Academic literature on the topic 'Expansion de Taylor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Expansion de Taylor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Expansion de Taylor"
Kitahara, Kazuaki, and Taka Aki Okuno. "A Note on Two Point Taylor Expansion III." International Journal of Modeling and Optimization 4, no. 4 (August 2014): 287–91. http://dx.doi.org/10.7763/ijmo.2014.v4.387.
Full textGrünwald, Eva, Ydalia Delgado Mercado, and Christof Gattringer. "Taylor and fugacity expansion for the effective ℤ3 spin model of QCD at finite density." International Journal of Modern Physics A 29, no. 32 (December 30, 2014): 1450198. http://dx.doi.org/10.1142/s0217751x1450198x.
Full textShimomura, Tetsu, and Yoshihiro Mizuta. "Taylor expansion of Riesz potentials." Hiroshima Mathematical Journal 25, no. 3 (1995): 595–621. http://dx.doi.org/10.32917/hmj/1206127635.
Full textStanković, B. "Taylor Expansion for Generalized Functions." Journal of Mathematical Analysis and Applications 203, no. 1 (October 1996): 31–37. http://dx.doi.org/10.1006/jmaa.1996.0365.
Full textChu, M. S., T. H. Jensen, and P. M. Bellan. "General Taylor configuration expansion revisited." Physics of Plasmas 6, no. 5 (May 1999): 1495–99. http://dx.doi.org/10.1063/1.873401.
Full textKulchitski, O. Yu, and D. F. Kuznetsov. "The unified Taylor-Ito expansion." Journal of Mathematical Sciences 99, no. 2 (April 2000): 1130–40. http://dx.doi.org/10.1007/bf02673635.
Full textGerritzen, L. "Taylor expansion of noncommutative polynomials." Archiv der Mathematik 71, no. 4 (October 1, 1998): 279–90. http://dx.doi.org/10.1007/s000130050265.
Full textChouquet, Jules. "Taylor Expansion, Finiteness and Strategies." Electronic Notes in Theoretical Computer Science 347 (November 2019): 65–85. http://dx.doi.org/10.1016/j.entcs.2019.09.005.
Full textHong. "Approximation of a Warship Passive Sonar Signal Using Taylor Expansion." Journal Of The Acoustical Society Of Korea 33, no. 4 (2014): 232. http://dx.doi.org/10.7776/ask.2014.33.4.232.
Full textStanković, B. "Asymptotic Taylor expansion for Fourier hyperfunctions." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 453, no. 1960 (May 8, 1997): 913–18. http://dx.doi.org/10.1098/rspa.1997.0050.
Full textDissertations / Theses on the topic "Expansion de Taylor"
Dula, Mark, Eunice Mogusu, Sheryl Strasser, Ying Liu, and Shimin Zheng. "Median and Mode Approximation for Skewed Unimodal Continuous Distributions using Taylor Series Expansion." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/112.
Full textGuillot, Jérémie. "Optimization techniques for high level synthesis and pre-compilation based on Taylor expansion diagrams." Lorient, 2009. http://www.theses.fr/2009LORIS121.
Full textThis thesis addresses the design productivity gap problem in design automation by emp]oying a canonical representation, called Taylor Expansion Diagram. TED is a graphical representation based on Taylor series decomposition of the data-flow computation. Optimizations and high-level transformations developed in this thesis are based on transformations and pattern recognition applied to the TED representation. The results of su ch transformations are the optimized data-flow graphs, which provide input to standard, HLS too]s for final architectural synthesis. Such optimizations cannot be achieved by traditional architectural and high-level synthesis tools or compiJers available today
Liljas, Erik. "Stochastic Differential Equations : and the numerical schemes used to solve them." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-86799.
Full textGarcía, Monera María. "r-critical points and Taylor expansion of the exponential map, for smooth immersions in Rk+n." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/50935.
