Academic literature on the topic 'Experimental analysis, hybrid composite, hybrid effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Experimental analysis, hybrid composite, hybrid effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Experimental analysis, hybrid composite, hybrid effect"

1

Chitturi, Sai Krishna, A. A. Shaikh, and Alpesh H. Makwana. "Static analysis of thermoset-thermoplastic-based hybrid composite." International Journal of Structural Integrity 11, no. 1 (August 7, 2019): 107–20. http://dx.doi.org/10.1108/ijsi-05-2019-0046.

Full text
Abstract:
Purpose A growing response in the development of hybrid composites to conquer the deficiency of neat composites has provoked doing this work. Thermoplastic Polycarbonate material offers better impact toughness with low structural weight. There is a little/no information available over the selected sandwich hybrid composite prepared from woven E-Glass and polycarbonate sheet. The purpose of this paper is to understand the response of the novel hybrid structure under tensile, flexural, interlaminar shear and impact loading conditions. Design/methodology/approach The hand-layup technique is used for fabricating the hybrid composites in the laminate configuration. The hybrid composites are prepared with a total fiber content of 70 percent weight fractions. The effect of the percentage of reinforcement on mechanical properties is evaluated experimentally as per American society for testing materials standard test methods. The damaged mechanisms of failed samples and fractured surfaces are well analyzed using vision measuring system and scanning electron microscopy. Findings A decline in densities of hybrid composites up to 22.5 percent is noticed with reference to neat composite. An increase in impact toughness up to 40.73 percent is marked for hybrid laminates owing to the ductile nature of PC. Delamination is identified to be the major mode of failure apart from fiber fracture/pull-out, matrix cracking in all the static loading conditions. Originality/value The response of novel hybrid composite reported has been explored for the first time in this paper. The outcome of experimental work revealed that hybridization offered lightweight structures with improved transverse impact toughness as compared to conventional composite.
APA, Harvard, Vancouver, ISO, and other styles
2

Pastrav, Ovidiu Cristian, Ada Gabriela Delean, Codruta Sarosi, Laura Silaghi Dumitrescu, Alexandrina Muntean, Marius Gociu, and Marioara Moldovan. "Translucence Study through New Experimental Hybrid Composites." Key Engineering Materials 614 (June 2014): 148–54. http://dx.doi.org/10.4028/www.scientific.net/kem.614.148.

Full text
Abstract:
Translucence parameters for 3 series of experimental hybrid composites were investigated using three-chromatic coordinates such as L* a* b* CHROMA technique using a type C illuminant geometry with the scope of 8o. The materials of each series contain in the same ratio different copolymers and a filler mixture (simple and mixed hydroxyapatite-ZrO2 or SiO2 powders and glass powders with barium oxide, respective strontium oxide, or quartz powder). The purpose was to determine the effect of filler composition of composites on translucence. The analysis shows that these materials have more or less translucence. CHROMA determinations indicate that for the composite that has as filler quartz microparticles anh hydroxyapatite nanoparticles, the translucence registered is higher. Results leading to the idea that chemical composition and the size of inorganic phase are important to obtain translucent composite materials that have very natural in appearance. Keywords: translucence, hybrid composites, CHROMA method.
APA, Harvard, Vancouver, ISO, and other styles
3

Yadav, P. S., Rajesh Purohit, Anil Kothari, and R. S. Rajput. "Effect of Kevlar Fiber and Nano Sio2 on Mechanical Andthermal Properties of Hybrid Composites." Oriental Journal Of Chemistry 37, no. 3 (June 30, 2021): 531–40. http://dx.doi.org/10.13005/ojc/370303.

Full text
Abstract:
The aim of the current investigation is an analysis of the mechanical and thermal properties of epoxy/ nano-silica/ Kevlar fiber hybrid composites. The ultrasonic vibration-assisted hand layup process was used for the preparation of composite with different weight percentages (1%, 2%, 3%, and 4%) of Nano SiO2 particles and 2 layers of the Kevlar fiber. For the evolution of mechanical properties tensile tests, hardness tests, impact tests, and flexural tests were done. For evaluation of morphological analysis Field Emission-Scanning Electron Microscopy, X-RD, and FT-IR tests were performed. A heat deflection temperature test was performed for the evaluation of the thermal characteristic of the hybrid composite. The results show the improvement of mechanical and thermal properties of the hybrid composite with increasing wt.% of nano SiO2 particles in the hybrid composites. As per the observation of experimental results, the Field Emission-Scanning Electron Microscopy,Fourier Transform Infrared Spectroscopy, and X-ray diffraction test also show the enhancement of surface morphology and chemical structure of hybrid composites. The heat diffraction test shows the improvement of thermal resistance and heat absorption capability.As per the observation of experimental results, the tensile strength, hardness, and impact strength increased up to 98%, 16%, and 42% respectively. The flexural test shows the improvement of flexural modulus and stresses 46% and 35% respectively. The heat deflection temperature of hybrid composite improves up to 30%.
APA, Harvard, Vancouver, ISO, and other styles
4

Esfahani, M. M. Nasr, H. Ghasemnejad, and P. E. Barrington. "Experimental and Numerical Buckling Analysis of Delaminated Hybrid Composite Beam Structures." Applied Mechanics and Materials 24-25 (June 2010): 393–400. http://dx.doi.org/10.4028/www.scientific.net/amm.24-25.393.

