de Markov dépendante du paramètre h. On montre alors que l'on peut obtenir les trajectoires quantiques, solutions des équations de Schrödinger stochastiques, comme limite continue (h tend vers 0) à partir de ces chaines de Markov. Ce résultat de convergence nécessite, au préalable, une étude complète des problèmes d'existence et d'uncité des solutions.
Grâce à ce résultat de convergence, à partir d'un modèle physique discret, on justifie de façon rigoureuse et intuive l'utilisation des équations de Schrödinger stochastiques. On étend ensuite ces résultats dans le cas de modèles en dimension finie quelconque et on introduit la notion de controle.
Broizat, Damien. "Existence, unicité, approximations de solutions d'équations cinétiques et hyperboliques." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00916993.
Full textJouini, Elyes. "Ensembles de production non convexes, existence et unicité de l'équilibre." Paris 1, 1989. http://www.theses.fr/1989PA010009.
Full textDans le premier chapitre nous nous attachons a etablir, grace a la theorie du degre, des resultats d'existence et d'unicite de l'equilibre dans le cas d'economies avec plusieurs ensembles de production non convexes et avec regles de tarifications generales. Cette etude permettra de retrouver les resultats classiques sur les economies d'echange, ainsi que sur les economies avec production pour diverses regles de tarifications utilisees dans la litterature: maximisation du profit, tarification a pertes bornees, tarification marginale pour des ensembles de production etoiles. . . Dans le second chapitre nous lontrons la genericite de certains resultats du chapitre precedent et nous etudions de facon globale l'ensemble des equilibres d'une economie parametree par ses ressources initiales. Nous etablissons alors des conditions suffisantes pour que cet ensemble soit une variete et nous generalisons les resultats sur le comportement des equilibres lorsque les ressources intiales varient. Dans le troisieme chapitre nous construisons des ensembles de production en dimension quelque (mais finie), pour lesquels la regle de tarification marginale, formalisee par le cone normal de clarke, est tiviale, et nous etablissons le lien entre ces ensembles et les fonctions lipschiziennes a gradient generalise, au sens de clarke, partout egal a certains polytopes
Le, Meur Hervé. "Existence, unicité et stabilité d'écoulements de fluides viscoélastiques avec interfaces." Paris 11, 1994. http://www.theses.fr/1994PA112406.
Full textMay, Ramzi. "Existence, unicité et régularité des solutions faibles des équations de Navier-Stokes." Evry-Val d'Essonne, 2002. http://www.theses.fr/2002EVRY0018.
Full textNeji, Ali. "Existence unicité et régularité de solutions de problèmes non linéaires et complètement non linéaires elliptiques singuliers." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1017.
Full textWe studied in this thesis the properties of existence and regularity for various nonlinear partial differential equations of elliptic type. We proved the existence of weak solutions to certain problems involving the p-Laplacian operator using critical point theory and the mountain pass theorem . We have also showed the existence of viscosity solutions for singular equations involving fully nonlinear operators
Fulgencio, Rheadel. "Solutions renormalisées d'une classe de problèmes elliptiques quasi-linéaires avec saut : existence, unicité et homogénéisation." Thesis, Normandie, 2021. http://www.theses.fr/2021NORMR010.
Full textIn this thesis, we study a class of quasilinear elliptic equations posed in atwo-component domain with an L1 data and its asymptotic analysis. More precisely, we consider a two-component domain, denoted by Ω, which can be written as the disjoint union Ω = Ω 1 ∪ Ω 2 ∪ Г, where the open sets Ω 1 and Ω 2 are the two components of Ω, and Г is the interface between thesecomponents. We study the following quasilinear elliptic problem posed in Ω:−div(B(x, u1)∇u1) = f in Ω1,−div(B(x, u2)∇u2) = f in Ω2,(B(x, u1)∇u1)υ1 = (B(x, u2)∇u2)υ1 on Г,(B(x, u1)∇u1)υ1 = −h(x)(u1 − u2) on Г,u1 = 0 on ∂Ω,where υ1 is the unit outward normal to Ω1, f is an L1 function, and B is a coercive matrix field which has a restricted growth assumption (B(x, r) is bounded on any compact set of R). The first part of this thesis is dedicated to existence and uniqueness results for this problem in the framework of renormalized solutions, which was introduced by R.J. DiPerna and P.L. Lions. In the second part, we study the corresponding homogenization problem for a two-component domain with a (disconnected) periodic second component by combining the notion of renormalized solutions and the periodic unfolding method, introduced D. Cioranescu, A. Damlamian and G. Griso. It has been successively adapted to two-component domains by P. Donato, K.H. Le Nguyen, and R. Tardieu. In order to obtain a uniqueness result for the homogenized problem, we study the properties of the corresponding cell problem. In particular, we show that if the matrix field in the cell problem, denoted A(y, t), is local Lipschitzcontinuous with respect to t, then the resulting homogenizedmatrix A0 keeps this property. This uniqueness result ensures that the convergences obtained in the homogenization process hold for the whole sequence of the periodicity parameter (and not only a subsequence)
Lombardini, Luca. "Minimization problems involving nonlocal functionals : nonlocal minimal surfaces and a free boundary problem." Thesis, Amiens, 2019. http://www.theses.fr/2019AMIE0003.
