Academic literature on the topic 'Expansing planning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Expansing planning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Expansing planning"

1

Bashiri, Mahdi, and Hossein Badri. "A Dynamic Model for Expansion Planning of Multi Echelon Multi Commodity Supply Chain." International Journal of Engineering and Technology 2, no. 1 (2010): 85–93. http://dx.doi.org/10.7763/ijet.2010.v2.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hincapié-Isaza, Ricardo Alberto, Juan Manuel Home-Ortíz, and Ramón Alfonso Gallego-Rendón. "Nuevo modelo para la expansión de sistemas eléctricos de distribución con generación distribuida considerando un planeamiento multi-etapa coordinado." Ingeniería, investigación y tecnología 18, no. 1 (2017): 43–53. http://dx.doi.org/10.22201/fi.25940732e.2017.18n1.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, John F. "Planning a dairy expansion." Kansas Agricultural Experiment Station Research Reports, no. 2 (January 1, 1997): 5–9. http://dx.doi.org/10.4148/2378-5977.3283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ruiz, C., and A. J. Conejo. "Robust transmission expansion planning." European Journal of Operational Research 242, no. 2 (2015): 390–401. http://dx.doi.org/10.1016/j.ejor.2014.10.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Shengyu, and Xufeng Song. "A Framework to Include Wind-Thermal Bundled Power Transmission Pattern in Multi-region Generation Expansion Planning Model." Journal of Clean Energy Technologies 5, no. 2 (2017): 159–62. http://dx.doi.org/10.18178/jocet.2017.5.2.362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shu, Jun, Lei Wu, Lizi Zhang, and Bing Han. "Spatial Power Network Expansion Planning Considering Generation Expansion." IEEE Transactions on Power Systems 30, no. 4 (2015): 1815–24. http://dx.doi.org/10.1109/tpwrs.2014.2358237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saldarriaga-Zuluaga, Sergio D., Jesús M. Lopez-Lezama, and Nicolás M. Galeano. "Planeamiento de la expansión integrada generación-transmisión: una revisión del estado del arte." TecnoLógicas 19, no. 37 (2016): 79. http://dx.doi.org/10.22430/22565337.83.

Full text
Abstract:
En la última década, un gran número de trabajos de investigación han abordado el problema de la expansión de los sistemas de potencia, coordinando en un solo problema de optimización el planeamiento de expansión de la generación (GEP, Generation Expansion Planning) y el planeamiento de expansión de la transmisión (TEP, Transmission Expansion Planning). El GEP normalmente se lleva a cabo sin tener en cuenta las restricciones de red y desde una perspectiva energética. Por otro lado, el TEP busca encontrar los refuerzos en la red, que atiendan una demanda futura de forma económica y confiable. La integración de estos problemas ha sido abordada utilizando diferentes métodos, modelos y funciones objetivo. En este artículo se presenta una revisión bibliográfica del problema del planeamiento integrado GEP-TEP desde diferentes puntos de vista como su modelado, métodos de solución, consideraciones de confiabilidad, entre otros. En la literatura especializada se encuentran artículos de revisión que caracterizan de forma independiente los problemas GEP y TEP. Sin embargo, no se encuentran revisiones que aborden problema GEP-TEP integrado. Surge entonces la necesidad de caracterizar los aspectos del planeamiento de la expansión integrada de los sistemas de potencia, con el propósito de proporcionar herramientas de consulta para los investigadores en este campo.
APA, Harvard, Vancouver, ISO, and other styles
8

Khodaei, Amin, Mohammad Shahidehpour, and Saeed Kamalinia. "Transmission Switching in Expansion Planning." IEEE Transactions on Power Systems 25, no. 3 (2010): 1722–33. http://dx.doi.org/10.1109/tpwrs.2009.2039946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drachev, Pavel Sergeyevich, and Victor Vasilyevich Trufanov. "Market-Based Transmission Expansion Planning." Energy and Power Engineering 04, no. 06 (2012): 387–91. http://dx.doi.org/10.4236/epe.2012.46051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Božić, Z., and E. Hobson. "Urban underground network expansion planning." IEE Proceedings - Generation, Transmission and Distribution 144, no. 2 (1997): 118. http://dx.doi.org/10.1049/ip-gtd:19970850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Expansing planning"