Full text
Abstract:
In this paper the effect of delamination position on the critical buckling load and buckling mode of hybrid composite beams is investigated. Experimental and numerical studies are carried out to determine the buckling load of delaminated composite beams. The laminated composite beams with various laminate designs of [G90]6, [C90]8, [C0/G0]4 and [C90/G90]4 were manufactured and tested to find the critical buckling load. Three different defect positions were placed through the thickness to find three main buckling modes. It was found that delamination position and lay-up can affect the buckling mode and also the critical buckling load. By approaching the delamination position to the outer surface of the specimen the buckling load decreases. The buckling process of hybrid and non-hybrid composite beams was also simulated by finite element software ANSYS and the critical buckling loads were verified with the relevant experimental results.
APA, Harvard, Vancouver, ISO, and other styles
5

Sathish, S., K. Kumaresan, L. Prabhu, and N. Vigneshkumar. "Experimental Investigation on Volume Fraction of Mechanical and Physical Properties of Flax and Bamboo Fibers Reinforced Hybrid Epoxy Composites." Polymers and Polymer Composites 25, no. 3 (March 2017): 229–36. http://dx.doi.org/10.1177/096739111702500309.

Full text
Abstract:
The aim of this paper is to study the effect of volume fraction on mechanical and physical properties such as tensile, flexural, impact, interlaminar shear strength, void content and water absorption of flax and bamboo fibers reinforced hybrid epoxy composites. Flax and bamboo fibers reinforced epoxy resin matrix hybrid composites have been fabricated by compression molding techniques. The hybrid composites were fabricated with different volume fraction of fibers. SEM analysis on the hybrid composite materials was performed to analyze the bonding behavior of materials and internal structure of the fractured surfaces. The effect of chemical treatment of flax and bamboo fibers was verified by FTIR analysis. The results showed that the tensile, impact, flexural and ILSS are maximum for 40:0 (flax: bamboo) hybrid composites. The void content decreased for 20:20 (flax:bamboo) composites due to tightly packed flax fiber and more compatibility towards epoxy resin.
APA, Harvard, Vancouver, ISO, and other styles
6

Jenarthanan, M. P., A. Lakshman Prakash, and R. Jeyapaul. "Experimental investigation and analysis of machinability behaviour of hybrid GFRP composites during end milling." Pigment & Resin Technology 45, no. 3 (May 3, 2016): 206–14. http://dx.doi.org/10.1108/prt-02-2015-0018.

Full text
Abstract:
Purpose This paper aims to develop a mathematical model for analysing surface roughness during end milling by using response surface methodology (RSM) and to determine how the input parameters (cutting speed, depth of cut and feed rate) influence the output parameter (surface roughness) in the machining of hybrid glass fibre reinforced plastic (GFRP; Abaca and Glass) composite by using solid carbide end mill cutter. Design/methodology/approach Three factors and a three-level Box–Behnken design in RSM were used to carry out the experimental investigation. Handysurf E-35A was used to measure the surface roughness of the machined hybrid GFRP composites. The “Design Expert 8.0” was used to analyse the data collected graphically. Analysis of variance was carried out to validate the model and determine the most significant parameter. Findings The response surface model was used to predict the input factors influencing the surface roughness of the machined surfaces of hybrid GFRP composite at different cutting conditions with a chosen range of 95 per cent confidence intervals. Analysis of the influences of the entire individual input machining parameters on the surface roughness carried out using RSM. Originality/value The effect of the milling of hybrid GFRP composite on the surface roughness with solid carbide end mill by using RSM has not been analysed yet.
APA, Harvard, Vancouver, ISO, and other styles
7

Attia, MA, MA Abd El-baky, and AE Alshorbagy. "Mechanical performance of intraply and inter-intraply hybrid composites based on e-glass and polypropylene unidirectional fibers." Journal of Composite Materials 51, no. 3 (July 28, 2016): 381–94. http://dx.doi.org/10.1177/0021998316644972.

Full text
Abstract:
The aims of this study are to design, fabricate and investigate the mechanical properties of new hybrid composite laminates made from polypropylene-glass unidirectional fibers and epoxy matrix. Specimens were fabricated following the hand lay-up technique in intraply and inter-intraply configurations. Results are presented regarding the tensile, flexural, in-plane shear and interlaminar shear behaviors of fabricated composites with particular consideration of the effects of the plies stacking sequence and hybrid configuration. The experimental results reveal that the mechanical properties of polypropylene/epoxy composite can be effectively improved by the incorporation of glass fiber through the formation of either intraply or inter-intraply hybrid composites. With a proper choice of the hybrid configuration and the plies stacking sequence, the fabricated hybrid composites achieved property profiles close to those of homogeneous glass reinforced laminate in terms of specific properties. Resistance of the intraply hybrid composite to tensile and flexural loadings is higher than inter-intraply hybrid composites. On the other hand, the highest in-plane and interlaminar shear strengths are associated with the inter-intraply hybrid composite with glass fiber core. Additionally, an analytical analysis was also introduced to provide a good correlation with the experimental data, which give an insight on the ideal plies stacking sequence to achieve the required properties.
APA, Harvard, Vancouver, ISO, and other styles
8

Sinha, Agnivesh Kumar, Somnath Bhattacharya, and Harendra Kumar Narang. "Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM." Polymers and Polymer Composites 27, no. 9 (June 16, 2019): 597–608. http://dx.doi.org/10.1177/0967391119855843.