Full textThis doctoral thesis is devoted to the analysis of some minimization problems that involve nonlocal functionals. We are mainly concerned with the s-fractional perimeter and its minimizers, the s-minimal sets. We investigate the behavior of sets having finite fractional perimeter and we establish existence and compactness results for (locally) s-minimal sets. We study the s-minimal sets in highly nonlocal regimes, that correspond to small values of the fractional parameter s. We introduce a functional framework for studying those s-minimal sets that can be globally written as subgraphs. In particular, we prove existence and uniqueness results for minimizers of a fractional version of the classical area functional and we show the equivalence between minimizers and various notions of solution of the fractional mean curvature equation. We also prove a flatness result for entire nonlocal minimal graphs having some partial derivatives bounded from either above or below. Moreover, we consider a free boundary problem, which consists in the minimization of a functional defined as the sum of a nonlocal energy, plus the classical perimeter. Concerning this problem, we prove uniform energy estimates and we study the blow-up sequence of a minimizer, in particular establishing a Weiss-type monotonicity formula. In the last chapter of the thesis we provide a simple, but rigorous, mathematical model which describes the penguin parade in Phillip Island
Rachah, Amira. "Modélisation mathématique, simulation et contrôle de processus de cristallisation." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2528/.
Full textIn this thesis we are concerned with the mathematical modeling of crystallization processes in order to understand, simulate, optimize and control them. We first present the principles of modeling, the fundamentals of crystallization and the numerical exploitation of models of crystallization. We then discuss exemplary a mathematical model of crystallization of KCl in continuous operational mode with dissolution of fines and product classiffication. This model is described by a hyperbolic partial differential equation coupled with an integro-differential equation. To justify the theoretical model, we prove existence and uniqueness of solutions using the method of characteristics and the Banach fixed-point theorem. We then present numerical simulations of the studied processes. In a third part of the thesis we develop and present a mathematical model of solvated crystallization of a-lactose monohydrate in semi-batch operational mode. We justify the model by proving global existence and uniqueness of solutions. Finally, we study the optimal control of crystallization of a-lactose monohydrate in semi-batch mode using the solvers ACADO and PSOPT. Optimal cooling and filling strategies are computed in order to enhance the properties of the solid
Ellabib, Abdellatif. "Analyse mathématique d'équations de semi-conducteurs avec mobilités non constantes et identification des frontières libres dans les jonctions PN." Phd thesis, Université de Nantes, 2000. http://tel.archives-ouvertes.fr/tel-00007195.
Full textBarles, Guy. "Contribution à la théorie des solutions de viscosité des équations de Hamilton-Jacobi du premier ordre et applications à des problèmes de contrôle optimal et de perturbations singulières." Paris 9, 1988. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1988PA090004.
Full textMETIER, Paul. "Modélisation, analyse mathématique et applications numériques de problèmes d'interaction fluide-structure instationnaires." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00002900.
Full textXu, Liping. "Contribution à l'étude de l'équation de Boltzmann homogène." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066018/document.