1

Zhang, Xuan. "Adaptive Robust Stochastic Transmission Expansion Planning." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1542811409691546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GONZALEZ, JUAN PABLO LEAL. "TRANSMISSION EXPANSION PLANNING CONSIDERING ENERGY STORAGE SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36061@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>PROGRAMA DE EXCELENCIA ACADEMICA<br>O planejamento da expansão da transmissão (PET) visa identificar novos reforços para a rede, permitindo uma conexão tecnicamente adequada entre demanda e geração de energia elétrica, ambas previstas para um determinado horizonte de planejamento. Um bom plano de expansão deve garantir o equilíbrio entre os custos de investimento e operação, mantendo um nível satisfatório de segurança no fornecimento de energia elétrica. Entretanto, a identificação de bons planos de expansão para o PET tem se tornado uma tarefa cada vez mais difícil. Isso se deve, principalmente, às características e dimensões dos sistemas atuais, a não linearidade e natureza combinatória do problema de otimização e às incertezas presentes nos dados. Os erros de previsão, a indisponibilidade de equipamentos e a disponibilidade dos recursos naturais são parâmetros que variam de forma aleatória e inserem um alto grau de incerteza nos sistemas elétricos, o qual aumenta proporcionalmente com o horizonte de planejamento. Uma das incertezas mais relevantes a ser gerenciada nas próximas décadas será a capacidade de geração oriunda de fontes renováveis, em particular as eólicas, devido à sua grande variabilidade. A utilização de dispositivos de armazenamento permitirá melhor aproveitamento dessas fontes e, portanto, torna-se necessário o desenvolvimento de ferramentas computacionais capazes de considerar tais dispositivos no problema PET. Esta dissertação apresenta uma nova metodologia de apoio ao problema PET inserindo armazenadores de energia elétrica para aumentar o aproveitamento de fontes renováveis no sistema. Isso, respeitando as restrições de segurança da rede, acompanhando à curva de demanda e levando em consideração as variáveis operativas destes dispositivos. A possibilidade de incluir sistemas de armazenamento de energia elétrica é avaliada através de uma análise custo-benefício. A metodologia proposta é aplicada a um sistema teste, submetido a diversas condições operativas, e os resultados obtidos são amplamente discutidos.<br>The transmission expansion planning (TEP) aims at identifying new reinforcements for the network, allowing a technically adequate connection between demand and generation of electric energy, both foreseen for a given planning horizon. A good expansion plan must ensure a balance between investment and operating costs, while maintaining a satisfactory level of security of the electric energy supply. However, identifying good expansion plans for TEP has become an increasingly difficult task. This is mainly due to the characteristics and dimensions of the current systems, the nonlinearity and combinatorial nature of the optimization problem, and the uncertainties present in the data. Forecasting errors, equipment unavailability, and the availability of natural resources are parameters that vary in a random way and insert a high degree of uncertainty in the electrical system, which proportionally increases with the planning horizon. One of the most relevant uncertainties to be managed in the upcoming decades will be the generation capacity from renewable sources, particularly wind power, due to its great variability. Storage devices will allow better use of these sources and, therefore, it becomes necessary to develop computational tools capable of considering such devices in the TEP problem. This dissertation presents a new methodology to support the TEP problem by inserting electric energy storage to increase the use of renewable energy in the system, while respecting the security restrictions of the network, following the demand curve and taking into account the operational variables of these devices. The possibility of including electric energy storage systems is evaluated through a costbenefit analysis. The proposed methodology is applied to a test system, subject to various operating conditions, and the obtained results are widely discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Gadzanku, Sika. "Evaluating electricity generation expansion planning in Ghana." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122096.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2019<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 157-166).