Full text
Abstract:
Hybrid natural fibre polymer composites have attracted attention of research community owing to their better mechanical properties as compared to conventional materials. Besides being inexpensive, natural fibres are eco-friendly in nature. In past literature, abaca has shown tremendous potential for its suitability in structural applications. Present work deals with mechanical characterization and modelling of hybrid abaca epoxy composites with red mud as filler. Hybrid composites were prepared by hand lay-up technique. Experiments were designed based on full factorial method having three control parameters, namely weight percentage of abaca (2.6, 5.26 and 7.9 wt%), weight percentage of red mud (4, 8 and 12 wt%) and particle size of red mud (68, 82 and 98 µm). Flexural and impact strength of composites were evaluated. Mathematical models for flexural and impact strength of hybrid abaca composites were developed using response surface method. Developed models for mechanical properties of composite were analysed using analysis of variance to recognize the significance of control parameters or input variables on the mechanical properties of hybrid composites. Moreover, interaction effects of input variables on flexural and impact strength of hybrid composites were also investigated. Developed model also enables us to predict mechanical properties of hybrid composites.
APA, Harvard, Vancouver, ISO, and other styles
9

Murugan, R., Rajagopal Ramesh, and K. Padmanabhan. "Investigation on Vibration Behaviour of Cantilever Type Glass/Carbon Hybrid Composite Beams at Higher Frequency Range Using Finite Element Method." Advanced Materials Research 984-985 (July 2014): 257–65. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.257.

Full text
Abstract:
Woven fabric composites are now being increasingly used in aircraft and automobile structures due to balanced properties in the fabric plane. In the present work, woven fabric glass beam is modified and strengthened by interplying high modulus carbon fabric plies for improving the strength to weight ratio and thereby to achieve better performance in various dynamic conditions. The objective of the present work is to investigate the vibration behavior of cantilever type glass/carbon hybrid composite beams subjected to higher frequency of operation using finite element method. Unit plied woven fabric glass, carbon and hybrid of glass/carbon laminates were fabricated using hand layup technique. Experimental modal analysis of unit plied composite beams was carried out by impulse excitation technique under fixed free boundary condition. Theoretical modal analysis was done by finite element method using elastic constants derived from rule of mixture equations. The experimental and theoretical frequency results were compared and analyzed for finding the degree of deviation using regression analysis. The coefficients of regression analysis were used to find effective elastic constants of composite laminates. Further these effective elastic constants were applied for modal analysis of hybrid composite beams under higher frequency range. The results of mode shape, modal frequency of hybrid beams were reported and discussed. The effect of stacking sequence and effect of beam size on vibration characteristics at higher frequency range was also discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Dnyandev Patil, Sagar, and Yogesh J. Bhalerao. "Multi-objective optimization of carbon/glass hybrid composites with newly developed resin (NDR) using gray relational analysis." Multidiscipline Modeling in Materials and Structures 16, no. 6 (May 6, 2020): 1709–29. http://dx.doi.org/10.1108/mmms-08-2019-0141.

Full text
Abstract:
PurposeIt is seen that little amount of work on optimization of mechanical properties taking into consideration the combined effect of design variables such as stacking angle, stacking sequence, different resins and thickness of composite laminates has been carried out. The focus of this research work is on the optimization of the design variables like stacking angle, stacking sequence, different resins and thickness of composite laminates which affect the mechanical properties of hybrid composites. For this purpose, the Taguchi technique and the method of gray relational analysis (GRA) are used to identify the optimum combination of design variables. In this case, the effect of the abovementioned design variables, particularly of the newly developed resin (NDR) on mechanical properties of hybrid composites has been investigated.Design/methodology/approachThe Taguchi method is used for design of experiments and with gray relational grade (GRG) approach, the optimization is done.FindingsFrom the experimental analysis and optimization study, it was seen that the NDR gives excellent bonding strength of fibers resulting in enhanced mechanical properties of hybrid composite laminates. With the GRA method, the initial setting (A3B2C4D2) was having GRG 0.866. It was increased by using a new optimum combination (A2B2C4D1) to 0.878. It means that there is an increment in the grade by 1.366%. Therefore, using the GRA approach of analysis, design variables have been successfully optimized to achieve enhanced mechanical properties of hybrid composite laminates.Originality/valueThis is an original research work.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Experimental analysis, hybrid composite, hybrid effect"

1

Forconi, Mattia. "Experimental analysis of a hybrid composite material." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
The main aim of this thesis is to investigate the mechanical properties of a hybrid composite material under static loadings. The material is a composite laminate made by layers of carbon bars and a rubber layer. The thesis can be split into three main parts. In the first part a background about carbon bar composite is given and, subsequently, the research and main results on hybrid composites is introduced. The objective of this section is to provide a base on which built the main results of this work. In the second part it is explained how the test activities have been performed and the main results obtained. In particular, the effect of the introduction of a rubber layer has been highlighted in each type of tests. In the last part, a finite element dynamical analysis is presented. A very simple transient analysis has been performed in order to foresee the dynamic behaviour of the hybrid. In conclusion, it has been demonstrated a relevant hybrid effect in the compressive and flexural properties. Those effects can be roughly reassumed in anincreasing specific stiffness for the compressive properties and in a large improvement of flexibility in the bending test. The numerical simulation shows that an increased damping effect is present, corresponding to an increase of rubber layer thickness.
APA, Harvard, Vancouver, ISO, and other styles
2

Poncet, Mélissa. "Effet de l'incorporation de systèmes hybrides sur les propriétés mécaniques de matériaux composites à matrice époxyvinylester et polyester insaturé." Thesis, Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0025/document.