Full textThis thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately soft potentials and the equivalence between some jumping SDE and the corresponding PDE. In particular, we compute the multifractal spectrum of some stochastic processes, study the well-posedness and the propagation of chaos for the Boltzmann equation. The purpose of the first chapter is to study the pathwise properties of the stochastic process $(V_t)_{t\geq0}, representing the time-evolution of the velocity of a typical particle in a gas modeled by the Boltzmann equation for hard or moderately potentials. We show that this process is multifractal and has a deterministic spectrum. For hard potentials, we also give the multifractal spectrum of the process $X_t =\int_0^t V_s ds$, representing the time-evolution of the position of the typical particle. The second chapter is devoted to study the uniqueness of the weak solution to the Boltzmann equation in the class of all measure solutions, in the case of moderately soft potentials. This allows us to obtain a quantitive rate of propagation of chaos for Nanbu particle system for this singular interaction. Finally in the third chapter, we extend Figalli’s work [19] to study the relation between some jumping SDE and the corresponding Fokker-Planck equation. We prove that for any weak solution $(ft)_{t\in[0,T]}$ of the PDE, there exists a weak solution to the SDE of which the time-marginals are given by the family $(f_t)_{t\in[0,T]$
Chamoun, Georges. "ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE DE MODÈLES EN CHIMIOTAXIE-FLUIDE ET APPLICATIONS À LA BIOLOGIE." Phd thesis, Ecole Centrale de Nantes (ECN), 2014. http://tel.archives-ouvertes.fr/tel-01015918.
Full textCourt, Sébastien. "Problèmes d'interactions entre une structure déformable et un fluide visqueux et incompressible." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1848/.
Full textIn this thesis, we study a fluid-solid system which is a model for the interactions between a deformable structure, and a viscous incompressible fluid surrounding it. It couples the incompressible Navier-Stokes equations (for the fluid flow) with the Newton's laws (for the solid's dynamics). The existence of strong solutions is studied in the first two chapters, for solid's deformations which are limited or not in regularity. Then we prove the stabilization to zero of this coupled system, for small external perturbations, by solid's deformations submitted to physical constraints which guarantee its self-propel led nature. After that we describe practical means of generating such deformations. Finally we develop a numerical method for a Stokes problem with nonhomogeneous Dirichlet conditions. It enables us to get a good approximation of the normal trace of the Cauchy stress tensor, for boundaries which does not depend on the mesh. This method combines a fictitious domain type approach based on the ideas of Xfem, and an augmented Lagrangian method. In a fluid-structure interaction perspective, the interest of this method lies in the importance of the role played by the fluid's forces at the fluid-solid interface
Olech, Michał. "Systèmes d'évolution non linéaires et leurs applications." Paris 11, 2007. http://www.theses.fr/2007PA112250.
Full textThe first part is devoted to the analysis of two mean-field problems describing particles which interact with themselves either by electrical or gravitational forces. We first investigate steady state solutions for a problem with gravitational forces. We use methods of ordinary differential equations as well as variational methods to obtain the uniqueness and existence of many stationary solutions. Using methods of functional analysis, ordinary differential equations and fixed point theorems, we then prove the existence of global in time solutions of a system of partial differential equations describing the time evolution of a cloud of electrically charged particles. Moreover, we describe the large time behavior of solutions as t tends to infinity. We are especially interested in the two-dimensional case, when the system is considered in the whole space R^2. We show that in the case of small initial conditions the large time behavior of the solutions much differs from that in the higher-dimensional case. The second part involves a nonlinear parabolic reaction-diffusion system which both includes a linear model for intercellular transport in eukarya, and a reversible chemical reaction. We prove a contraction property in L^1 for the semigroup associated with the system. Then, using a Lyapunov functional, we show the convergence of the solutions to suitable steady states as t tends to infinity. In the linear case we prove the existence and uniqueness of stationary solutions in space dimensions 1, 2, 3 and 4. In the last chapter we investigate a numerical finite volume scheme for the nonlinear system modeling fast reversible chemical reactions. For the convergence proof we search for discrete versions of standard a priori estimates, comparison principles and compactness theorems. Moreover, we perform numerical experiments for the concrete example of a real chemical reaction
Lequeurre, Julien. "Quelques résultats d'existence, de contrôlabilité et de stabilisation pour des systèmes couplés fluide-structure." Phd thesis, Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1623/.
Full textIn this thesis, we are interested in the study of fluid-structure systems. These systems may model blood flows in large vessels or aeroelasticy problems. The velocity and the pressure of the blood are described by the incompressible Navier-Stokes equations and the displacement of the structure boundary satisfies a beam/plate/membrane equation (it depends on the dimension of the model and of the nature of the structure). In the fist part, we prove the exitence and uniqueness of strong solutions to the kind of systems in two or three dimensions, either for small initial data (global in time existence) or for any initial data (local in time existence). In the second part, we study on one hand the null controllability of a system coupling the Navier-Stokes equations with a structure equation corresponding with a finite dimensional approximation of the beam or plate equation. On the other hand, we study the stabilization (for any decay rate) local around the stationary null solution of a system coupling the Navier-Stokes equations with two beam equations with two finite dimension controls acting on the structure equation and in the second boundary condition for the velocity. The second control only depends on time
Lequeurre, Julien. "Quelques résultats d'existence, de contrôlabilité et de stabilisation pour des systèmes couplés fluide - structure." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00685107.