<br>Ghana, a West African nation of 28 million people, provides an interesting case study on the interaction between power supply and politics in emerging economies. From 2012-2016, due to security of supply issues around hydro and fuel supplies, Ghana experienced the worst power crisis in its history with regular rolling blackouts. Rural and low-income urban areas and businesses were especially affected, and public discontent was palpable. The government's response was a reactive approach to generation expansion planning, focused on increasing supply. Power generation was opened up to the private sector and emergency power plants were procured. 93 percent of capacity installed during this post-crisis period was thermal generation, which increased dependence on natural gas and crude oil. Overall, this power crisis highlighted the cost of overlooking reliability and an undiversified generation mix.<br>I adapted a modeling framework to study Ghana's power generation system and I use a bottom-up capacity expansion and economic dispatch model to explore generation expansion pathways in the country under different settings, with the goal of providing insights into Ghana's capacity expansion decisions and identifying strategies that can help ensure better reliability and resiliency. Secondly, I use qualitative methods to evaluate Ghana's electricity infrastructure project financing framework to discuss how project financing shapes technology choices. I then explore potential policy and legal instruments that could support more robust systems planning in Ghana's electricity generation sector. Results reveal that a future power crisis is very likely given the high sensitivity of system reliability and resilience to natural gas and crude oil supply, global energy prices and transmission constraints.<br>Strategies that could help avoid a future crisis include diversifying the generation mix, adding flexible generation (such as pumped hydro) to the mix, increasing transmission, and increasing the stability of fuel supply. This requires a holistic and coordinated approach to electricity planning between financial, technical, technological and political actors in the power generation sector.<br>by Sika Gadzanku.<br>S.M. in Technology and Policy<br>S.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Cheuk-wing. "Transmission expansion planning in a restructured electricity market." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38959410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Cheuk-wing, and 李卓穎. "Transmission expansion planning in a restructured electricity market." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38959410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Esmaeelnezhad, Ali. "Stochastic long-term transmission expansion planning with HVDC links." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
The ever-increasing load demand all across the world has led to increasing the demand for energy. The major part of this demand is supplied through conventional power plants with fossil fuels. Recently, the concern on environmental emissions has increased, which in turn put pressure on power systems as one of the main sectors in contributing to environmental emissions. Accordingly, different countries have started installing renewable energies to alleviate these concerns and mitigate environmental emissions. These green technologies have been being installed either as centralized plants, for example, wind farms, or as distributed energy resources (DERs) in distribution networks. If such huge wind farms connect to the transmission system, they may bring severe challenges to the system, such as transmission network congestion. On the other hand, in some cases, these wind sites are located far from the main power system. Thus, it is required to expand the existing power system by constructing new corridors to connect them to the transmission system. High voltage DC technologies have also been introduced as efficient systems with numerous merits. In this regard, this dissertation seeks to address the long-term AC/DC transmission expansion planning to connect distant wind farms to the power system. The problem has been modeled both deterministically and stochastically within a multi-objective mixed-integer quadratically constrained programming framework, aimed at minimizing the total cost and transmission line loading. The total cost is comprised of the total investment cost and the total operating cost. Then, the problem is solved by using the normal boundary intersection method as an efficient mathematical multi-objective optimization technique, and the most preferred solution has been selected by utilizing the VIKOR decision maker. Different case studies have also been evaluated by simulating the problem using the Garver test system and IEEE reliability test system.
APA, Harvard, Vancouver, ISO, and other styles
7