Full text[ES] En general, el estudio del contacto con hiperplanos e hiperesferas se ha llevado a cabo usando la familia de funciones altura y la función distancia al cuadrado. En la primera parte de la tesis analizamos el desarrollo de Taylor de la aplicación exponencial hasta orden 3 de una subvariedad $M$ inmersa en $\r n.$ Nuestro principal objetivo es mostrar su utilidad en el estudio de contactos especiales de subvariedades con modelos geométricos. A medida que analizamos los contactos de orden mayor, la complejidad de las cuentas aumenta. En este trabajo, a través del desarrollo de Taylor de la aplicación exponencial, caracterizamos la geometría de orden mayor que $3$ en términos de invariantes geométricos de la inmersión, por lo que el trabajo con las cuentas en casos especiales se convierte en más manejable. Esto nos permite también obtener nuevos resultados geométricos. En la segunda parte de la tesis se introduce el concepto de punto crítico de una aplicación regular entre subvariedades. Si consideramos una variedad diferenciable $M$ de dimensión $k$ e inmersa en $\r{k+n},$ sabemos que su conjunto focal puede ser interpretado como la imagen de los puntos críticos de la {\it aplicación normal} $\nu(m,u): NM\to \r{k+n}$ definida por $\nu(m,u)=\pi_N(m,u)+ u,$ para $m\in M$ y $u\in N_mM,$ donde $\pi_N:NM\to M$ denota el fibrado normal. De la misma manera, el conjunto parabólico de una subvariedad diferencial viene dado por el análisis de las singularidades de la función altura sobre la subvariedad. Si consideramos una subvariedad $M$ de dimensión $k$ e inmersa en $\r{k+n},$ sabemos que su conjunto parabólico puede ser interpretado como la imagen de los puntos críticos de la {\it aplicación generalizada de Gauss} $\psi(m,u): NM\to \r{k+n}$ definida por $\psi(m,u)= u,$ donde $u\in N_mM.$ Finalmente, caracterizamos las direcciones asintóticas como el conjunto de direcciones del tangente de una subvariedad $M$ de dimensión $k$ e inmersa en $\r{k+n}$ a través del estudio de las singularidades de la aplicación tangente $\Omega(m,y): TM\to \r{k+n}$ definida por $\Omega(m,y)=\pi(m,y)+y,$ para $y\in T_mM,$ donde $\pi:TM\to M$ denota el fibrado tangente. Describimos primero el conjunto focal y su relación geométrica con la Veronese de curvatura para una variedad $k$ dimensional inmersa en $\r{k+n}.$ Entonces, definimos los puntos $r$-críticos de una aplicación $f:H \to K$ entre dos subvariedades y caracterizamos los puntos $2$ y $3$ críticos de la aplicación normal y la aplicación generalizada de Gauss. El número de estos puntos críticos en $m\in M$ depende de la degeneración de la elipse de curvatura y calculamos ese número en el caso particular de una superficie inmersa en $\r{4}$ para la aplicación normal y $\r{5}$ para la aplicación generalizada de Gauss.
[CAT] En general, l'estudi del contacte amb hiperplans i hiperesferes s'ha dut a terme utilitzant la família de funcions altura i la funció distància al quadrat. A la primera part de la tesi analitzem el desenvolupament de Taylor de l'aplicació exponencial fins a ordre 3 d'una subvarietat $M$ immersa en $\r n.$ El nostre principal objectiu és mostrar la seua utilitat en l'estudi de contactes especials de subvarietats amb models geomètrics. A mesura que analitzem els contactes d'ordre major, la complexitat dels comptes augmenta. En aquest treball, a través del desenvolupament de Taylor de l'aplicació exponencial, caracteritzem la geometria d'ordre major que $ 3 $ en termes d'invariants geomètrics de la immersió, de manera que el treball amb els comptes en casos especials es converteix en més manejable. Això ens permet també obtenir nous resultats geomètrics. A la segona part de la tesi s'introdueix el concepte de punt crític d'una aplicació regular entre subvarietats. Si considerem una varietat diferenciable $ M $ de dimensió $ k $ i immersa en $ \r {k + n}, $ sabem que el seu conjunt focal pot ser interpretat com la imatge dels punts crítics de la {\it aplicació normal} $ \nu (m, u): NM \to \r {k + n} $ definida per $ \nu (m, u) = \pi_N (m, u) + o, $ per $ m \in M $ i $ u \in N_mM, $ on $ \pi_N: NM \to M $ denota el fibrat normal. De la mateixa manera, el conjunt parabòlic d'una subvarietat diferencial ve donat per l'anàlisi de les singularitats de la funció altura sobre la subvarietat. Si considerem una subvarietat $ M $ de dimensió $ k $ i immersa en $ \r {k + n}, $ sabem que el seu conjunt parabòlic pot ser interpretat com la imatge dels punts crítics de la {\it aplicació generalitzada de Gauss} $ \psi (m, u): NM \to \r{k + n} $ definida per $ \psi (m, u) = u, $ on $ u \in N_mM. $ Finalment, caracteritzem les direccions asimptòtiques com el conjunt de direccions del tangent d'una subvarietat $ M $ de dimensió $ k $ i immersa en $ \r{k + n} $ a través de l'estudi de les singularitats de l'aplicació tangent $ \Omega (m, y): TM \to \r {k + n} $ definida per $ \Omega (m, y) = \pi (m, y) + y, $ per $ y \in T_mM, $ on $ \pi: TM \to M $ denota el fibrat tangent. Descrivim primer el conjunt focal i la seva relació geomètrica amb la Veronese de curvatura per a una varietat $ k $ dimensional immersa en $ \r{k + n}. $ Llavors, definim els punts $ r $-crítics d'una aplicació $ f: H \to K $ entre dues subvarietats i caracteritzem els punts $ 2 $ i $ 3 $ crítics de l'aplicació normal i l'aplicació generalitzada de Gauss. El nombre d'aquests punts crítics en $ m \in M $ depèn de la degeneració de l'el·lipse de curvatura i calculem aquest nombre en el cas particular d'una superfície immersa en $ \r{4} $ per a l'aplicació normal i $ \r{5} $ per a l'aplicació generalitzada de Gauss.
García Monera, M. (2015). r-critical points and Taylor expansion of the exponential map, for smooth immersions in Rk+n [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/50935
TESIS
Kratky, Joseph J. "SERIES EXPANSION FOR SEMI-SPDES WITH REMARKS ON HYPERBOLIC SPDES ON THE LATTICE." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310614464.
Full textSemeraro, Emanuele. "Experimental investigation on hydrodynamic phenomena associated with a sudden gas expansion in a narrow channel." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066516/document.
Full textThe sharp vaporization of superheated liquid sodium is investigated. It is suspected to be at the origin of the automatic shutdown for negative reactivity, occurred in the Phénix reactor at the end of the eighties.An experimental apparatus has been designed and operated to reproduce the expansion of overpressurized air, superposed to water in a narrow vertical rectangular section channel.When expansion begins, the initial flat interface separating the two fluids becomes corrugated under the development of two-dimensional Rayleigh-Taylor instabilities. The interface area increases significantly and becomes even 50 times larger than the initial value. Since the channel is very narrow, instabilities along the channel depth do not develop.The gas expansion in a narrow channel can be divided into two main phases: Rayleigh-Taylor (linear and non-linear) and multi-structures (transition and chaotic) phases. The former is characterized by the dynamic of corrugated profile and the interface area results proportional to the amplitude of corrugation The latter is influenced by the behavior of the liquid structures dispersed in gas matrix and the interface area is mainly proportional to the number of liquid structures.The distribution of volume fraction suggests a model of channel flow consisting of three regions: the regular profile of peaks, the spike region and the structures tails. The analysis of sensibility to surface tension confirms that, with a lower surface tension, the fluids configuration is more unstable. The interface corrugations are more pronounced and more structures are produced, leading to a higher increment of the interface area
Volkmer, Toni. "Taylor and rank-1 lattice based nonequispaced fast Fourier transform." Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-106489.
Full textMatchie, Lydienne. "Cubature methods and applications to option pricing." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5374.
Full textENGLISH ABSTRACT: In this thesis, higher order numerical methods for weak approximation of solutions of stochastic differential equations (SDEs) are presented. They are motivated by option pricing problems in finance where the price of a given option can be written as the expectation of a functional of a diffusion process. Numerical methods of order at most one have been the most used so far and higher order methods have been difficult to perform because of the unknown density of iterated integrals of the d-dimensional Brownian motion present in the stochastic Taylor expansion. In 2001, Kusuoka constructed a higher order approximation scheme based on Malliavin calculus. The iterated stochastic integrals are replaced by a family of finitely-valued random variables whose moments up to a certain fixed order are equivalent to moments of iterated Stratonovich integrals of Brownian motion. This method has been shown to outperform the traditional Euler-Maruyama method. In 2004, this method was refined by Lyons and Victoir into Cubature on Wiener space. Lyons and Victoir extended the classical cubature method for approximating integrals in finite dimension to approximating integrals in infinite dimensional Wiener space. Since then, many authors have intensively applied these ideas and the topic is today an active domain of research. Our work is essentially based on the recently developed higher order schemes based on ideas of the Kusuoka approximation and Lyons-Victoir “Cubature on Wiener space” and mostly applied to option pricing. These are the Ninomiya-Victoir (N-V) and Ninomiya- Ninomiya (N-N) approximation schemes. It should be stressed here that many other applications of these schemes have been developed among which is the Alfonsi scheme for the CIR process and the decomposition method presented by Kohatsu and Tanaka for jump driven SDEs. After sketching the main ideas of numerical approximation methods in Chapter 1 , we start Chapter 2 by setting up some essential terminologies and definitions. A discussion on the stochastic Taylor expansion based on iterated Stratonovich integrals is presented, we close this chapter by illustrating this expansion with the Euler-Maruyama approximation scheme. Chapter 3 contains the main ideas of Kusuoka approximation scheme, we concentrate on the implementation of the algorithm. This scheme is applied to the pricing of an Asian call option and numerical results are presented. We start Chapter 4 by taking a look at the classical cubature formulas after which we propose in a simple way the general ideas of “Cubature on Wiener space” also known as the Lyons-Victoir approximation scheme. This is an extension of the classical cubature method. The aim of this scheme is to construct cubature formulas for approximating integrals defined on Wiener space and consequently, to develop higher order numerical schemes. It is based on the stochastic Stratonovich expansion and can be viewed as an extension of the Kusuoka scheme. Applying the ideas of the Kusuoka and Lyons-Victoir approximation schemes, Ninomiya- Victoir and Ninomiya-Ninomiya developed new numerical schemes of order 2, where they transformed the problem of solving SDE into a problem of solving ordinary differential equations (ODEs). In Chapter 5 , we begin by a general presentation of the N-V algorithm. We then apply this algorithm to the pricing of an Asian call option and we also consider the optimal portfolio strategies problem introduced by Fukaya. The implementation and numerical simulation of the algorithm for these problems are performed. We find that the N-V algorithm performs significantly faster than the traditional Euler-Maruyama method. Finally, the N-N approximation method is introduced. The idea behind this scheme is to construct an ODE-valued random variable whose average approximates the solution of a given SDE. The Runge-Kutta method for ODEs is then applied to the ODE drawn from the random variable and a linear operator is constructed. We derive the general expression for the constructed operator and apply the algorithm to the pricing of an Asian call option under the Heston volatility model.
AFRIKAANSE OPSOMMING: In hierdie proefskrif, word ’n hoërorde numeriese metode vir die swak benadering van oplossings tot stogastiese differensiaalvergelykings (SDV) aangebied. Die motivering vir hierdie werk word gegee deur ’n probleem in finansies, naamlik om opsiepryse vas te stel, waar die prys van ’n gegewe opsie beskryf kan word as die verwagte waarde van ’n funksionaal van ’n diffusie proses. Numeriese metodes van orde, op die meeste een, is tot dus ver in algemene gebruik. Dit is moelik om hoërorde metodes toe te pas as gevolg van die onbekende digtheid van herhaalde integrale van d-dimensionele Brown-beweging teenwoordig in die stogastiese Taylor ontwikkeling. In 2001 het Kusuoka ’n hoërorde benaderings skema gekonstrueer wat gebaseer is op Malliavin calculus. Die herhaalde stogastiese integrale word vervang deur ’n familie van stogastiese veranderlikes met eindige waardes, wat se momente tot ’n sekere vaste orde bestaan. Dit is al gedemonstreer dat hierdie metode die tradisionele Euler-Maruyama metode oortref. In 2004 is hierdie metode verfyn deur Lyons en Victoir na volumeberekening op Wiener ruimtes. Lyons en Victoir het uitgebrei op die klassieke volumeberekening metode om integrale te benader in eindige dimensie na die benadering van integrale in oneindige dimensionele Wiener ruimte. Sedertdien het menige outeurs dié idees intensief toegepas en is die onderwerp vandag ’n aktiewe navorsings gebied. Ons werk is hoofsaaklik gebaseer op die onlangse ontwikkelling van hoërorde skemas, wat op hul beurt gebaseer is op die idees van Kusuoka benadering en Lyons-Victoir "Volumeberekening op Wiener ruimte". Die werk word veral toegepas op die prysvastelling van opsies, naamlik Ninomiya-Victoir en Ninomiya-Ninomiya benaderings skemas. Dit moet hier beklemtoon word dat baie ander toepassings van hierdie skemas al ontwikkel is, onder meer die Alfonsi skema vir die CIR proses en die ontbinding metode wat voorgestel is deur Kohatsu en Tanaka vir sprong aangedrewe SDVs. Na ’n skets van die hoof idees agter metodes van numeriese benadering in Hoofstuk 1 , begin Hoofstuk 2 met die neersetting van noodsaaklike terminologie en definisies. ’n Diskussie oor die stogastiese Taylor ontwikkeling, gebaseer op herhaalde Stratonovich integrale word uiteengeset, waarna die hoofstuk afsluit met ’n illustrasie van dié ontwikkeling met die Euler-Maruyama benaderings skema. Hoofstuk 3 bevat die hoofgedagtes agter die Kusuoka benaderings skema, waar daar ook op die implementering van die algoritme gekonsentreer word. Hierdie skema is van toepassing op die prysvastelling van ’n Asiatiese call-opsie, numeriese resultate word ook aangebied. Ons begin Hoofstuk 4 deur te kyk na klassieke volumeberekenings formules waarna ons op ’n eenvoudige wyse die algemene idees van "Volumeberekening op Wiener ruimtes", ook bekend as die Lyons-Victoir benaderings skema, as ’n uitbreiding van die klassieke volumeberekening metode gebruik. Die doel van hierdie skema is om volumeberekening formules op te stel vir benaderings integrale wat gedefinieer is op Wiener ruimtes en gevolglik, hoërorde numeriese skemas te ontwikkel. Dit is gebaseer op die stogastiese Stratonovich ontwikkeling en kan beskou word as ’n ontwikkeling van die Kusuoka skema. Deur Kusuoka en Lyon-Victoir se idees oor benaderings skemas toe te pas, het Ninomiya-Victoir en Ninomiya- Ninomiya nuwe numeriese skemas van orde 2 ontwikkel, waar hulle die probleem omgeskakel het van een waar SDVs opgelos moet word, na een waar gewone differensiaalvergelykings (GDV) opgelos moet word. Hierdie twee skemas word in Hoofstuk 5 uiteengeset. Alhoewel die benaderings soortgelyk is, is daar ’n beduidende verskil in die algoritmes self. Hierdie hoofstuk begin met ’n algemene uiteensetting van die Ninomiya-Victoir algoritme waar ’n arbitrêre vaste tyd horison, T, gebruik word. Dié word toegepas op opsieprysvastelling en optimale portefeulje strategie probleme. Verder word numeriese simulasies uitgevoer, die prestasie van die Ninomiya-Victoir algoritme was bestudeer en vergelyk met die Euler-Maruyama metode. Ons maak die opmerking dat die Ninomiya-Victoir algoritme aansienlik vinniger is. Die belangrikste resultaat van die Ninomiya-Ninomiya benaderings skema word ook voorgestel. Deur die idee van ’n Lie algebra te gebruik, het Ninomiya en Ninomiya ’n stogastiese veranderlike met GDV-waardes gekonstrueer wat se gemiddeld die oplossing van ’n gegewe SDV benader. Die Runge-Kutta metode vir GDVs word dan toegepas op die GDV wat getrek is uit die stogastiese veranderlike en ’n lineêre operator gekonstrueer. ’n Veralgemeende uitdrukking vir die gekonstrueerde operator is afgelei en die algoritme is toegepas op die prysvasstelling van ’n Asiatiese opsie onder die Heston onbestendigheids model.
Adolfsson, David, and Tom Claesson. "Estimation methods for Asian Quanto Basket options." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160920.
Full textGuo, Longkai. "Numerical investigation of Taylor bubble and development of phase change model." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI095.
Full textThe motion of a nitrogen Taylor bubble in glycerol-water mixed solutions rising through different types of expansions and contractions is investigated by a numerical approach. The CFD procedure is based on an open-source solver Basilisk, which adopts the volume-of-fluid (VOF) method to capture the gas-liquid interface. The results of sudden expansions/contractions are compared with experimental results. The results show that the simulations are in good agreement with experiments. The bubble velocity increases in sudden expansions and decreases in sudden contractions. The bubble break-up pattern is observed in sudden expansions with large expansion ratios, and a bubble blocking pattern is found in sudden contractions with small contraction ratios. In addition, the wall shear stress, the liquid film thickness, and pressure in the simulations are studied to understand the hydrodynamics of the Taylor bubble rising through expansions/contractions. The transient process of the Taylor bubble passing through sudden expansion/contraction is further analyzed for three different singularities: gradual, parabolic convex and parabolic concave. A unique feature in parabolic concave contraction is that the Taylor bubble passes through the contraction even for small contraction ratios. Moreover, a phase change model is developed in the Basilisk solver. In order to use the existed geometric VOF method in Basilisk, a general two-step geometric VOF method is implemented. Mass flux is calculated not in the interfacial cells but transferred to the neighboring cells around the interface. The saturated temperature boundary condition is imposed at the interface by a ghost cell method. The phase change model is validated by droplet evaporation with a constant mass transfer rate, the one-dimensional Stefan problem, the sucking interface problem, and a planar film boiling case. The results show good agreement with analytical solutions or correlations
Books on the topic "Expansion de Taylor"
Kloeden, Peter E. Numerical solution of SDE through computer experiments. 2nd ed. Berlin: Springer, 1997.
Find full textEckhard, Platen, and Schurz Henri, eds. Numerical solution of SDE through computer experiments. Berlin: Springer-Verlag, 1994.
Find full textLee, Maurice S. Overwhelmed. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691192925.001.0001.
Full textPlaten, Eckhard, Peter Eris Kloeden, and Henri Schurz. Numerical Solution of SDE Through Computer Experiments (Universitext). Springer, 2003.
Find full textBook chapters on the topic "Expansion de Taylor"
Duistermaat, J. J., and J. A. C. Kolk. "Taylor Expansion in Several Variables." In Distributions, 59–63. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_6.
Full textBastys, Algirdas, Justas Kranauskas, and Volker Krüger. "Iris Recognition with Taylor Expansion Features." In Handbook of Iris Recognition, 185–209. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6784-6_8.
Full textBastys, Algirdas, Justas Kranauskas, and Volker Krüger. "Iris Recognition with Taylor Expansion Features." In Handbook of Iris Recognition, 103–27. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4402-1_6.
Full textKamerich, Ernic. "Taylor or Laurent expansion and limits." In A Guide to Maple, 107–16. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4419-8556-9_8.
Full textTanizaki, Hisashi. "Nonlinear Filters Based on Taylor Series Expansion." In Lecture Notes in Economics and Mathematical Systems, 35–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-22237-9_3.
Full textFriedlander, Benjamin, and Erik Friedlander. "Time-Frequency Analysis Using Local Taylor Series Expansion." In Recent Developments in Time-Frequency Analysis, 41–49. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2838-5_5.
Full textGuerrieri, Giulio, Luc Pellissier, and Lorenzo Tortora de Falco. "Proof-Net as Graph, Taylor Expansion as Pullback." In Logic, Language, Information, and Computation, 282–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59533-6_18.
Full textHernandez-del-Valle, Gerardo, and Yuemeng Sun. "Optimal Execution of Derivatives: A Taylor Expansion Approach." In Optimization, Control, and Applications of Stochastic Systems, 151–56. Boston: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8337-5_9.
Full textManzonetto, Giulio, and Michele Pagani. "Böhm’s Theorem for Resource Lambda Calculus through Taylor Expansion." In Lecture Notes in Computer Science, 153–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21691-6_14.
Full textMorgan, R. V., O. A. Likhachev, and J. W. Jacobs. "Experiments on the Expansion Wave Driven Rayleigh-Taylor Instability." In 29th International Symposium on Shock Waves 2, 1149–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16838-8_57.
Full textConference papers on the topic "Expansion de Taylor"
Wilfling, Max, and Christof Gattringer. "A test of fugacity-, Taylor- and improved Taylor-expansion." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0452.
Full textGomez-Prado, D., Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon. "Variable ordering for taylor expansion diagrams." In Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940). IEEE, 2004. http://dx.doi.org/10.1109/hldvt.2004.1431235.
Full textYu, Kegen, Y. Jay Guo, and Ian Oppermann. "Modified Taylor Series Expansion Based Positioning Algorithms." In 2008 IEEE Vehicular Technology Conference (VTC 2008-Spring). IEEE, 2008. http://dx.doi.org/10.1109/vetecs.2008.582.
Full textCiesielski, M., S. Askar, D. Gomez-Prado, J. Guillot, and E. Boutillon. "Data-Flow Transformations using Taylor Expansion Diagrams." In Design, Automation & Test in Europe Conference. IEEE, 2007. http://dx.doi.org/10.1109/date.2007.364634.
Full textWang, Guan-jun, Guang-sheng Ma, Jin-liang Jiao, and Gang Feng. "A new timed taylor expansion diagrams method." In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306541.
Full textLiu, Hongbo, Ye Ji, and Xiukun Wang. "Image analysis by analogy with Taylor expansion." In the 20th spring conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1037210.1037243.
Full textGomez-Prado, Daniel, Dusung Kim, Maciej Ciesielski, and Emmanuel Boutillon. "Retiming arithmetic datapaths using Timed Taylor Expansion Diagrams." In 2010 IEEE International High Level Design Validation and Test Workshop (HLDVT 2010). IEEE, 2010. http://dx.doi.org/10.1109/hldvt.2010.5496664.
Full textPagani, Michele, and Christine Tasson. "The Inverse Taylor Expansion Problem in Linear Logic." In 2009 24th Annual IEEE Symposium on Logic In Computer Science (LICS). IEEE, 2009. http://dx.doi.org/10.1109/lics.2009.35.
Full textHuo, Feng, and Aun-Neow Poo. "Generalized Taylor Series Expansion for Contour Error Compensation." In 4th Asia International Symposium on Mechatronics. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-7723-1_p131.
Full textTsukada, Takeshi, Kazuyuki Asada, and C. H. Luke Ong. "Species, Profunctors and Taylor Expansion Weighted by SMCC." In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3209108.3209157.
Full textReports on the topic "Expansion de Taylor"
Iwashige, Kengo, and Takashi Ikeda. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/115072.
Full text