Full textMostefai, Mohamed Sadek. "Déduction rigoureuse de l'équation de Reynolds à partir d'un système modélisant l'écoulement à faible épaisseur d'un fluide micropolaire, et étude de deux problèmes à frontière libre : Hele-Shaw généralisé et Stephan à deux phases pour un fluide non newtonien." Saint-Etienne, 1997. http://www.theses.fr/1997STET4019.
Full textDelay, Erwann. "Prescription de courbures sur l'espace hyperbolique." Phd thesis, Université de Nice Sophia-Antipolis, 1998. http://tel.archives-ouvertes.fr/tel-00011944.
Full textPremière partie :
thème de la courbure scalaire conforme sur l'espace hyperbolique. Nous
apportons ici une étude fine du comportement asymptotique en toute
dimension. Nous traitons toujours d'équations semi-linéaires
générales, avant d'appliquer nos résultats au cas particulier de
l'équation géométrique.
Deuxième partie :
thème de la courbure de Ricci sur l'espace hyperbolique.
Nous obtenons le résultat suivant.
Sur la boule unité de $\R^n$, on considère la métrique
hyperbolique standard $H_0$, dont la courbure de Ricci vaut $R_0$
et la courbure de Riemann-Christoffel vaut ${\cal R}_0$.
Nous montrons qu'en dimension $n\geq10$, pour
tout tenseur symétrique $R$ voisin
de $R_0$, il existe une unique métrique $H$ voisine de $H_0$
dont la courbure de Ricci vaut $R$.
Nous en déduisons, dans le cadre $C^\infty$, que l'image
de l'opérateur de Riemann-Christoffel est une sous-variété
au voisinage de ${\cal R}_0$.
Nous traitons aussi dans cette partie de la courbure de Ricci contravariante
en toute dimension, du problème de Dirichlet à l'infini en dimension 2,
et de quelques obstructions.
Ghattassi, Mohamed. "Modélisation, observation et commande d’une classe d’équations aux dérivées partielles : application aux matériaux semi-transparents." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0123/document.
Full textThis thesis investigates the theoretical and numerical analysis of coupled radiative conductive heat transfer in a semi-transparent, gray and non-scattering 2D medium. This two heat transfer modes are described by the radiative transfer equation (RTE) and the nonlinear heat equation (NHE). We proved the existence and uniqueness of the solution of coupled systems with homogeneous Dirichlet boundary conditions using the fixed-point theorem. Moreover, we developed a useful algorithm to simulate the temperature in the medium. We used the quadrature $S_{N}$ for the angular discretization of the RTE. The spatial discretization of RTE was made by the discontinuous Galerkin method (DG) and the finite element method for the non-linear heat equation. We have shown the convergence and the stability of the coupled numerical scheme using the discrete fixed point. The discrète model obtained after an approximation allowed us to do the analysis and synthesis of state estimators and feedback control design for stabilization of the system. Thanks to the special structure of the model and using the Differential Mean Value Theorem (DMVT), we proposed a reduced order observer and we construct a gain matrix, which ensures the exponential stability of the proposed observer and guarantees the boundedness of the estimate vector. An extension to $\mathcal{H}_{\infty}$ filtering is also provided. We have extended the reduced order approach in the case of the observer-based controller and we proved the exponential stability under the control feedback law. Similarly, an extension to $\mathcal{H}_{\infty}$ filtering is also provided. The obtained results were validated through several numerical simulations
Mildner, Marcus. "Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart." Phd thesis, Université du Littoral Côte d'Opale, 2013. http://tel.archives-ouvertes.fr/tel-00839524.
Full textVohralik, Martin. "Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00008451.
Full textOussaily, Aya. "Étude théorique et numérique des systèmes modélisant la dynamique des densités des dislocations." Thesis, Compiègne, 2021. https://bibliotheque.utc.fr/Default/doc/SYRACUSE/2021COMP2634.
Full textIn this thesis, we are interested in the theoretical and numerical studies of dislocations densities. Dislocations are linear defects that move in crystals when those are subjected to exterior stress. More generally, the dynamics of dislocations densities are described by a system of transport equations where the velocity field depends non locally on the dislocations densities. First, we are interested in the study of a one dimensional submodel of a (2 × 2) Hamilton-Jacobi system introduced by Groma and Balogh in 1999, proposed in the two dimensional case. For this system, we prove global existence and uniqueness results. Adding to that, considering nondecreasing initial data, we study this problem numerically by proposing a finite difference implicit scheme for which we show the convergence. Then, inspired by the first work, we show a more general theory which allows us to get similar results of existence and uniqueness of solution in the case of one dimensional eikonal systems. By considering nondecreasing initial data, we study this problem numerically. Under certain conditions on the velocity, we propose a finite difference implicit scheme allowing us to calculate the discrete solution and simulate then the dislocations dynamics via this model
HARIZ, SARA. "Une version modifiee du modele de lifshitz-slyozov : existence et unicite de la solution, simulation numerique." Nice, 1999. http://www.theses.fr/1999NICE5300.
Full textRasheed, Amer. "Solidification Dendritique de Mélanges Binaires de Métaux sous l'Action de Champs Magnétique: Modélisation, Analyse Mathématique et Numérique." Phd thesis, INSA de Rennes, 2010. http://tel.archives-ouvertes.fr/tel-00565743.
Full textGhattassi, Mohamed. "Modélisation, observation et commande d’une classe d’équations aux dérivées partielles : application aux matériaux semi-transparents." Electronic Thesis or Diss., Université de Lorraine, 2015. http://www.theses.fr/2015LORR0123.
Full textThis thesis investigates the theoretical and numerical analysis of coupled radiative conductive heat transfer in a semi-transparent, gray and non-scattering 2D medium. This two heat transfer modes are described by the radiative transfer equation (RTE) and the nonlinear heat equation (NHE). We proved the existence and uniqueness of the solution of coupled systems with homogeneous Dirichlet boundary conditions using the fixed-point theorem. Moreover, we developed a useful algorithm to simulate the temperature in the medium. We used the quadrature S_{N} for the angular discretization of the RTE. The spatial discretization of RTE was made by the discontinuous Galerkin method (DG) and the finite element method for the non-linear heat equation. We have shown the convergence and the stability of the coupled numerical scheme using the discrete fixed point. The discrète model obtained after an approximation allowed us to do the analysis and synthesis of state estimators and feedback control design for stabilization of the system. Thanks to the special structure of the model and using the Differential Mean Value Theorem (DMVT), we proposed a reduced order observer and we construct a gain matrix, which ensures the exponential stability of the proposed observer and guarantees the boundedness of the estimate vector. An extension to H∞ filtering is also provided. We have extended the reduced order approach in the case of the observer-based controller and we proved the exponential stability under the control feedback law. Similarly, an extension to H∞ filtering is also provided. The obtained results were validated through several numerical simulations
Nabolsi, Hawraa. "Contrôle optimal des équations d'évolution et ses applications." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0027/document.
Full textThis thesis begins with a rigorous mathematical analysis of the radiative heating of a semi-transparent body made of glass, by a black radiative source surrounding it. This requires the study of the coupling between quasi-steady radiative transfer boundary value problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat conduction evolution equation with a nonlinear Robin boundary condition which takes into account those wavelengths for which the glass behaves like an opaque body. We prove existence and uniqueness of the solution, and give also uniform bounds on the solution i.e. on the absolute temperature distribution inside the body and on the radiative intensities. Now, we consider the temperature $T_{S}$ of the black radiative source S surrounding the semi-transparent body $\Omega$ as the control variable. We adjust the absolute temperature distribution (x, t) 7! T(x, t) inside the semi-transparent body near a desired temperature distribution Td(·, ·) during the time interval of radiative heating ]0, tf [ by acting on $T_{S}$. In this respect, we introduce the appropriate cost functional and the set of admissible controls $T_{S}$, for which we prove the existence of optimal controls. Introducing the State Space and the State Equation, a first order necessary condition for a control $T_{S}$ : t 7! $T_{S}$ (t) to be optimal is then derived in the form of a Variational Inequality by using the Implicit Function Theorem and the adjoint problem. We come now to the goal problem which is the deformation of the semi-transparent body $\Omega$ by heating it with a black radiative source surrounding it. We introduce a weak mixed formulation of this thermoviscoelasticity problem and study the existence and uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients of the constitutive equation, viscosity which depends on the absolute temperature T(x, t) and thus in particular on the time t. Finally, we state in this setting the related optimal control problem of the deformation of the semi-transparent body $\Omega$, by acting on the absolute temperature of the black radiative source surrounding it. We prove the existence of an optimal control and we compute the Fréchet derivative of the associated reduced cost functional