Brovold, Sondre Heen. "Implementing Hydropower Scheduling in a European Expansion Planning Model." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27243.

Full text
Abstract:
This Master&#146;s thesis proposes a method for implementing an enhanced hydropower planning formulation in a long-term expansion planning model. The motivation for this work is the important role that hydropower plays in a generation investment environment. In a time where penetration of intermittent renewable energy sources like wind and solar power is heavily increasing, new challenges in the continuous balancing of supply and demand are also introduced. Hydropower and its use of reservoirs as power batteries can respond more or less immediately to such fluctuations. As such, a detailed framework for hydropower scheduling is highly relevant.The presented implementation is carried out in an already-existing expansion planning model for Europe called EMPIRE, which is written in Mosel Xpress. This is a two-stage stochastic optimization model whose objective function is to minimize the total net present value of expected operational costs and investment costs for generation and transmission capacities.The main feature of the proposed framework involves penalization of hydropower through water values. This necessitates a complete hydropower scheduling representation where each reservoir is divided into segments which are assigned a fictitious marginal cost. The inclusion of water values enables comparability with the short-run marginal cost for competitive technologies and introduces the important aspect of conserving water for other periods of the year. Data from SINTEF Energy Research has been used for this purpose.Results from optimization runs in the time span from 2010 to 2060 for an EU 20-20-20 like policy scenario show that the original hydropower availability is too relaxed, thereby causing an overvaluation of this technology. The revamped cost representation by means of water values leads to a lower utilization of hydropower relative to the original model. An earlier deployment of solar power is carried out to replace the lower generation, with a capacity difference between the final and original models peaking at 45% in 2040. Total costs in the system are therefore increased. For both models extensive investments in intermittent renewables are taking place, amounting to 47% of the total capacity in 2060.
APA, Harvard, Vancouver, ISO, and other styles
8

ALMEIDA, JERSON ERASMO LEON. "TRANSMISSION EXPANSION PLANNING CONSIDERING THE INTERMITTENCY OF WIND GENERATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32774@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO<br>O planejamento da expansão da transmissão (PET) visa identificar os novos reforços a serem implementados na rede do sistema elétrico de potência, necessá-rios para assegurar uma adequada interligação entre a demanda e a geração do sistema, ambas previstas para o horizonte de planejamento. Um bom plano de expansão deve garantir o equilíbrio entre os custos de investimento e operação, mantendo um nível satisfatório de continuidade no fornecimento de energia. En-tretanto, a identificação de boas soluções para o PET tem se tornado uma tarefa cada vez mais difícil. Isso se deve, principalmente, às características e dimensões dos sistemas atuais, incluindo o aumento na dependência de fontes renováveis, e à não linearidade e natureza combinatória do problema de otimização. Nesta dissertação é proposta uma nova metodologia para resolver o proble-ma PET com alta penetração de energia renovável, em particular a eólica. A me-todologia é baseada na aplicação de uma nova ferramenta de otimização para so-lução do PET estático, a qual é classificada como metaheurística construtiva, onde soluções viáveis de boa qualidade são paralelamente construídas a partir da topo-logia inicial, por meio de adições graduais de reforços mais atrativos para a rede. Outras heurísticas são também utilizadas. Ênfase é dada à modelagem de cenários de geração eólica, que representam a energia renovável da rede a ser planejada, a qual deverá permitir uma operação flexível e adaptada à intermitência destas fon-tes. São utilizados o critério de segurança N-1 e o modelo linear DC de rede, com a consideração de perdas ôhmicas. Uma variante do sistema IEEE RTS, com inserção de fontes eólicas, é utilizada para testar a metodologia proposta.<br>Transmission expansion planning (TEP) aims to identify the new reinforce-ments to be installed in the electric power system, necessary to ensure an adequate interconnection between demand and generation of the system, both foreseen for the planning horizon. A good expansion plan should ensure a balance between investment and operating costs, while maintaining a satisfactory level of continui-ty in the energy supply. However, identifying good expansion solutions for TEP has become an increasingly difficult task. This is mainly due to the characteristics and dimensions of the current systems, including the increase in the dependence of renewable sources, and the nonlinearity and combinatorial nature of the optimi-zation problem. In this dissertation, a new methodology is proposed to solve the TEP prob-lem with high penetration of renewable energy, in particular wind power. The methodology is based on the application of a new optimization tool for static TEP solution, which is classified as a constructive metaheuristic, where feasible solu-tions of good quality are simultaneously constructed from the initial topology of the network, through incremental additions of reinforcements more attractive to the grid. Other heuristics are also used. Emphasis is given to the modeling of wind power scenarios, which represent the renewable energy of the network to be planned, which should allow a flexible operation and adapted to the intermittency of these sources. The security criterion N-1 and the linear DC network model are used, with the consideration of ohmic losses. A variant of the IEEE RTS sys-tem, with insertion of wind sources, is used to test the proposed methodology.
APA, Harvard, Vancouver, ISO, and other styles
9

ASSIS, FERNANDO APARECIDO DE. "CONSTRUCTIVE METAHEURISTIC ALGORITHM FOR SOLVING TRANSMISSION EXPANSION PLANNING PROBLEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35771@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO<br>PROGRAMA DE EXCELENCIA ACADEMICA<br>O planejamento da expansão da transmissão (PET) visa identificar reforços para a rede a fim de permitir uma adequada interligação entre a demanda e a geração de energia elétrica, ambas previstas para um determinado horizonte futuro de planejamento. Um bom plano de expansão deve garantir o adequado equilíbrio entre o custo de investimento e o custo de operação, mantendo ainda um nível satisfatório de confiabilidade no fornecimento da energia. Entretanto, a identificação de bons planos de expansão para a rede de transmissão tem se tornado uma tarefa cada vez mais difícil. Isso se deve, principalmente, às características e dimensões dos sistemas atuais e, ainda, às incertezas inerentes ao problema. Dessa forma, torna-se necessário o desenvolvimento de ferramentas cada vez mais ela-boradas para auxílio dos planejadores. Neste sentido, é proposto nesta tese de dou-torado um algoritmo metaheurístico construtivo, denominado AMC-PET, o qual realiza um processo gradual e concomitante de construção de soluções viáveis (planos de expansão). Por meio de mecanismos baseados principalmente em índices de sensibilidade para avaliação dos reforços candidatos e na troca de informações entre as soluções correntes, o processo construtivo proposto é conduzido, parcimoniosamente, na direção de planos de excelente qualidade. Para validação da metodologia proposta, é utilizado o problema PET estático de longo prazo, considerando o critério de segurança N-1 para a rede de transmissão. Um mode-lo linearizado de rede com a inclusão de perdas ôhmicas é utilizado para análise das configurações obtidas. Dois sistemas teste, comumente utilizados neste tópico de pesquisa e, também, um sistema real de grande porte, que corresponde à rede elétrica do sul do Brasil, são empregados na validação.<br>The transmission expansion planning (TEP) aims to identify reinforcements for the network in order to allow an adequate interconnection between load and electric power generation, both foreseen for a given future planning horizon. A good expansion plan must ensure the proper balance between investment and operating costs, while preserving a satisfactory reliability level in the energy supply. However, identifying good expansion plans for the transmission network has become an increasingly difficult task. This is mainly due to the characteristics and dimensions of current power systems and also to the uncertainties inherent to the problem. Thus, it becomes necessary to develop even more elaborate tools to assist system planners. This doctoral thesis proposes a new optimization tool named constructive metaheuristic algorithm (CMA-TEP). The proposed CMA-TEP tool performs a gradual and parallel process of building feasible solutions (expansion plans). By means of mechanisms mainly based on sensitivity indices for the evaluation of candidate reinforcements and on the information exchange among current solutions, the proposed constructive process is parsimoniously conducted towards high quality plans. To verify the performance of the proposed methodology, the long-term static PET problem considering the N-1 security criterion for the transmission network is solved. A linearized network model with the inclusion of ohmic losses is used to analyze the obtained configurations. Two test systems, commonly utilized in this research area, and also a real large network, which corresponds to the electric grid of Southern Brazil, are used to validate the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
10

Yuan, Chenchen. "Optimal generation expansion planning for a low carbon future." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604882.

Full text
Abstract:
Due to energy scarcity coupled with environment issues, it is likely to see the biggest shift in generation portfolio in the UK and world wide, stimulated by various governmental incentives policies for promoting renewable generation and reducing emission. The generation expansion in the future will be driven by not only peak demand growth but also emission reduction target. Thus, the traditional generation expansion planning (GEP) model has to be improved to reflect this change against the new environment. The policy makers need a better assessment tool to facilitate the new environment, so they can make appropriate policies for promoting renewable generation and emission reduction, and guide the generation mix to evolve appropriately over time. Since the expansion of new generation capacities is highly capital intensive, it makes the improvement of GEP quite urgent and important. The thesis proposes the GEP modelling improvement works from the following aspects: • Integrating short-term emission cost, unit commitment constraints in an emission target constrained GEP model. • Including the network transmission constraints and generation location optimization in an emission constrained GEP. • Investigating the impacts of multi-stage emission targets setting on an emission constrained GEP problem and its overall expansion cost. • Incorporating the uncertain renewable generation expansion and short-term DSR into the GEP problem and find out its potential contributions to the GEP problem. A real case study is made to determine the optimal generation mix of the Great Britain in 2020 in order to meet the 2020 emission reduction target. Different optimal generation mixes of the UK in 2020 are identified under a series of scenarios. The scenarios are constructed according to different GB network transmission capacity hypotheses and demand side response (DSR) level scenarios.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Expansing planning"

1

Musiqi, L. The analysis of transmission network expansion planning. UMIST, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joint Task Force on Burnham Park Planning (Chicago, Ill.). Report on the McCormick Place Expansion Project. Chicago Plan Commission, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bristol (England). Planning, Transport and Development Services. Broadmead expansion: Draft planning strategy for the expansion of the Broadmead shopping area. Bristol City Council, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yates, Chris. Airport & aviation expansion. Jane's Information Group, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robertson, James R. Jail planning and expansion: Local officials and their roles. U.S. Dept. of Justice, National Institute of Corrections, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Orsino, Philip S. Successful business expansion: Practical strategies for planning profitable growth. J. Wiley & Sons, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doverspike, Robert, and Iraj Saniee, eds. Heuristic Approaches for Telecommunications Network Management, Planning and Expansion. Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-5392-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Robertson, James R. Jail planning and expansion: Local officials and their roles. 2nd ed. U.S. Dept. of Justice, National Institute of Corrections, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robertson, James R. Jail planning and expansion: Local officials and their roles. U.S. Dept. of Justice, National Institute of Corrections, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yates, Chris. Airport and aviation expansion. Jane's Information Group, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Expansing planning"

1

Conejo, Antonio J., Luis Baringo, S. Jalal Kazempour, and Afzal S. Siddiqui. "Transmission Expansion Planning." In Investment in Electricity Generation and Transmission. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29501-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conejo, Antonio J., Luis Baringo, S. Jalal Kazempour, and Afzal S. Siddiqui. "Generation Expansion Planning." In Investment in Electricity Generation and Transmission. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29501-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seifi, Hossein, and Mohammad Sadegh Sepasian. "Substation Expansion Planning." In Power Systems. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17989-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nwulu, Nnamdi. "Generation Capacity Expansion Planning." In Green Energy and Technology. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-00395-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nwulu, Nnamdi, and Saheed Lekan Gbadamosi. "Transmission Network Expansion Planning." In Green Energy and Technology. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-00395-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Muñoz-Delgado, Gregorio, Javier Contreras, and José M. Arroyo. "Distribution System Expansion Planning." In Electric Distribution Network Planning. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7056-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Conejo, Antonio J., Luis Baringo, S. Jalal Kazempour, and Afzal S. Siddiqui. "Generation and Transmission Expansion Planning." In Investment in Electricity Generation and Transmission. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29501-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Irnawan, Roni. "Planning of HVDC Link Expansion." In Planning and Control of Expandable Multi-Terminal VSC-HVDC Transmission Systems. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27488-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seifi, Hossein, and Mohammad Sadegh Sepasian. "Single-bus Generation Expansion Planning." In Power Systems. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17989-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seifi, Hossein, and Mohammad Sadegh Sepasian. "Multi-bus Generation Expansion Planning." In Power Systems. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17989-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Expansing planning"

1

Lynch, James P., and Joseph J. Slivka. "The Allentown Water Treatment Facility Expansion: Managing Expansion while Maintaining Operations." In 29th Annual Water Resources Planning and Management Conference. American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/40430(1999)79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, M., Z. Y. Dong, and T. K. Saha. "Transmission expansion planning flexibility." In 2005 International Power Engineering Conference. IEEE, 2005. http://dx.doi.org/10.1109/ipec.2005.207035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zakerinia, Mohammadsaleh, and Seyed Ali Torabi. "Multiobjective power expansion planning in the planning horizon." In 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply. IEEE, 2010. http://dx.doi.org/10.1109/citres.2010.5619813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Niharika, Sumit Verma, and Vivekananda Mukherjee. "Transmission expansion planning: A review." In 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS). IEEE, 2016. http://dx.doi.org/10.1109/iceets.2016.7583779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barbulescu, C., S. Kilyeni, G. Prostean, Petru Dan Cristian, F. Solomonesc, and D. Ungureanu. "Deregulated environment transmission expansion planning." In IEEE EUROCON 2011 - International Conference on Computer as a Tool. IEEE, 2011. http://dx.doi.org/10.1109/eurocon.2011.5929276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Babatunde, O. M., J. L. Munda, and Y. Hamam. "Generation Expansion Planning: A Survey." In 2018 IEEE PES/IAS PowerAfrica. IEEE, 2018. http://dx.doi.org/10.1109/powerafrica.2018.8521173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gu, Yang, and James McCalley. "Market-based transmission expansion planning." In 2011 IEEE/PES Power Systems Conference and Exposition (PSCE). IEEE, 2011. http://dx.doi.org/10.1109/psce.2011.5772507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marecek, Jakub, Martin Mevissen, and Jonas Christoffer Villumsen. "MINLP in transmission expansion planning." In 2016 Power Systems Computation Conference (PSCC). IEEE, 2016. http://dx.doi.org/10.1109/pscc.2016.7540906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yuan Li and James D. McCalley. "Risk-based Var Expansion Planning." In Exposition. IEEE, 2008. http://dx.doi.org/10.1109/tdc.2008.4517206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

M. Caunhye, Aakil, and Michel-Alexandre Cardin. "Integrated Power Grid Expansion Planning." In Proceedings of the 6th International Symposium on Reliability Engineering and Risk Management. Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2726-7_cuac02.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Expansing planning"

1

Diaz, Paul, Ryan King, Devon Sigler, Wesley Cole, and Wesley Jones. Uncertainty Quantification for Capacity Expansion Planning. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1659787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hadley, Stanton W., Shutang You, Mallikarjun Shankar, and Yilu Liu. Electric Grid Expansion Planning with High Levels of Variable Generation. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1238017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tidwell, Vincent, Stuart Cohen, Jordan Macknick, Nathalie Voisin, and Sean Turner. Climate Influences on Capacity Expansion Planning with Application to the Western U.S. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1670516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kirby, Brendan J. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/930750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Donohoo, P., and M. Milligan. Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1136572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soummane, Salaheddine, and Frédéric Ghersi. Projecting Saudi Sectoral Electricity Demand in 2030 Using a Computable General Equilibrium Model. King Abdullah Petroleum Studies and Research Center, 2021. http://dx.doi.org/10.30573/ks--2021-dp12.

Full text
Abstract:
Projecting future demand for electricity is central to power sector planning, as these projections inform capacity investment requirements and related infrastructure expansions. Electricity is not currently economically storable in large volumes. Thus, the underlying drivers of electricity demand and potential market shifts must be carefully considered to minimize power system costs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography