Academic literature on the topic 'Expanded polystyrene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Expanded polystyrene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Expanded polystyrene"
Bedanta, Sagar, Sonam Mishra, Aloka Kumar Rout, Abinash Mohanty, and Ananya punyotoya Parida. "Expanded Polystyrene Concrete." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 1466–70. http://dx.doi.org/10.22214/ijraset.2022.42547.
Full textBedeković, Gordan, Ivana Grčić, Aleksandra Anić Vučinić, and Vitomir Premur. "RECOVERY OF WASTE EXPANDED POLYSTYRENE IN LIGHTWEIGHT CONCRETE PRODUCTION." Rudarsko-geološko-naftni zbornik 34, no. 3 (2019): 73–80. http://dx.doi.org/10.17794/rgn.2019.3.8.
Full textKang, Suk-Pyo, and Byoung-Il Hwang. "Characteristic of Light Weight Mortar using Waste Expanded Polystyrene and Expanded Polystyrene Beads." Journal of the Korea Institute of Building Construction 17, no. 5 (October 20, 2017): 393–401. http://dx.doi.org/10.5345/jkibc.2017.17.5.393.
Full textADEALA, Adeniran Jolaade, and Olugbenga Babajide SOYEM. "Structural Use of Expanded Polystyrene Concrete." International Journal of Innovative Science and Research Technology 5, no. 6 (July 10, 2020): 1131–38. http://dx.doi.org/10.38124/ijisrt20jun849.
Full textFerrándiz-Mas, V., and E. García-Alcocel. "Durability of expanded polystyrene mortars." Construction and Building Materials 46 (September 2013): 175–82. http://dx.doi.org/10.1016/j.conbuildmat.2013.04.029.
Full textCurtis, C. F., and J. Minjas. "Expanded polystyrene for mosquito control." Parasitology Today 1, no. 1 (July 1985): 36. http://dx.doi.org/10.1016/0169-4758(85)90106-1.
Full textIIZUKA, Atsushi, Atsushi MIZUKOSHI, Kyoko SAITO, Takako YAMAKI, Miyuki NOGUCHI, and Yukio YANAGISAWA. "Emission flux of styrene monomer from expanded polystyrene beads and expanded polystyrene-used products." Indoor Environment 13, no. 2 (2010): 155–61. http://dx.doi.org/10.7879/siej.13.155.
Full textHoang Minh, Duc, and Ly Le Phuong. "Effect of matrix particle size on EPS lightweight concrete properties." MATEC Web of Conferences 251 (2018): 01027. http://dx.doi.org/10.1051/matecconf/201825101027.
Full textHerki, B. A., and Jamal M. Khatib. "Lightweight Concrete Incorporating Waste Expanded Polystyrene." Advanced Materials Research 787 (September 2013): 131–37. http://dx.doi.org/10.4028/www.scientific.net/amr.787.131.
Full textCole, Janet C., and Diane E. Dunn. "Expanded Polystyrene as a Substitute for Perlite in Rooting Substrate." Journal of Environmental Horticulture 20, no. 1 (March 1, 2002): 7–10. http://dx.doi.org/10.24266/0738-2898-20.1.7.
Full textDissertations / Theses on the topic "Expanded polystyrene"
Bergström, Jonathan, and Christoffer Åhman. "Shear strain rate dependency of expanded polystyrene foam." Thesis, KTH, Hållfasthetslära (Inst.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254623.
Full textTrussoni, Matthew. "Fracture Properties of Concrete Containing Expanded Polystyrene Aggregate Replacement." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/285.
Full textZou, Yong, University of Western Sydney, of Science Technology and Environment College, and School of Engineering and Industrial Design. "Behavior of the expanded polystyrene(EPS)geofoam on soft soil." THESIS_CSTE_EID_Zou_Y.xml, 2001. http://handle.uws.edu.au:8081/1959.7/792.
Full textDoctor of Philosophy (PhD)
Zou, Yong. "Behavior of the expanded polystyrene (EPS) geofoam on soft soil /." View thesis View thesis View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030428.112945/index.html.
Full textA thesis submitted for the degree of Doctor of Philosophy, School of Civic Engineering and Environment, University of Western Sydney, Nepean, January, 2001. Bibliography : p. 215-225.