Full text
Abstract:
Ce travail de thèse porte sur l'élaboration d'un matériau composite à matrice thermodurcissable incorporant des renforts nanométriques et/ou une phase élastomère, permettant d'améliorersa rigidité, son amortissement et sa résilience. Pour cela, nous avons réalisé des formulations baséessur des matrices époxyvinylester, renforcées ou non par une phase élastomère et chargées de montmorillonite ou de sépiolite. Nous avons étudié leurs propriétés visco-élastiques par analyse modaleexpérimentale et leurs propriétés à l'impact par des essais d'impact par chute de masse. Nous avonsdéterminé la microstructure des composites fabriqués en nous appuyant sur la diffraction des rayonsX et des observations en microscopie électronique. Des modèles d'homogénéisation, fondés sur lemodèle de H ALPIN -T SAI et adaptés aux matériaux composites étudiés, ont été développés afin dedisposer d'un outil permettant de relier explicitement la rigidité des composites à leur morphologie.Une analyse paramétrique approfondie a permis de déterminer les caractères morphologiques lesplus influents et d'évaluer la performance des procédés de mise en œuvre au regard des renforcements mécaniques obtenus. Expérimentalement, l'incorporation de montmorillonite ou de sépiolite a conduit à une augmentation significative du module élastique et la présence d'une phase élastomère dans la résine a permis de doubler l'amortissement et d'augmenter la résilience. Finalement, les formulations les plus performantes ont été retenues pour la fabrication de composites renforcés de fibres de verre. L'amélioration des propriétés mécaniques se retrouve, dans une moindre mesure, dans lesprototypes réalisés. La pertinence de l'utilisation de ces matériaux à l'échelle industrielle a été évaluée
This thesis focuses on the development of a thermosetting matrix composite incorporating nanoscale reinforcements and/or an elatomeric phase to improve its stiffness, damping and resilience.To do so, we made formulations based on epoxy vinyl ester matrices, filled or not by an elastomeric phase, and reinforced with montmorillonite or sepiolite. Their viscoelastic properties were studied usingexperimental modal analysis and their impact properties were investigated using drop weight impacttesting. The microstructure of these composites was examined using X-ray diffraction and electronmicroscopy observations.Homogenization models based on H ALPIN -T SAI model and adapted to the studied composites were developed to provide a tool able to explicitly link the stiffness of the material to its morphology.A detailed parametric analysis allowed to determine the most influential morphological characteristics and to assess the efficiency of the process regarding the mechanical stiffening obtained.Experimentally, the incorporation of montmorillonite or sepiolite led to a significant increase in the elastic modulus and, with the presence of an elastomeric phase in the resin, the damping was doubled and the resilience was increased.Finally, the most efficient formulations were used to manufacture glass fibers reinforced composites.The improvement in mechanical properties was found, to a lesser extent, for the manufactured prototypes.The relevance of the use of these materials on an industrial scale was evaluated
APA, Harvard, Vancouver, ISO, and other styles
3

Joshi, Ninad Milind. "Study of the Effect of Unidirectional Carbon Fiber in Hybrid Glass Fiber / Carbon Fiber Sandwich Box Beams." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1386188162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Jinyang. "Numerical and experimental study of machining titanium-composite stacks." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0022/document.

Full text
Abstract:
Dans l’industrie aérospatiale, l’utilisation des matériaux hybrides CFRP/Ti montre une tendance à la hausse en raison de leurs propriétés mécaniques/physiques améliorées ainsi que des fonctions structurelles plus flexibles. En dépit de leurs nombreuses applications, l’usinage CFRP/Ti en perçage en une seule passe reste le principal défi scientifique et technologique de l’assemblage multi-matériaux. Par rapport au coût de production élevé et le temps des recherches basées sur des approches exclusivement expérimentales de l’usinage multi-matériaux, cette étude a pour objectif d’amener une meilleure compréhension de la coupe CFRP/Ti à travers une approche physique hybride qui fait dialoguer les méthodes numériques et expérimentales. Un modèle EF utilisant le concept de zone cohésive a été développé pour étudier l’usinabilité anisotrope de pièces structurales CFRP/Ti à des fins d’assemblage. L’approche numérique explicite, par des études préliminaires, les mécanismes de coupe clés qui contrôlent l’usinage CFRP/Ti. Par la suite, l’approche expérimentale a été conduite sous différentes conditions d’usinage en configuration de coupe orthogonale et de perçage. Une attention spéciale a été consacrée aux effets des stratégies des séquences de coupe CFRP/Ti sur la formation des endommagements d’interface induits. Ces études expérimentales et numériques ont permit (i) d’expliciter les mécanismes physiques activés qui contrôlent la coupe à l’interface ainsi que les endommagements induits par celle-ci, (ii) de préciser les effets des différentes stratégies d’assemblage multi-matériaux sur l’usinage CFRP/Ti, (iii) de définir la classification d’usinabilité CFRP/Ti, et (iv) d’analyser enfin les effets paramétriques géométrie/matériau d’outil régissant l’opération d’usinage CFRP/Ti
In modern aerospace industry, the use of hybrid CFRP/Ti stacks has experienced an increasing trend because of their enhanced mechanical/physical properties and flexible structural functions. In spite of their widespread applications, machining hybrid CFRP/Ti stacks in one-shot time still consists of the main scientific and technological challenge in the multi-material fastening. Compared to the high cost of pure experimental investigations on the multi-material machining, this study aims to provide an improved CFRP/Ti cutting comprehension via both numerical and experimental methodologies. To this aim, an FE model by using the cohesive zone concept was established to construct the anisotropic machinability of the bi-material structure. The numerical work aims to provide preliminary inspections of the key cutting mechanisms dominating the hybrid CFRP/Ti stack machining. Afterward, some systematic experimental work including orthogonal cutting and hole drilling was carefully performed versus different input cutting conditions. A special focus was made on the study of the effects of different cutting-sequence strategies on CFRP/Ti cutting output and induced interface damage formation. The combined numerical-experimental studies provide the key findings aiming to (i) reveal the activated mechanisms controlling interface cutting and subsequent interface damage formation, (ii) clarify the influences of different cutting-sequence strategies on hybrid CFRP/Ti stack machining, (iii) outline the machinability classification of hybrid CFRP/Ti stacks, and (iv) analyze finally the parametric effects of the material/tool geometry on cutting CFRP/Ti stacks
APA, Harvard, Vancouver, ISO, and other styles
5

He, Sean. "Hybrid experimental/numerical analysis and finite element modeling of fracture of aggregate composite." 1993. http://catalog.hathitrust.org/api/volumes/oclc/29608898.html.