CALHEIROS, ALENA VITKOVA. "ANALYSIS OF THE BEHAVIOR OF REINFORCED SOIL WITH EXPANDED POLYSTYRENE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35637@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Este estudo apresenta o comportamento de solos reforçados com adição de pérolas de EPS (Poliestireno Expandido) através de estudo experimental. Os solos utilizados foram: um solo argiloso de origem coluvionar, uma areia limpa, mal graduada e bentonita. Foram realizados ensaios de caracterização física e de caracterização mecânica, como ensaios de compactação Proctor Normal, ensaios triaxiais consolidados isotropicamente drenados (CID) e ensaios de cisalhamento direto para buscar estabelecer padrões de comportamento que possam explicar a influência da adição de pérolas de EPS, relacionando-a com os parâmetros de resistência ao cisalhamento. Os ensaios triaxiais CID foram realizados em amostras de solo argiloso compactadas na densidade máxima seca e umidade ótima, com teores de pérolas de EPS de 0 por cento, 0,25 por cento, 0,50 por cento, 0,75 por cento e 1 por cento, em relação ao peso seco do solo e os ensaios triaxiais CID em amostras de areia foram realizados para uma densidade relativa de 50 por cento e umidade de 10 por cento, com teores de pérolas de EPS de 0 por cento, 0,50 por cento e 0,75 por cento, em relação ao peso seco do solo. Os ensaios de cisalhamento direto com bentonita foram realizados com teores de pérolas de EPS de 0 por cento, 0,50 por cento e 0,75 por cento, em relação ao peso seco do solo. Os resultados mostraram que o tipo de solo, o teor de pérolas de EPS e o nível de tensão confinante influenciam positivamente o comportamento mecânico final dos compósitos com relação aos parâmetros de resistência, porém não há uma tendência de comportamento bem definida ao analisar cada fator independentemente. Portanto, o uso de pérolas de EPS em obras geotécnicas de carregamento estático contribuiria com o menor consumo de material natural e a consequente redução dos custos de transporte e volume de material mobilizado.
This study presents the behavior of soils reinforced with EPS (Expanded Polystyrene) beads through experimental study. The soils used were a coluvionar soil, a clean and barely graduated sand and bentonite. Physical characterization, Standard Proctor, consolidated drained triaxial and direct shear tests were performed to establish patterns of behavior that may explain the influence of the addition of expanded polystyrene beads, linking it with shear strength parameters. The CID triaxial was performed on samples of clayey soil compacted within the maximum dry density and optimum moisture content with expanded polystyrene beads ratios of 0 percent, 0.25 percent, 0.50 percent, 0.75 percent and 1 percent by dry weight of soil. CID triaxial tests on sand samples were made to a relative density of 50 per cent and 10 per cent of moisture content, with EPS beads ratios of 0 percent, 0.50 percent and 0.75 percent by dry weight of soil. The direct shear tests with bentonite were made with EPS beads ratios of 0 percent, 0.50 percent and 0.75 percent by dry weight of soil. The results showed that the kind of soil, the EPS content and level of confining stress level influence positively on the final mechanical behavior of the composites with respect to strength parameters, but there is no well-defined pattern of behavior to examine each factor independently. Therefore, the use of EPS beads in geotechnical works, contribute to lower consumption of natural material and the consequent reduction in transport costs and volume of mobilized material.
Nguyen, Viet Anh. "A study on Textile Reinforced - and Expanded Polystyrene Concrete sandwich beams." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-158948.
Full textIn dieser Arbeit wurde eine neue Sandwichkonstruktion untersucht, für die Textilbeton, ein Werkstoff mit geringer Dicke und gleichzeitig hoher Zug- und Druckfestigkeit, mit leichten Kernmaterialien kombiniert wurde. Aufgrund der geringen Festigkeit der Kernmaterialien werden in vielen Sandwichkonstruktionen zusätzliche Schubverbinder benötigt, um eine ausreichende Tragfähigkeit zu erreichen. Dies führte zu der Idee, Expanded Polystyrene Concrete (EPC) als höherfestes Kernmaterial zu verwenden, das keine zusätzlichen Verbindungsmittel benötigt. Damit entsteht eine neuartige Sandwichkonstruktion, die nicht nur eine Lösung für die Entwicklung neuer leichter Strukturen ist, sondern auch für Umweltprobleme. Diese Idee wurde in dieser Arbeit durch theoretische und experimentelle Untersuchungen an Textilbeton-EPC-Sandwichbalken umgesetzt. Zunächst wurden Materialuntersuchungen an EPC durchgeführt, um nachzuweisen, dass es möglich ist, EPC mit einer Dichte von rund 950 kg/m³ mit recyceltem EPS herzustellen. Für die anschließenden Untersuchungen an 18 Sandwichbalken wurde dann ein EPC mit einer Dichte von 920 kg/m³ und einer Druckfestigkeit von 5,2 N/mm² ausgewählt. In 6 Serien von Sandwichbalken wurden 4-Punkt-Biegeversuche mit Schubschlankheiten von 1,5 bis 5,2 durchgeführt. Die Bruchmomente aller Balken waren geringer als die rechnerische Momententragfähigkeit des Querschnitts und die Tragfähigkeit war stark von der Schubschlankheit abhängig. Es wurden Berechnungen zur Schubtragfähigkeit nach den verschiedenen internationalen Normen durchgeführt. Aufgrund ihrer allgemeingültigen Form ergaben ACI 318-05 und EC2 sehr konservative Ergebnisse für Schubschlankheiten kleiner als 5,2. Die Formulierung des CEB-FIB Model Code 1990 war besser geeignet, die Abhängigkeit der Schubtragfähigkeit von der Schubschlankheit abzubilden. Für die Balken mit Schubschlankheiten a/d=1,5 bis 2,1 brachten Stabwerkmodelle ausreichend gute Ergebnisse. In Fällen mit a/d>2,1 ergab das Modell von Zink die besten Übereinstimmungen. Um die Abhängigkeit der Schubtragfähigkeit von der Schubschlankheit besser erfassen zu können, wurde eine neue Berechnungsgleichung für Textilbeton-EPC-Balken vorgeschlagen. Um das Last-Verformungsverhalten der experimentellen Untersuchungen beschreiben zu können, wurden FEM-Modelle mit der Software ATENA entwickelt. Es wurden verschiedene Modelle untersucht, die den Verbund zwischen dem textilen Gelege und dem Feinbeton unterschiedlich stark berücksichtigten. Die Tragfähigkeit der untersuchten Balken wurde mit den FEM-Modellen um ca. 26% bis 28% unterschätzt. Die Abweichungen in den berechneten Durchbiegungen betrugen für die Balken mit a/d>2,5 ca. 22% bis 23%. Abschließend wurde ein Ingenieurmodell auf Grundlage der Sandwichtheorie entwickelt, mit dem das Last-Verformungsverhalten dieser Sandwichkonstruktion gut beschrieben werden kann. Mit dem Modell ergaben sich Abweichungen von -24% bis +12% zwischen experimentellen und theoretisch ermittelten Verformungen. Die Tragfähigkeit wurde mit einer Abweichung von 15% bis 34% unterschätzt
Butkute, Rasa. "Investigations on the Influence of Different Factors on the Expanded Polystyrene Mechanical and Deformative Properties." Thesis, KTH, Byggnadsteknik, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-35206.
Full textCarneiro, Neto Mozart Mariano. "Avaliação da degradação do poliestireno expandido (geofoam) por meio de ensaios de laboratório /." Bauru, 2019. http://hdl.handle.net/11449/191150.
Full textResumo: O poliestireno expandido (EPS), que entre vários materiais, também da origem a um gessintético, o geoexpandido, que é muito utilizado em obras geotécnicas, pois quando comparado a outros materiais, possui um menor peso específico o que diminui o peso próprio da estrutura, minimizando eventuais recalques. Além disso, a combinação de alta resistência e baixa compressibilidade o tornam uma boa escolha para obras geotécnicas. No entanto, o EPS é extremamente susceptível a solventes, hidrocarbonetos e raios ultravioletas. Nesse sentido, poucos trabalhos tem explorado os aspectos de degradação do material em aplicações geotécnicas. Assim, o presente trabalho avaliou a degradação do poliestireno expandido (EPS) por meio de ensaios laboratoriais. Para tanto, utilizaram-se amostras de EPS em cinco diferentes massas específicas, a saber: 10,0, 14,5, 18,0, 22,0 e 33,5 kg/m³. O processo de degradação das amostras foi avaliado por meio da exposição à intempérie por catorze, trinta e quarenta e cinco dias e exposição ao vapor de gasolina por sete, catorze e trinta dias. Para avaliação do processo degradativo foram realizados ensaios de absorção de água, compressão uniaxial e cisalhamento direto de interface (EPS/EPS). Os ensaios foram realizados após cada período de exposição e os resultados obtidos foram comparados aos valores de referência das amostras intactas. Os resultados mostram que os valores de absorção de água, para ambos os tipos de exposição, apresentam comportamento similar, d... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Expanded polystyrene (EPS), which among many materials, also gives rise to a gessynthetic, geo-expanded, which is widely used in geotechnical works, because when compared to other materials, has a lower specific weight which decreases the structure's own weight. , minimizing any repression. In addition, the combination of high strength and low compressibility make it a good choice for geotechnical works. However, EPS is extremely susceptible to solvents, hydrocarbons and ultraviolet rays. In this sense, few studies have explored the degradation aspects of the material in geotechnical applications. Thus, the present work evaluates the degradation of expanded polystyrene (EPS) by results of laboratory tests. For this purpose, EPS samples were used in five different specific masses, namely: 10.0, 14.5, 18.0, 22.0 and 33.5 kg/m³. The degradation process of the samples was evaluated by exposure to the weather for fourteen, thirty and forty five days and exposure to gasoline vapor for seven, fourteen and thirty days. To evaluate the degradation process water absorption, uniaxial compression and (EPS/EPS) interface direct shear tests were performed. The tests were performed after each exposure period and the results obtained were compared to the reference values of the fresh samples. The main results show that the water absorption values, for both types of exposure, present similar behavior, so that the absorption is inversely proportional to the specific mass. Regarding uniaxial re... (Complete abstract click electronic access below)
Mestre
Gaskin, Andrew Peter. "Geofoam buffers for rigid walls, an investigation into the use of expanded polystyrene for seismic buffers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0013/MQ52901.pdf.
Full textKligys, Modestas. "Production technology and properties of composite material made out of porous cement paste and crushed expanded polystyrene." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20091204_085542-55180.
Full textSukurta skirtingo tankio kompozitinė medžiaga, kurioje matrica yra poringoji cemento tešla, o intarpai - trupintos polistireninio putplasčio pakavimo taros atliekos. Parinktos minėtos kompozitinės medžiagos formavimo mišinių sudėtys, gamybos technologiniai parametrai ir ištirtos jos bandinių savybės.
Books on the topic "Expanded polystyrene"
executive, Health and safety. Expanded polystyrene moulding machines. London: H.M.S.O., 1986.
Find full textexecutive, Health and safety. Expanded Polystyrene Moulding Machines. Health and Safety Executive (HSE), 1986.
Find full textNational Risk Management Research Laboratory (U.S.) and University of Tennessee, Knoxville. Center for Clean Products and Clean Technologies, eds. Demonstration of packaging materials alternatives to expanded polystyrene. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1998.
Find full textRitter, Paul. Concrete Fit for People: A Practical Introduction to a Bio-Functional Eco-Architecture for the Third Millennium A. D. Elsevier Science & Technology Books, 2013.
Find full textBook chapters on the topic "Expanded polystyrene"
Gooch, Jan W. "Expanded Polystyrene." In Encyclopedic Dictionary of Polymers, 285. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4658.
Full textCarvalho, David, Roberto Kassouf, Pedro Scatena, and Vilson Scatena. "Expanded Polystyrene in Soil Reinforcement." In Advancements in Geotechnical Engineering, 121–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62908-3_9.
Full textPaine, F. A. "Moulded pulp, expanded polystyrene, moulded and thermoformed plastic containers." In The Packaging User’s Handbook, 313–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-1483-7_16.
Full textKang, Dominic, Paul Ong, and Jan Roël. "Building Floating Aquaculture Farms with Expanded Polystyrene in Singapore." In Lecture Notes in Civil Engineering, 201–18. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2256-4_13.
Full textBin Syed Mustafa, Syed Anas, Rahmah Mohamed, Wan Bahira, and K. Rasidan. "Flame Retardancy of Polymeric Building Material with Recycled Expanded Polystyrene Filler." In ICGSCE 2014, 403–9. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-505-1_47.
Full textYou, Quan, Linchang Miao, Chao Li, Shengkun Hu, and Huanglei Fang. "Study on Strength of Expanded Polystyrene Concrete Based on Orthogonal Test." In Springer Series in Geomechanics and Geoengineering, 644–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97112-4_144.
Full textWang, Chuanqi, David Arellano, and Roger Meier. "Creep Behavior of Recycled-Content Expanded Polystyrene Geofoam Under Compressive Loading." In 5th International Conference on Geofoam Blocks in Construction Applications, 151–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78981-1_12.
Full textAdegboyega, Lateef Adewole, and Rita Yi Man Li. "Expanded Polystyrene Wall and Conventional Concrete Wall Sustainability Issues in Housing." In Advances in Manufacturing, Production Management and Process Control, 200–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80462-6_25.
Full textDeshmukh, Rohan, Saivignesh Iyer, Prathamesh Bhangare, Muntazir Bhat, and Shantanu Upadhyay. "The Relevance of Expanded Polystyrene Beads for Ground Improvement: A Review." In Lecture Notes in Civil Engineering, 181–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1993-9_19.
Full textSan-Antonio González, A., M. del Río Merino, R. Martínez Martínez, and P. Villoria Sáez. "Properties of Lightweight Plaster Materials Made With Expanded Polystyrene Foam (EPS)." In Construction and Building Research, 413–17. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7790-3_50.
Full textConference papers on the topic "Expanded polystyrene"
Mánik, Marek, and Igor Medveď. "Transmission of water vapor through expanded polystyrene." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2020 (CEST 2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0025754.
Full textA. H, Padade, and Mandal J. N. "Feasibility Studies on Expanded Polystyrene (EPS) Geofoams." In International Conference on Ground Improvement & Ground Control. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3560-9_03-0310.
Full textHorma, Othmane, Mouatassim Charai, Ahmed Mezrhab, and Mustapha Karkri. "Thermal Characterization of Cement-Plaster-Expanded Polystyrene Composites." In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). IEEE, 2020. http://dx.doi.org/10.1109/redec49234.2020.9163883.
Full textPadade, A. H., S. Dutta, M. B. Nadaf, B. Ram Rathan Lal, and J. N. Mandal. "Expanded Polystyrene (EPS) Geofoam Unit Cells with Fly Ash." In Geo-Chicago 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784480144.004.
Full textRamos, Williams, Valery Zamudio, Erick Villegas, Herbert Manrique, and Victor Pretell. "Pyrolysis of Expanded Polystyrene Waste to Obtain Liquid Fuels." In 20th LACCEI International Multi-Conference for Engineering, Education and Technology: “Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions”. Latin American and Caribbean Consortium of Engineering Institutions, 2022. http://dx.doi.org/10.18687/laccei2022.1.1.353.
Full textAyed, Rabeb, Sara Baddadi, Amira Dellagi, Salwa Bouadila, and Mariem Lazaar. "Thermal behavior improvement of building materials using expanded polystyrene." In 2022 13th International Renewable Energy Congress (IREC). IEEE, 2022. http://dx.doi.org/10.1109/irec56325.2022.10002016.
Full textDeling Wang and Richard J. Bathurst. "Research on shock mitigation on circular tunnels using expanded polystyrene." In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5775176.
Full textZhu, Wei, Mingdong Li, Chunlei Zhang, and Gan Zhao. "Density and Strength Properties of Sand-Expanded Polystyrene Beads Mixture." In GeoCongress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40972(311)5.
Full textBanciu, Cristina, Adela Bara, Elena Chitanu, Marius Lungulescu, Ioana Ion, and Lucia Leonat. "Filtering membranes based on electrospun expanded polystyrene/β-cyclodextrin fibers." In 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE, 2017. http://dx.doi.org/10.1109/atee.2017.7905084.
Full textPadadea, A. H., and J. N. Mandal. "Compressive Strength And Flammability Characteristics Of Expanded Polystyrene (Eps) Geofoam." In 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference (1AGSSEA). Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-4948-4_339.
Full textReports on the topic "Expanded polystyrene"
Zaar, R. R., M. W. Davis, and E. H. Anderson. Room-temperature thermal conductivity of expanded polystyrene board for a standard reference material. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5838.
Full textZarr, Robert R., and Adam L. Pintar. Standard Reference Materials: SRM 1453, Expanded Polystyrene Board, for Thermal Conductivity from 281 K to 313 K. Gaithersburg, MD: National Institute of Standards and Technology, December 2012. http://dx.doi.org/10.6028/nist.sp.260-175.
Full text