Full text
Abstract:
Thesis (Ph. D.)--University of Wisconsin--Madison, 1993.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 182-198).
APA, Harvard, Vancouver, ISO, and other styles
6

Antunes, Ana Margarida Mendes. "Modes of Vibration of Hybrid Variable Stiffness Composite Laminated Plates: Modelling, experimental verification and analysis." Master's thesis, 2019. https://hdl.handle.net/10216/122007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

(5930135), Bo Peng. "Modeling Boundary Effect Problems of Heterogeneous Structures by Extending Mechanics of Structure Genome." Thesis, 2019.

Find full text
Abstract:
First, the theory of MSG is extended to aperiodic heterogeneous solid structures. Integral constraints are introduced to decompose the displacements and strains of the heterogeneous material into a fluctuating part and a macroscopic part, of which the macroscopic part represents the responses of the homogenized material. One advantage of this theory is that boundary conditions are not required. Consequently, it is capable of handling micro-structures of arbitrary shapes. In addition, periodic constraints can be incorporated into this theory as needed to model periodic or partially periodic materials such as textile composites. In this study, the newly developed method is employed to investigate the finite thickness effect of textile composites.

Second, MSG is enabled to deal with Timoshenko beam-like structures with spanwise heterogeneity, which provide higher accuracy than the previous available Euler–Bernoulli beam model. Its reduced form, the MSG beam cross sectional analysis, is found to be able to analyze generalized free-edge problems with arbitrary layups and subjected to general loads. In this method, the only assumption applied is that the laminate is long enough so that the Saint-Venant principle can be adopted. There is no limitation on the cross section of the laminate since no ad hoc assumption is involved with the microstructure geometry. This method solve the free-edge problem from a multiscale simulation point of view.

APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Experimental analysis, hybrid composite, hybrid effect"

1

Gurvich, Mark R., Patrick L. Clavette, and Vijay N. Jagdale. "Experimental Analysis of Repaired Zones in Composite Structures Using Digital Image Correlation." In Composite, Hybrid, and Multifunctional Materials, Volume 4, 91–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06992-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arca, M. A., I. Uyar, and D. Coker. "Experimental Investigation of the Effect of CNT Addition on the Strength of CFRP Curved Composite Beams." In Composite, Hybrid, and Multifunctional Materials, Volume 4, 177–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06992-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Werner, B. T., J. D. Schaefer, and I. M. Daniel. "Effect of Ply Dispersion on Failure Characteristics of Multidirectional Laminates." In Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6, 149–55. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00873-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zaimova, D., E. Bayraktar, I. Miskioglu, and N. Dishovsky. "Manufacturing and Damage Analysis of Epoxy Resin-Reinforced Scrap Rubber Composites for Aeronautical Applications." In Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6, 65–76. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00873-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abidin, Nur Marini Zainal, M. T. H. Sultan, Ernnie Illyani Basri, Adi Azriff Basri, and A. U. M. Shah. "Validation of Experimental Hybrid Natural/Synthetic Composite Laminate Specimen Using Finite Element Analysis for UAV Wing Application." In Impact Studies of Composite Materials, 143–60. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1323-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guden, Mustafa, Halit Kavi, and Sinan Yuksel. "Quasi-Static Axial Crushing Behavior of Aluminum Closed Cell Foam-Filled Multi-Packed Aluminum and Composite/ Aluminum Hybrid Tubes." In Experimental Analysis of Nano and Engineering Materials and Structures, 795–96. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arul Murugan, M., and A. S. Selva Kumar. "Effect of Barium Sulfate on Mechanical, DMA, Wear Analysis of Woven Hybrid with Wire Mesh Composite." In Advances in Design and Thermal Systems, 529–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6428-8_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Equbal, Azhar, Md Asif Equbal, Md Israr Equbal, and Anoop Kumar Sood. "Multi-Criterion Decision Method for Roughness Optimization of Fused Deposition Modelled Parts." In Additive Manufacturing Technologies From an Optimization Perspective, 235–62. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9167-2.ch012.

Full text
Abstract:
Fused deposition modelling is an extrusion-based automated fabrication process for making 3D physical objects from part digital information. The process offers distinct advantages, but the quality of part lacks in surface finish when compared with other liquid or powder based additive manufacturing processes. Considering the important factors affecting the part quality, the chapter attempted to optimize the raster angle, air gap, and raster width to minimize overall part roughness. Experiments are designed using face-centered central composite design and analysis of variance provides the effects of processing parameters on roughness of part. Suitability of developed model is tested using Anderson-darling normality test. Desirability method propose that roughness of different part faces are affected differently with chosen parameters, and thus, hybrid approach of WPCA based TOPSIS is used to break the correlation between part faces and reduce the overall part roughness. Optimizing shows that lower raster angle, lower air gap, and larger raster width minimizes overall part roughness.
APA, Harvard, Vancouver, ISO, and other styles
9

Mukhtar, I., Z. Leman, E. S. Zainuddin, and M. R. Ishak. "Development and performance analysis of hybrid composite side door impact beam: An experimental investigation." In Biocomposite and Synthetic Composites for Automotive Applications, 173–97. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820559-4.00006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Greco, Adriana, Ciro Aprea, and Angelo Maiorino. "Transcritical Carbon Dioxide Refrigeration as an Alternative to Subcritical Plants." In Handbook of Research on Advances and Applications in Refrigeration Systems and Technologies, 295–359. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8398-3.ch008.

Full text
Abstract:
Carbon dioxide (R744) is as a valid alternative to classical substances such as HFCs used in vapour compression plants. A transcritical refrigeration cycle is needed because the critical temperature of carbon dioxide is usually lower than the ambient temperature. In this chapter the performances of a transcritical cycle have been evaluated with a prototype R744 system working as a classical spit-systems to cool air. An experimental analysis has been carried out on the effect of: refrigerant charge, internal heat exchanger, heat rejection pressure on the energetic performances of the transcritical plant. An experimental analysis of a hybrid trans-critical refrigerator-desiccant wheel system has been carried out in order to improve the COP. The experimental transcritical cycle has been examined in comparison with a classical vapour compression plant working with the R134a.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Experimental analysis, hybrid composite, hybrid effect"

1

Ameri Sianaki, Abolfazl, Brian Evans, Vamegh Rasouli, Reem Roufail, and Gordon Stewart. "Effect of Embedded Electric Sensor on the Structural Strength of Filament Wound Hybrid Composite." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23069.

Full text
Abstract:
Filament wound composites (FWC) consist of multiple layers of carbon/glass fibres within an epoxy matrix at different angles of orientation to achieve required mechanical properties. The type of hybrid composite and method of fabrication may be tailored to develop a smart pipe with embedded sensors for use in mineral exploration drill pipe applications. Experimental work and numerical simulations were performed in order to understand the effect of the filament angle-ply and how embedded sensors altered the overall mechanical structure strength of the angle-ply composite. Numerical analysis was performed using Hypersizer, to understand the stress distribution on each of the laminated layers, their angles, and the presence of a sensor on the strength of the composite’s structure. The experimental work was carried out to validate the numerical analysis results. Experiments on two specimens are reported in this study, being with and without an embedded sensor. Eight plies were fabricated with the characteristic angle-ply of filament, wound in a rhomboid pattern. Due to the electrical conductivity of carbon fibre, the sensors’ performance was anticipated to deteriorate. Consequently a hybrid structure was designed. Glass fibre was wrapped around the sensors for isolation and the glass fibre, along with the sensors were then embedded in the carbon fibre filament wound structure. The fabricated hybrid specimens were then subjected to simple tensile tests in the lab. The mechanical strength of both specimens, with and without sensors, was compared to determine the effect of embedding the sensor within this hybrid composite.
APA, Harvard, Vancouver, ISO, and other styles
2

Avila, Raudel O., Md S. Islam, and Pavana Prabhakar. "Thermal Gradient on Hybrid Composite Propellant Tank Materials at Cryogenic Temperatures." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65727.

Full text
Abstract:
Cryogenic tanks are devices that are commonly used to store extremely low temperature fluids, usually in their liquid state. Cryogenic fuel tanks carry cryogenic propellants such as liquid oxygen, liquid methane or liquid hydrogen, at subfreezing temperatures in its condensed form in order to generate highly combustible liquids. This type of tank is exposed to an extremely cold temperature in its interior and to ambient temperature on its external surface resulting in large temperature gradient across the thickness of the wall. In this paper, hybrid textile composites with carbon and Kevlar® fabric are explored as means to reduce the influence of thermal gradient in order to enhance the material performance when cryogenic propellant fuels are stored in spacecraft applications. Previous initial studies of tensile and flexural tests have indicated that carbon and Kevlar® textile composites are suitable materials for cryogenic temperatures. The pristine mechanical properties of carbon composites changed within a maximum of 3–4% after initial cryogenic exposure during the fueling stage, while 17% for Kevlar® composites. Computational models of hybrid carbon-Kevlar® composites were subjected to cryogenic temperature (77 K) to investigate the effect of exposure for extended periods and to aid in the design of optimum layups for the same. Six optimal combinations were selected that resulted in low interface stresses and lower number of peak stresses through the thickness of the laminate. These layups were deduced to perform better compared to other layups due to lesser susceptibility to delamination type failure upon cryogenic exposure. Experimental investigation of the chosen hybrid composites has revealed few optimum combinations for use in tanks. As a next step, computational analysis of cryogenic exposure to only one surface of hybrid composites was performed to simulate the composite wall containing the liquid fuel. Based on the suggestions from the computational models, experiments to determine optimum designs of the composite wall were conducted. An ABS plastic insulating holder was computationally designed and 3D printed to hold the specimens such that only one surface is exposed to LN2. A total of eight composite layups were exposed to liquid nitrogen using the plastic holder to study their response to thermal gradient cryogenic exposure. Based on the results obtained computationally and supported by experiments, optimum hybrid layups of composites to sustain cryogenic exposure were determined.
APA, Harvard, Vancouver, ISO, and other styles
3

Bazˇant, Zdeneˇk P., Jia-Liang Le, Ferhun C. Caner, and Qiang Yu. "Size Effect on Strength of Bi-Material Joints of Steel With Fiber-Polymer Composite." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-69229.

Full text
Abstract:
Metal-composite joints between steel ribs and advanced fiber-polymer composites are an effective structural system for hybrid ship hulls. Similar joints are of interest for fuel-efficient aircraft. The current designs of such joints are generally based on the strength criterion, which ignores fracture mechanics. Aimed at an efficient and reliable design, this study investigates the size effect on the strength of these joints theoretically, numerically and experimentally. The analytical formulation of the size effect is asymptotically anchored at the large-size limit in linear elastic fracture mechanics (LEFM). The bi-material corner of the joint is shown to have a singular stress field with complex singularity. The strength of the joint is determined by the energy criterion for the macrocrack initiation at the corner, from which the large-size asymptote of the size effect law has been derived. A general approximate size effect law, spanning all sizes and various joint angles, is further derived via asymptotic matching. Numerical analysis with cohesive fracture model is used to design the experiments. Experimental studies involve the testing of geometrically similar hybrid joint specimens with the size ratio of 1 : 4 : 12. The analytical, numerical and experimental studies all indicate that the strength of bimaterial metal-composite joints is subjected to a strong size effect.
APA, Harvard, Vancouver, ISO, and other styles
4

Mamros, Elizabeth M., and Chetan P. Nikhare. "Springback Analysis of Hybrid Materials Created Through Alternative Layup Processes." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2877.

Full text
Abstract:
Abstract Various industry partners, particularly those in the automotive and aerospace industries, are continuing to grow their businesses and are seeking ways to improve their manufacturing processes. Some preliminary research has been conducted concerning the use of hybrid materials as a solution, but further analysis is required before these materials can be rolled out into industry universally. Two major benefits of potentially swapping out metal parts for hybrid (metal and composite) components are light weighting and cost reduction, which are currently two major objectives for these industries. It is imperative to understand the properties of the materials used in each manufacturing process as these properties will determine the result of each operation and ultimately the final product. A number of components are manufactured with sheet metal forming processes, and a commonly experienced, unwarranted effect is springback. Springback occurs when the die is removed following a forming operation, and the deformed part transforms its shape as a result of the elastic material properties. A component affected by springback may negatively affect future manufacturing processes, such as incorrect alignment during assembly. To further investigate a solution to this manufacturing defect, trilayer hybrid materials with metal and composite layers are considered. Due to complications resulting from the layup process in previous results, new techniques are required to eliminate delamination and gather additional springback measurements following channel bending tests. Trilayer sample compositions are composite metal composite or metal composite metal sandwiches. The layup techniques under consideration are resin plus hardener, a pillow method, and an enhanced adhesive mixture. The results from these experiments will support the movement to bring hybrid materials into manufacturing universally and will demonstrate the potential benefits of utilizing new layup techniques in the assembly of these materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Kosaraju, Satyanarayana, Venu Gopal Anne, and Swapnil Gosavi. "Development of Hybrid Composites (Al-SiC-C) Through Stir Casting: Machinability Studies." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2659.

Full text
Abstract:
Composite materials are important engineering materials due to their outstanding mechanical properties. Composite materials offer superior properties to conventional alloys for various applications as they have high stiffness, strength and wear resistance. The high cost and difficulty of processing these composites restricted their application and led to the development of reinforced composites. In the last two decades, wear studies on Particulate Metal Matrix Composites (PMMCs) reinforced with various reinforcements ranging from very soft materials like graphite, talc etc., to high hardened ceramic particulates like SiCp, Al2O3 etc., have been reported to be superior to their respective unreinforced alloys. Therefore, present work focused on the study of machinability of Al based binary composites reinforced with 8.5% SiC and Al based Hybrid composite reinforced with 8.5% SiC, 2% and 4% Graphite powder (Solid lubricant) have been studied by considering the effect of process parameters such as speed, feed, depth of cut and composition of material. Binary and hybrid composite materials have been casted by stir casting methodology. Experiments have been conducted using Design of Experiments approach to reduce the number of experiments and time. The cutting force and surface roughness in turning of both the binary and hybrid materials have been measured using cutting force dynamometer (4 component kistler dynamometer) and the roughness has been measured using surface roughness tester (Marsurf M400) simultaneously. The multi objective optimization has been carried out using Grey relational based Taguchi method. It was observed that feed was the most influencing factor compared to others factors and also results shown that the performance characteristics cutting force and the surface roughness are greatly enhanced by using Grey relational Analysis.
APA, Harvard, Vancouver, ISO, and other styles
6

Yılmaz, Muhammed, Melih Savran, Mustafa Öncül, and Kutlay Sever. "Manufacturing and Modeling of Hybrid Polymer Composites by Using Multiple-nonlinear Regression Analysis." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.035.

Full text
Abstract:
In this study, artichoke stem particles (AS) and wollastonite mineral (W) were used as an organic and inorganic fillers in order to improve the mechanical properties of polypropylene (PP). In this regard, PP-based composites containing AS and W were produced as non-hybrid and hybrid materials using a high-speed thermokinetic mixer. Mechanical properties of polymer composites were investigated by the tensile test. Experimental results reveal that the highest elastic modulus for PP-W and the highest tensile strength for PP were obtained while the lowest ultimate strain value was gained using PP-W-A. Then, multiple nonlinear regression analysis was employed to determine the effect of weight ratios of wollastonite mineral and artichoke stem particles in polypropylene on elastic modulus, tensile strength and ultimate strain. Experimental results were expressed second order (tensile strength), third order (elastic modulus) and fourth order (ultimate strain) mathematical models. The results show that the proposed models have well fitted with the experimental results. The coefficient of determination (R2) values were found between 0.95 and 1 in all models. Also, boundedness check control of the proposed models which gives information about whether models are realistic or not was carried out by calculating the maximum and minimum values produced by the relevant model.
APA, Harvard, Vancouver, ISO, and other styles
7

Shendokar, Sachin, Ajit Kelkar, Ram Mohan, and Ron Bolick. "Parametric Investigations on the Effect of Electrospinning Process Variables on the Macroscopic Properties of Hybrid Composites." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12188.

Full text
Abstract:
Electrospinning is regarded as an efficient process to form sub-micron and nano level fibers consistently in a simple laboratory scale setup. The process has excellent potential for scalability and for the structural applications of integrated electrospun fibers in polymer hybrid composites. In our on going work, the mechanical characterization of these hybrid composites with integrated electrospun fibers revealed significant variations based on the sintering temperature and the morphology of the formed electrospun fibers. The morphology (in particular, the fiber diameter) depends on the process parameters of the electrospinning process. This paper investigates the influence of two electrospinning parameters namely: Distance between spinneret and collector plate and voltage. Four voltage levels were selected varying from 15KV to 18 KV in the increments of 1KV. The spinneret to the collector plate distance was varied from 70 mm to 100 mm in 10 mm increments. Thus, a total 16 combinations of these parameters were studied keeping other parameters constant. The objective is to find the optimal voltage and distance combinations that produce smallest electrospun nano fiber diameters consistently. From each voltage-distance combination, the diameter of the deposited fibers was sampled at 50 different points using the morphological image data obtained with a scanning electron microscope (SEM). The analysis of experimental data indicated four favorable voltage-distance combinations that give smallest diameter size of electrospun nano fibers consistently. These four set of parameters were, 15KV and 70 mm; 15KV and 100 mm; 18 KV and 70 mm; and 18KV and 100 mm. The least diameter of fiber was observed and measured for a voltage distance combination of 18KV and 70 mm. The least diameter observed for these parameters can be attributed to the higher applied voltage resulting into higher bending instability causing the reduction in diameter of fibers. Another reason for reduction in fiber diameter is, when the distance between spinneret and collector is increased there is more space for elongation of fibers. With more increase in length of fiber, there is higher reduction in diameter of electrospun fibers. To correlate these process variations of electrospinning to the morphological properties of electrospun fibers, design of experiments study was carried out. It has been attempted here to investigate if there is any correlationship between the morphological property of electrospun fibers and properties of two phase composite. These investigations will provide an insight on the relationship between the process parameters — morphology — and the associated characterized macroscopic properties of the formed composites. Results from the stochastic modeling for variations in the fiber diameter due to the variations in the voltage and the distance correlate well to the ARMA (6,5) stochastic model. Greens functions for the model were derived and showed the stability of the electrospinning process.
APA, Harvard, Vancouver, ISO, and other styles
8

Lindsey, Christopher G., and Houshang Masudi. "Stress Analysis of Composite Tubes Under Tensile Fatigue Loading in a Simulated Seawater Environment." In ASME 2002 Engineering Technology Conference on Energy. ASMEDC, 2002. http://dx.doi.org/10.1115/etce2002/trib-29094.

Full text
Abstract:
It is the purpose of this study to investigate the effects of fatigue loading on two variations of hybrid composite tubes. The two types of samples are both composed of AS-4D/carbon fibers and e-glass fibers. The key distinctions between the two samples being the orientation and the number of layers. The samples were composed of the following orientations [90/20/90/20/90/20/20/90/20] and [90/90/20/90/20/20/90/20]. The experiment is designed to not only compare the two samples, but to develop some experimental data for a fatigue curve for similar materials. All loading for this experiment takes place in a controlled environment. Both temperature and the specific gravity of the water are measured and controlled.
APA, Harvard, Vancouver, ISO, and other styles
9

Talebi, Cihan, Bülent Acar, and Gökhan O. Özgen. "Manufacturing Error Detection in Plate and Cylindrical Composite Structures." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23602.

Full text
Abstract:
Abstract Due to their superior weight to strength ratio of composites to common metallic structures, composite technology is widely used in aerospace industry. Assessment of damage in composites has gained interest after a large number of accidents caused by unanticipated damages in the composite structures. Many different structural health monitoring applications were developed over the years due to the fact that composite materials may inherit damage from within, not always visible from surface. The most common types of errors encountered in the industry are due to misaligned fibers, a mix-up in ply order, and delaminations: all presenting changes in the vibro-acoustical performance of the composite structure. This paper discusses the change in the dynamic properties of a composite structure contains a manufacturing error such as a ply lay-up error, and a ply angle error. Both plate and cylindrical structure types were considered for the stated error types. Effect of symmetric errors, unsymmetrical and unbalanced errors, and mid-plane errors were considered in the case of ply orientations, and dynamic stiffness matrix was used to identify the error. Identification of the structure’s layup properties and manufacturing error identification is employed. From the measured modal properties of the structure, a back-tracking strategy was used to generate the ply lay-up of the composite structure. Prepreg plates of a single carbon fiber system and filament wound hybrid cylinders consisting of glass and carbon fibers were manufactured for testing. Modal tests on plates and cylindrical composite structures were performed and compared with the analysis. A good match between the finite element model and experiment was shown in natural frequencies and mode shapes.
APA, Harvard, Vancouver, ISO, and other styles
10

Parsa, A., and M. Mosavi Mashhadi. "An Inverse Numerical/Analytical Approach to Predict the Material Properties of Carbon Nanotube/Polymer Interphase." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25320.

Full text
Abstract:
There is substantial interest in using carbon nanotubes (CNTs) to create multifunctional polymer composite materials with outstanding mechanical, electrical, and thermal properties. A difficulty in modeling the behavior of these systems is the non-bulk interphase region in these systems that forms due to nanoscale interactions between the embedded NTs and adjacent polymer chains. However, the mechanical properties of this interphase region are unknown and very difficult to measure directly from experimental testing due to the size scale of this interphase region. Thus a three-phase (nanotube, interphase and matrix) Mori-Tanaka micromechanical model has been developed such that the properties of this interphase region can be inferred from macroscale elastic data. Both as-received and functionalized NTs have been considered in order to investigate the influence of functionalization on predicted mechanical properties of the interphase. A hybrid finite element-micromechanical method is also used to consider the effect of NT waviness in modeling. Results show that the Young’s modulus of interphase region is significantly higher than that of bulk polymer and it must be considered as an independent reinforcement mechanism in CNT/polymer nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Experimental analysis, hybrid composite, hybrid effect"

1

Liu, C. T., and Javier Gonzalez. Hybrid Experimental-Numerical J-Integral Analysis and Crack Growth Resistance of a Particulate Composite Material. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada410488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography